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This paper is dedicated to the memory of Vaughan Jones

Abstract. We show that every 4-plump razor-sharp normal Tits quadrangle
X is uniquely determined by a non-degenerate quadratic space whose Witt
index m is at least 2. If this Witt index is finite, then X is the Tits quadrangle
arising from the corresponding building of type Bm or Dm by a standard
construction.

1. Introduction

A generalized polygon is the same thing as a spherical building of rank 2. Tits
observed that the spherical buildings of rank 2 that arise from absolutely simple
algebraic groups all satisfy a property he called the Moufang condition. The clas-
sification of Moufang polygons was given in [9]. It says that all Moufang polygons
(and indeed, by [8], all irreducible spherical buildings of rank at least 3) arise as the
fixed point geometry of a Galois group acting on the spherical building associated
with a split simple algebraic group (or by certain variations on this theme involving
algebraic structures of infinite dimension).

The notion of a Tits polygon was introduced in [2]. A Tits polygon is a bipartite
graph Γ in which for each vertex v, the set Γv of vertices adjacent to v is endowed
with a symmetric relation we call “opposite at v” satisfying certain axioms. A
Moufang polygon is the same thing as a Tits polygon all of whose local opposition
relations are trivial.

Let P denote the set of pairs (∆, T ), where ∆ is a spherical building of type M
satisfying the Moufang condition and T is a Tits index of absolute type M and
relative rank 2. Every pair (∆, T ) in P gives rise by a simple construction to a Tits
polygon X and a natural action of the stabilizer of T in Aut(∆) on X. We call
the Tits polygons that arise in this way the Tits polygons of index type. Moufang
polygons are all Tits polygons of index type; this is the case that not just the
relative rank but also the absolute rank of T is 2.

For every irreducible spherical building ∆ of rank at least 2, there exist Tits
indices T such that (∆, T ) ∈ P. Thus the theory of Tits polygons allows us to
regard a spherical building of arbitrary rank at least 2 as a rank 2 structure to
which the methods developed in [9] can be applied.

With a few exceptions, Tits polygons of index type satisfy a condition we call
dagger-sharp. This is a natural condition on the action of the stabilizer of an
apartment on the corresponding root groups. It is trivially satisfied by all Moufang
polygons. Tits n-gons exist for every value of n (as was observed in [2, 1.2.33]), but
by [2, 1.6.14], dagger-sharp Tits n-gons exist only for n = 3, 4, 6 and 8. In other
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words, the only dagger-sharp Tits polygons that can exist are Tits triangles, Tits
quadrangles, Tits hexagons and Tits octagons.

In [4, 5.11 and 5.12], we showed that all dagger-sharp Tits triangles are of index
type (or a variation defined over a simple associative ring that is infinite dimensional
over its center), in [3, 7.7], we showed that all dagger-sharp Tits hexagons are of
index type and in [6], we showed that all dagger-sharp Tits octagons are, in fact,
Moufang octagons. This leaves only the case n = 4. As was the case with Moufang
polygons, Tits polygons exist in the greatest variety and their classification presents
the greatest difficulties in this case.

Much as in the classification of Moufang quadrangles, dagger-sharp Tits quad-
rangles are either indifferent, reduced or wide (as defined in 4.3) and every reduced
dagger-sharp Tits quadrangle is either normal (as defined in 4.5) or not. In [6], we
showed that all dagger-sharp indifferent quadrangles are Moufang quadrangles. The
wide dagger-sharp Tits quadrangles can be studied inductively as extensions (in an
appropriate sense) of a reduced dagger-sharp Tits quadrangle. In [5], we showed
that the wide dagger-sharp Tits quadrangles that are extensions of orthogonal Tits
quadrangles (subject to certain restriction which we would like to eliminate) are
precisely the Tits quadrangles of index type associated with exceptional algebraic
groups of type E6, E7, E8 and F4.

In this paper, we study normal Tits quadrangles. This case presented difficulties
which we were able to overcome only by replacing the dagger-sharp condition with
a mildly stronger, but at least equally natural, condition (defined in 2.21) that we
call razor-sharp. (We do not, however, know any examples of dagger-sharp normal
Tits quadrangles that are not, in fact, razor-sharp.)

The main result of this paper is the classification of the normal razor-sharp Tits
quadrangles. We show that these Tits quadrangles are all uniquely determined by
a non-degenerate quadratic space (K,L, q) over a field K. If the Witt index of q is
finite, these Tits quadrangles are of index type related to an orthogonal group.

We conjecture that all razor-sharp Tits quadrangles are of index type (or a
variation involving algebraic structures of infinite rank). It remains only to consider
Tits quadrangles that are reduced but not normal and to complete the case of wide
Tits quadrangles. Since razor-sharp implies dagger-sharp, a proof of this conjecture
would be the last step in a classification of all razor-sharp Tits polygons.

Let k be an integer at least 3. We say that a Tits polygon is k-plump if for
each vertex v, the valency |Γv| of v is not too small in an appropriate sense. All
Tits polygons of index type corresponding to a pair (∆, T ) in P are k-plump if the
field of definition of ∆ contains at least k elements (by [2, 1.2.7]). It should be
mentioned that in all the classification results mentioned above, it is assumed that
all the Tits n-gons under consideration are 5-plump (see 5.93).

This paper is organized as follows. In Section 2, we give the definition of a Tits
polygon and assemble all the results and definitions from [2] that we require. In
Section 3, we review the basic properties of the orthogonal Tits quadrangles and in
3.11 we state our main result. In Section 4, we prove some properties shared by all
Tits quadrangles. Finally, in Section 5, we focus on normal Tits quadrangles and
give the proof of 3.11.

∗ ∗ ∗
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Conventions 1.1. Let G be a group. We denote by G∗ the set G\{1} (or G\{0}
if G is additive). As in [9], we set ab = b−1ab and

[a, b] = a−1b−1ab

for all a, b ∈ G. With these definitions, we have
(i) [ab, c] = [a, c]b · [b, c] and
(ii) [a, bc] = [a, c] · [a, b]c.
for all a, b, c ∈ G.

Conventions 1.2. If i, j are indices of some variable, we denote by [i, j] the interval
of integers from i to j if i ≤ j and interpret [i, j] to be the empty set if j < i, as in
2.7, for example.

Acknowledgment: The work of the first author was partially supported by DFG
Grant MU1281/7-1 and the work of the second author was partially supported by
Simons Foundation Collaboration Grant 516364.

2. Tits Polygons

Tits polygons were introduced in [2]. In this section, we give the definition and
assemble all the results and definitions from [2] that we will require.

Definition 2.1. A dewolla is a triple

X = (Γ,A, {≡v}v∈V ),

where:
(i) Γ is a bipartite graph with vertex set V and |Γv| ≥ 3 for each v ∈ V , where

Γv denotes the set of vertices adjacent to v.
(ii) For each v ∈ V , ≡v is an anti-reflexive symmetric relation on Γv. We say

that vertices u,w ∈ V are opposite at v if u,w ∈ Γv and u ≡v w. A path
(w0, w1, . . . , wm) in Γ is called straight if wi−1 and wi+1 are opposite at wi for
all i ∈ [1,m− 1].

(iii) There exists n ≥ 3 and a non-empty set A of circuits of length 2n such that
every path contained in a circuit in A is straight.

The parameter n is called the level of X. The automorphism group Aut(X) is the
subgroup of Aut(Γ) consisting of all the elements of Aut(Γ) that preserve both the
set A and the set of all straight paths in Γ. A root of the dewolla X is a straight
path of length n in Γ.

Definition 2.2. A Tits n-gon is a dewolla

X = (Γ,A, {≡v}v∈V )

of level n for some n ≥ 3 such that Γ is connected and the following axioms hold:
(i) For all v ∈ V and all u,w ∈ Γv, there exists z ∈ Γv that is opposite both u

and w at v.
(ii) For each straight path δ = (w0, . . . , wk) of length k ≤ n − 1, δ is the unique

straight path of length at most k from w0 to wk.
(iii) For each root α = (w0, . . . , wn) of X, the group Uα acts transitively on the set

of vertices opposite wn−1 at wn, where Uα is the pointwise stabilizer of

Γw1 ∪ Γw2 ∪ · · · ∪ Γwn−1



430 BERNHARD MÜHLHERR AND RICHARD M. WEISS

in Aut(X). The group Uα is called the root group associated with the root α.
A Tits polygon is a Tits n-gon for some n ≥ 3. A Tits n-gon is called a Tits triangle
if n = 3, a Tits quadrangle if n = 4, etc.

By [2, 1.3.12], A is the set of all circuits in Γ of length at most 2n containing
only straight paths. Thus, 2n is, roughly speaking, the “straight girth” of Γ.

Notation 2.3. We will say that a Tits n-gon X = (Γ,A, {≡v}v∈V ) is Moufang if all
the relations ≡v are trivial, i.e. if all paths in Γ are straight. If X is Moufang, then
by [2, 1.2.3], Γ is a Moufang n-gon and A is the set of its apartments. Conversely,
if Γ is a Moufang n-gon, A is the set of its apartments and ≡v is the trivial relation
on Γv for every v in the vertex set V , then by [2, 1.2.2], (Γ,A, {≡v}v∈V ) is a Tits
n-gon.

Notation 2.4. Let X = (Γ,A, {≡v}v∈V ) be a Tits n-gon for some n ≥ 3. A
coordinate system for X is a pair (γ, i 7→ wi) where γ is an element of A and i 7→ wi
is a surjection from Z to the vertex set of γ such that for each i, the image of the
sequence (i, i+ 1, . . . , i+n) is a root of X. For each coordinate system (γ, i 7→ wi),
we denote by Ui the root group associated with the root (wi, wi+1, . . . , wi+n) for
each i and call the map i 7→ Ui the root group labeling associated with (γ, i 7→ wi).
Note that wi = wj and Ui = Uj whenever i and j have the same image in Z2n.
From now on, we fix a Tits n-gon X = (Γ,A, {≡v}v∈V ) and a coordinate system
(γ, i 7→ wi) of X, we let i 7→ Ui be the corresponding root group labeling and we
let G = Aut(X).

Proposition 2.5. Let

U[k,m] =

{
UkUk+1 · · ·Um if k ≤ m and
1 otherwise.

Then the following hold:
(i) [Ui, Uj ] ⊂ U[i+1,j−1] for all i, j such that i < j < i + n. In particular,

[Ui, Ui+1] = 1 for all i.
(ii) The product map U1 × U2 × · · · × Un → U[1,n] is bijective.
All these assertions hold if all the subscripts are shifted by an arbitrary constant.

Proof. This holds by [2, 1.3.36(ii) and (iii)]. 2

Notation 2.6. By 2.5(i), U[i,j] is a subgroup ofG for all i, j such that 1 ≤ i ≤ j ≤ n.
Notice that all of these subgroups fix the adjacent vertices wn and wn+1. We call
the (n+ 1)-tuple

(U[1,n], U1, . . . , Un)

a root group sequence of X.

Notation 2.7. Suppose that i < j < i + n and that [ai, aj ] = ai+1ai+2 · · · aj−1

with ak ∈ Uk for all k ∈ [i, j]. It follows from 2.5(ii) that for each k ∈ [i+ 1, j − 1],
ak is uniquely determined by [ai, aj ]. We denote this element ak by [ai, aj ]k.

Notation 2.8. Let

U ]i = {a ∈ Ui | wai+n+1 is opposite wi+n+1 at wi+n}
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for each i. By [2, 1.4.3], we have U ]i 6= ∅ and by [2, 1.4.8], we have

U ]i = {a ∈ Ui | wai−1 is opposite wi−1 at wi}
for each i.

Proposition 2.9. For each i ∈ Z, there exist unique maps κγ and λγ from U ]i to
U ]i+n such that for each a ∈ U ]i , the product

µγ(a) := κγ(a) · a · λγ(a) (2.10)

interchanges the vertices wi+n−1 and wi+n+1. For each a ∈ U ]i , the element µγ(a)
fixes the vertices wi and wi+n and interchanges the vertices wi+j and wi−j for all
j ∈ Z and

U
µγ(a)
k = U2i+n−k (2.11)

for all k ∈ Z. In particular, Uµγ(a)
k = Un+2−k for all k if i = 1 and Uµγ(a)

k = Un−k
for all k if i = n.

Proof. This holds by [2, 1.4.4 and 1.4.8]. 2

Proposition 2.12. Let a ∈ U ]i for some i. Then the following hold:
(i) a−1 ∈ U ]i and µγ(a−1) = µγ(a)−1.
(ii) κγ(a−1) = λγ(a)−1 and λγ(a−1) = κγ(a)−1.
(iii) µγ(ag) = µγ(a)g for all g mapping γ to itself.

Proof. This holds by [2, 1.4.3 and 1.4.13]. 2

Proposition 2.13. Let H denote the pointwise stabilizer of γ in Aut(X). Then
CH(〈Ui, Ui+1〉) = CH(〈Ui+1, Ui+n〉) = 1 for all i.

Proof. This holds by [2, 1.4.19(ii)]. 2

Proposition 2.14. Suppose that [a1, a
−1
n ] = a2 · · · an−1 with ai ∈ Ui for each

i ∈ [1, n]. Then the following hold:
(i) a2 = a

µγ(a1)
n if a1 ∈ U ]1 and a1 = a

µγ(an)
n−1 if an ∈ U ]n.

(ii) [a2, λγ(a1)−1] = a3 · · · an−1an if a1 ∈ U ]1 and [κγ(an), a−1
n−1] = a1a2 · · · an−2 if

an ∈ U ]n.
All these assertions hold if all the subscripts are shifted by an arbitrary constant.

Proof. This holds by [2, 1.4.16]. 2

Proposition 2.15. If a ∈ U1 and Uabn = U2 for some b ∈ Un+1, then a ∈ U ]1 and
b = λγ(a).

Proof. This holds by [2, 1.4.27(i)]. 2

Definition 2.16. Let k ≥ 3. As in [2, 1.4.21], we call X k-plump if for all v ∈ V ,
and for every subset Ω of Γv of cardinality at most k, there exists a vertex that is
opposite u at v for all u ∈ Ω. Thus k-plump implies (k− 1)-plump, and “2-plump”
is simply 2.2(i).

Proposition 2.17. If X is 3-plump, then for all i, every element of Ui is the
product of at most two elements of U ]i .

Proof. This holds by [2, 1.4.23]. 2
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Proposition 2.18. Let E be the edge set of Γ. Then Aut(X) acts transitively on
the set {(δ, e) ∈ A× E | e ⊂ δ}.

Proof. This holds by [2, 1.3.13]. 2

Notation 2.19. Let G† denote the subgroup of Aut(X) generated by all the root
groups of X, let H be as in 2.13 and let H† = H ∩G†.

Proposition 2.20. Let Hi = 〈mm′ | m,m′ ∈ µγ(U ]i )〉 for all i and let H† be as in
2.19. Then H1 and Hn normalize each other and if X is 4-plump, then H† = H1Hn.

Proof. The first claim holds by 2.12(iii) and the second claim by [2, 1.5.28]. 2

Definition 2.21. Let H, H†, H1 and Hn be as in 2.19 and 2.20. The subgroup
H normalizes Ui for each i. We say that X is sharp if for each i, every nontrivial
H-invariant normal subgroup of Ui contains elements of U ]i , where U

]
i is as in 2.8.

We say that X is dagger-sharp if for each i, every nontrivial H†-invariant normal
subgroup of Ui contains elements of U ]i . Finally, we say that X is razor-sharp if for
each i, every nontrivial Hi-invariant normal subgroup of Ui contains an element of
U ]i . Note that razor-sharp implies dagger-sharp implies sharp.

Remark 2.22. It follows from 2.12(iii) and 2.18 that the definitions in 2.21 do not
depend on the choice of the coordinate system (γ, i 7→ wi) in 2.4.

Remark 2.23. Let Hi for each i be as in 2.20. We say that X is razor-sharp at
Ui for some i if every non-trivial Hi-invariant normal subgroup of Ui contains an
element of U ]i . Let i and j be two integers and if n is even, suppose that i and j
have the same parity. It follows from 2.9 that there is an element g of G stabilizing
the apartment γ such that Ugi = Uj . By 2.12(iii), we also have Hg

i = Hj . Thus
X is razor-sharp at Ui if and only if it is razor-sharp at Uj . It follows that X is
razor-sharp if and only if it is razor-sharp at U1 and at Un.

Definition 2.24. Two vertices of Γ are called opposite if there is a root (as defined
in 2.1) that starts at the one and ends at the other.

Proposition 2.25. Suppose x and y are opposite vertices as defined in 2.24 and
that z is an arbitrary vertex adjacent to y. Then there exists a unique root from x
to z that passes through y.

Proof. This holds by [2, 1.3.16 and 1.3.18]. 2

3. Orthogonal Tits Quadrangles

We introduce orthogonal Tits quadrangles in 3.2 and formulate our main result
in 3.11.

Notation 3.1. We will denote by quadratic space a triple (K,L, q) where K is a
field, L is a vector space over K and q is a quadratic form on L.

Notation 3.2. Let Λ = (K,L, q) be a quadratic space and let f be the bilinear
form associated with q. We assume that Λ is non-degenerate, i.e. that if q(v) = 0
and f(v, L) = 0 for some v ∈ L, then v = 0. A Tits quadrangle X is orthogonal of
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type Λ if for some coordinate system (γ, i 7→ wi) of X with associated root group
sequence

(U+, U1, . . . , U4)

as defined in 2.6, there exist isomorphisms xi from the additive group of K to Ui
for i = 1 and 3 and xj from the additive group of L to Uj for j = 2 and 4 such that

[x2(w), x4(u)−1] = x3(f(w, u)) and

[x1(t), x4(u)−1] = x2(tu)x3(q(u)t)
(3.3)

for all u,w ∈ L and all t ∈ K and [U1, U3] = 1.

Remark 3.4. Suppose that Λ = (K,L, q) is a non-degenerate quadratic space of
Witt index m. Let V = K4 ⊕ L, let Q be the quadratic form on V given by

Q(t1, t2, t3, t4, v) = t1t2 + t3t4 + q(v)

for all (t1, t2, t3, t4, v) ∈ V . Assume now that m is finite and let ∆ be the spherical
building associated with the quadratic space (K,V,Q). Then ∆ is a building of
type Xm+2, where X = D if q is hyperbolic and X = B if it is not. Let Π be the
Tits index of absolute type Xm+2 and relative rank 2 in which the first two nodes
are circled. Finally, we let XΛ denote the Tits quadrangle obtained by applying [2,
1.2.12 and 1.2.28] to the pair (∆,Π). Then by [5, 6.3], XΛ is an orthogonal Tits
quadrangle of type Λ.

Remark 3.5. There exists, in fact, a Tits quadrangle of type Λ for every non-
degenerate quadratic space Λ even if its Witt index is not finite. This is shown in
[7] by considering the thick, non-degenerate polar space (as defined in [1, 7.4.1])
associated with the quadratic form Q defined in 3.4.

Remark 3.6. Note that it is allowed in 3.4 that the bilinear form f belonging to q
is identically zero. In this case, [U2, U4] = 1 by (3.3), so XΛ is indifferent as defined
in 4.3, and q is anisotropic (since Λ is non-degenerate). Thus U∗i = U ]i for all i by
[5, 6.4(i)–(ii)] and therefore XΛ is a Moufang quadrangle by [2, 1.4.15] in this case.

Proposition 3.7. Let XΛ and Λ = (K,L, q) be as in 3.4. Then XΛ is 4-plump if
and only if |K| ≥ 4.

Proof. This holds by [5, 3.4]. 2

Proposition 3.8. For every non-degenerate quadratic space Λ = (K,L, q) with
|K| ≥ 4, there is at most one Tits quadrangle of type Λ up to isomorphism.

Proof. This holds by [5, 6.10]. (As we observe in 5.93 below, the hypothesis |K| > 4
in [5, 6.10] can be replaced by |K| ≥ 4. Note, too, that in the penultimate line of
the proof of [5, 6.10], 2.7 should be replaced by 2.20.) 2

Proposition 3.9. Orthogonal Tits quadrangles of type Λ and Λ′ are isomorphic if
and only if the quadratic spaces Λ and Λ′ are similar.

Proof. This holds by [5, 6.8]. 2

Proposition 3.10. Let Λ = (K,L, q) and XΛ be as in 3.4. Then XΛ is is razor-
sharp unless Λ is a hyperbolic plane.
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Proof. For each w ∈ L such that q(w) 6= 0, we denote by πw the reflection u 7→
u − f(u,w)q(w)−1w, where f is as in 3.2. Let e ∈ L and suppose that e 6= 0 but
q(e) = 0. Since Λ is non-degenerate, there exists e′ ∈ L such that f(e, e′) 6= 0. Thus
B := 〈e, e′〉 is a hyperbolic plane. Thus there exists d ∈ B such that q(d) = 0 and
f(d, e) = 1 (and hence B = 〈e, d〉). Let a = d+ e. Then q(a) = 1 and the reflection
πa interchanges 〈d〉 and 〈e〉. Suppose that L 6= B. Then we can choose b ∈ B⊥
such that q(b) 6= 0. The reflection πb acts trivially on B and hence the product
πbπa maps 〈e〉 to 〈d〉. It follows that there is no non-trivial additive subgroup of L
that is invariant under the group

〈πuπv | u, v ∈ L, q(u) 6= 0, q(v) 6= 0}

on which q vanishes identically.
Let U1, U4 and x4 be as in 3.2 and let H4 be as in 2.20. By [5, 6.4(ii)], x4(a) ∈ U ]4

for a ∈ L if and only if q(a) 6= 0. Hence by [5, 6.4(vi)(c)] and the conclusion of the
previous paragraph, every H4-invariant subgroup of U4 contains elements of U ]4 .
By [5, 6.4(i)], U ]1 = U∗1 (see 1.1). By 2.23, therefore, XΛ is razor-sharp. 2

The following is our main result.

Theorem 3.11. Let X be a Tits quadrangle and suppose that X is 3-plump as
defined in 2.16, that X is normal as defined in 4.5 below and that X is razor-sharp
as defined in 2.21. Then there exists a non-degenerate quadratic space Λ = (K,L, q)
such that X is orthogonal of type Λ.

Remark 3.12. If two Tits quadrangles are normal and 3-plump, then their product
(in a suitable sense) is a Tits quadrangle that is normal and 3-plump but not razor-
sharp. More interesting examples of 3-plump normal Tits quadrangles that are not
razor-sharp can be constructed from suitable quadratic spaces over commutative
rings; see [3] and [10].

4. Arbitrary Tits Quadrangles

Before focusing on the proof of 3.11, we assemble some results about arbitrary
Tits quadrangles derived from [9, Chapter 21].

Let
X = (Γ,A, {≡v}v∈V )

be an arbitrary Tits quadrangle, where V is the vertex set of Γ, let (γ, i 7→ wi) be
a coordinate system of X and let i 7→ Ui be the corresponding root group labeling
as defined in 2.4.

Definition 4.1. Let Vi = [Ui−1, Ui+1] and let Yi = CUi(Ui−2) for all i. Note that
by 2.5(i), Vi ⊂ Ui.

Remark 4.2. By [5, 4.9], Yi = CUi(Ui+2) and thus [Yi, Ui−2] = [Yi, Ui+2] = 1 for
all i and the definition of Yi in 4.1 is equivalent to the definition of Yi given in [5,
4.6].

Definition 4.3. We call X indifferent if Ui = Yi for all i, reduced if Ui = Yi for
some but not all i and wide if Ui 6= Yi for all i.
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Remark 4.4. By [5, 5.3], µγ(ai) ∈ Yi+4aiYi+4 and hence

[µγ(ai), Ui−2] = [µγ(ai), Ui+2] = 1

for all i and all ai ∈ Yi ∩ U ]i .

It follows from (2.11) that if Ui = Yi for some i, then Uj = Yj for all j of the
same parity as i. Note, too, that if (γ, i 7→ wi) is replaced by its opposite and
i 7→ Ui by the root group labeling corresponding to this new coordinate system,
then Ui is replaced by Un+1−i, Yi by Yn+1−i and Vi by Vn+1−i for all i. Thus if X
is reduced, we can assume that Ui = Yi for all odd i.

Definition 4.5. The Tits quadrangle X is normal if Ui = Yi for all odd i (so
X is reduced or indifferent) and the group H1 defined in 2.20 normalizes the set
[U1, a

−1
4 ]2 for all a4 ∈ U ]4 .

Remark 4.6. It follows from 2.18 that the definitions in 4.3 and 4.5 do not depend
on the choice of the coordinate system (γ, i 7→ wi).

Theorem 4.7. Suppose that X is sharp as defined in 2.21 and let Vi and Yi for
all i be as in 4.1. If X is indifferent or reduced, then Ui is abelian for all i. If
X is wide, then either 1 6= Vi ⊂ Yi and Ui is abelian for all i or, after replacing
(γ, i 7→ wi) by its opposite if necessary, the following hold:
(i) 1 6= [Ui, Ui] ⊂ Vi ⊂ Yi ⊂ Z(Ui) for all i odd and
(ii) Yi = 1 and Ui is abelian but Vi 6= 1 for all i even.

Proof. This holds by [5, 4.8]. 2

For the rest of this section, we assume X is sharp and that Yi 6= 1 for all odd i
and let

Y ]i = Yi ∩ U ]i . (4.8)

Since X is sharp, the set Y ]i is non-empty.

Proposition 4.9. Let a1 ∈ U ]1 and a4 ∈ U ]4. Then the map u1 7→ [u1, a
−1
4 ]3 is an

isomorphism from U1 to U3 and the map u4 7→ [a1, u
−1
4 ]2 is an isomorphism from

U4 to U2. These assertions remain valid if all the indices are shifted by a constant.

Proof. By 2.14(i), [u1, a
−1
4 ]

µγ(a4)
3 = u1 and [a1, u

−1
4 ]2 = u

µγ(a1)
4 for all u1 ∈ U1 and

all u4 ∈ U4. The claim follows. 2

Proposition 4.10. Let a1 ∈ U1 and a4 ∈ U4. Then the map u1 7→ [u1, a4]2 is an
homomorphism from Y1 to U2 and the map u4 7→ [a1, u4]2 is an homomorphism
from U4 to U2.

Proof. This holds by 1.1. 2

Proposition 4.11. NU1(U[3,4]) = 1 and NU4(U[1,2]) = 1.

Proof. By 2.14(i), NU1
(U[3,4]) ∩ U ]1 = ∅ and NU4

(U[1,2]) ∩ U ]4 = ∅. The claims
hold, therefore, since X is sharp and the subgroup H defined in 2.13 normalizes
NU1

(U[3,4]) and NU4
(U[1,2]). 2

Proposition 4.12. Let h = µγ(a1)2 for some a1 ∈ Y ]1 , where Y
]
i is as in (4.8).

Then:
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(i) ahi = a−1
i for i = 2 and 4 and for all ai ∈ Ui.

(ii) [h, Y1] = [h, U3] = 1.

Proof. Choose a1 ∈ Y ]1 and a4 ∈ U4 and let h = µγ(a1)2 and b4 = ah4 . Let
a2 = a

µγ(a1)
4 . By (2.11), a2 ∈ U2 and the element h normalizes Ui and Yi for all i.

By 2.12(i), µγ(a−1
1 ) = µγ(a1)−1. Hence

a2 = a
µγ(a1)
4 = b

h−1µγ(a1)
4 = b

µγ(a1)−1

4 = b
µγ(a−1

1 )
4 ,

so
[a1, a

−1
4 ]2 = a2 = [a−1

1 , b−1
4 ]2

by two applications of 2.14(i). By 4.10, therefore, [a1, b
−1
4 ]2 = a−1

2 . By 4.9, it
follows that [a1, (a4b4)−1]2 = a2a

−1
2 = 1 and thus a4b4 = 1. We conclude that h

inverts every element of U4. Since h commutes with µγ(a1) and Uµγ(a1)
4 = U2, h

inverts every element of U2 as well. Thus (i) holds.
By 4.4, [µγ(a1), U3] = 1. Therefore [h, U3] = 1. Choose d1 ∈ Y1 and d4 ∈ U4 and

let d2 = [d1, d4]2. By two applications of (i), we have

d−1
2 = dh2 = [dh1 , d

h
4 ]2 = [dh1 , d

−1
4 ]2.

By two applications of 4.10, we have [dh1 , d4]2 = d2 and then [d−1
1 dh1 , d4]2 = 1. Since

d4 is arbitrary, it follows that d−1
1 dh1 ∈ NU1

(U[3,4]), so by 4.11, d1 = dh1 . Hence
[h, Y1] = 1. Thus (ii) holds. 2

Proposition 4.13. κγ(a4) = λγ(a4) for all a4 ∈ U ]4.

Proof. Choose a4 ∈ U ]4 and let u0 = κγ(a4) and v0 = λγ(a4). Choose a1 ∈ Y ]1
and let ak = [a1, a

−1
4 ]k for k = 2 and 3. By 2.14(i), a3 ∈ Y ]3 and by 2.14(ii),

[u0, a
−1
3 ] = a1a2. Conjugating [a1, a

−1
4 ] = a2a3 by µγ(a1)2 and applying 4.12, we

obtain [a1, a4] = a−1
2 a3. By 2.14(ii) again, this implies that [κγ(a−1

4 ), a−1
3 ] = a1a

−1
2 .

By 2.12(ii), κγ(a−1
4 ) = λγ(a4)−1 = v−1

0 . It follows by 4.9 that [u0v
−1
0 , a−1

3 ]2 =

[u0, a
−1
3 ]2 · [v−1

0 , a−1
3 ]2 = a2a

−1
2 = 1 and hence u0v

−1
0 = 1. 2

Proposition 4.14. Let a4 ∈ U ]4. Then [Y ]1 , µγ(a4)2] = 1 and aµγ(a4)
2 = a−1

2 for
every a2 ∈ [Y ]1 , a

−1
4 ]2.

Proof. Choose a1 ∈ Y ]1 and let m = µγ(a4) and v0 = λγ(a4). By (4.13), m =

v0a4v0. By 2.12(ii), κγ(a−1
4 ) = v−1

0 . Let ak = [a1, a
−1
4 ]k for k = 2 and 3. Con-

jugating by µγ(a1)2, we obtain [a1, a4] = a−1
2 a3 by (4.12). By 2.14(ii), therefore,

[v0, a
−1
3 ] = a1a2 and [v−1

0 , a−1
3 ] = a1a

−1
2 . By 2.14(i), am3 = a1. By (2.11), am1 ∈ U3

and Um2 = U2. Thus

a3 = aa43 = a
v−1
0 mv−1

0
3 = ([v−1

0 , a−1
3 ] · a3)mv

−1
0

= (a1a
−1
2 a3)mv

−1
0 = (am1 (a−1

2 )ma1)v
−1
0

= [v−1
0 , (am1 )−1] · am1 · [v−1

0 , am2 ] · (a−1
2 )ma1

∈ U[1,2]a
m
1

by 2.5(i). By 2.5(ii), therefore, a3 = am1 . It follows that [a1,m
2] = 1 and that

[v−1
0 , (am1 )−1] = [v−1

0 , a−1
3 ] = a1a

−1
2 .
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Therefore

a3 = [v−1
0 , (am1 )−1] · am1 · [v−1

0 , am2 ] · (a−1
2 )ma1

= a1a
−1
2 a3 · [v−1

0 , am2 ] · (a−1
2 )ma1 ∈ U1(a2a

m
2 )−1a3

since [U1, a3] ⊂ [U1, Y3] = 1 and U2 is abelian. By 2.5(ii), we conclude that am2 =
a−1

2 . 2

Proposition 4.15. Let a2 ∈ U2, a4 ∈ U ]4 and v0 = λγ(a4). Then

a
µγ(a4)
2 a−1

2 = [[v0, a
−1
2 ], a4]2 ∈ [Y1, a

−1
4 ]2 = [Y1, a4]2 (4.16)

and
[[v0, a

−1
2 ], a4]3 = [a2, a4]−1. (4.17)

Proof. By 4.13, we have µγ(a4) = v0a4v0. By 2.5(i), therefore,

a
µγ(a4)
2 = av0a4v02 = ([v0, a

−1
2 ] · a2)a4v0

=
(
[v0, a

−1
2 ] · [[v0, a

−1
2 ], a4] · a2 · [a2, a4]

)v0
∈ U[1,2][[v0, a

−1
2 ], a4]3 · [a2, a4].

Since aµγ(a4)
2 ∈ U2, it follows by 2.5(ii) that (4.17) holds. Thus

a
µγ(a4)
2 = ([v0, a

−1
2 ] · [[v0, a

−1
2 ], a4] · a2 · [a2, a4])v0

=
(
[v0, a

−1
2 ] · [[v0, a

−1
2 ], a4]2 · a2

)v0
∈ U1[[v0, a

−1
2 ], a4]2 · a2.

By another application of 2.5(ii), we conclude that

a
µγ(a4)
2 a−1

2 = [[v0, a
−1
2 ], a4]2.

By 4.7, [v0, a
−1
2 ] ∈ V1 ⊂ Y1. Conjugating by µγ(a1)2 for an arbitrary a1 ∈ Y ]1 , we

obtain [Y1, a4]2 = [Y1, a
−1
4 ]2 by 4.12. Thus (4.16) holds. 2

Proposition 4.18. Let h = µγ(a4)2 for some a4 ∈ U ]4 and suppose that Y1 is
generated by Y ]1 . Then [h, Y1] = [h, U2] = [h, Y3] = [h, U4] = 1.

Proof. Let a1 ∈ Y ]1 , a4 ∈ U ]4 and h = µγ(a4)2. Then [h, Y ]1 ] = 1 by 4.14. Since
Y1 = 〈Y ]1 〉, it follows that [h, Y1] = 1 and, by 4.10, [Y ]1 , a

−1
4 ]2 = [Y1, a

−1
4 ]2. Thus

[h, U2] = 1 by 4.14 and (4.16). Hence [h, µγ(a1)] = 1 by 2.12(iii). It follows that

[h, U4] = [h, U
µγ(a1)
2 ] = [h, U2]µγ(a1) = 1.

We also have
[h, Y3] = [h, Y

µγ(a4)
1 ] = [h, Y1]µγ(a4) = 1

since [h, µγ(a4)] = 1. 2

Proposition 4.19. The following hold:
(i) [a1, a

−1
4 ]

µγ(a1)−1µγ(b1)
2 = [b1, a

−1
4 ]2 for all a1, b1 ∈ U ]1 and all a4 ∈ U4.

(ii) [a0, a
−1
3 ]

µγ(a3)µγ(b3)−1

2 = [a0, b
−1
3 ]2 for all a3, b3 ∈ U ]3 and all a0 ∈ U0.

Proof. This follows from 2.14(i). 2
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Proposition 4.20. Suppose that [a1, a4] = a3 for some a1 ∈ U1, a3 ∈ U3 and
a4 ∈ U4. Then a3 6∈ U ]3.

Proof. Suppose that a3 ∈ U ]3 and let w1, w7, w8 be as in 2.4. The elements a1 and
a4 are, of course, non-trivial. It follows that

(w1, w8, w
a4
1 , wa1a48 , w

a−1
4 a1a4

1 )

is a gallery from w8 to

z := w
a−1
4 a1a4

1 = w
[a1,a4]
1 = wa31 .

Since a3 ∈ U ]3 , the sequence

(w1, w8, w7, w
a3
8 , z)

is a root. It follows that w1 and z are opposite vertices as defined in 2.24. Let y be
a vertex opposite wa38 at z as defined in 2.1(ii). Thus

β := (w8, w7, w
a3
8 , z, y)

is also a root. Since w1 and wa41 are both opposite w7 at w8, there exists b ∈ Uβ
mapping wa41 to w1. Since z lies on β and v1 := wa1a48 is adjacent to z, the element
b fixes v1. Since v1 is adjacent to wa41 , it follows that v1 is adjacent to w1. Thus by
2.25, there exist vertices v2, v3 such that

(w1, v1, v2, v3, z)

is a root. Thus (v1, v2, v3, z) and (v1, z) are two straight paths from v1 to z. By
2.2(ii), this is impossible. With this contradiction, we conclude that a3 6∈ U ]3 . 2

5. Normal Tits Quadrangles

We focus now on the proof 3.11. Our proof is derived from the arguments in [9,
Chapter 23], but numerous modifications needed to be made.

We assume from now on that Ui = Yi for all odd i, that X is 3-plump as defined
in 2.16, that X is normal as defined in 4.5 and that X is razor-sharp as defined in
2.23. Our goal is to produce a non-degenerate quadratic space Λ = (K,L, q) and
show that X is orthogonal of type Λ.

Proposition 5.1. The following hold:
(i) [Ui, Ui+2] = 1 for all odd i.
(ii) Ui is abelian for all i.
(iii) [µγ(U ]i ), Ui−2] = [µγ(U ]i ), Ui+2] = 1 for all odd i.
(iv) [M,N ] = 1, where

M = 〈µγ(a1)µγ(b1) | a1, b1 ∈ U ]1〉 and N = 〈µγ(a3)µγ(b3) | a3, b3 ∈ U ]3〉

are the groups called H1 and H3 in 2.20.

Proof. By 4.2, 4.5 and 4.7, (i) and (ii) hold. By 2.9, µγ(U ]i ) ⊂ 〈Ui, Ui+4〉 for all i.
Hence (iii) and (iv) follow from (i). 2

Proposition 5.2. Suppose that [a1, a4]2 = 1 for some a1 ∈ U1 and some a4 ∈ U ]4.
Then a1 = 1.
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Proof. Let N be as in 5.1(iv) and let V denote the subgroup of U4 generated by the
N -orbit of a4. Since [N,U1] = 1 (by 5.1(iii)), we have [a1, a

N
4 ]2 = 1. By 1.1(ii) and

2.5(i), it follows first that [a1, V ]2 = 1 and then that B := [a1, V ] is a subgroup of
U3. The subgroup B is N -invariant and by 4.20, B∩U ]3 = ∅. Since X is razor-sharp
at U3, it follows that B = 1. Since a4 ∈ U ]4 , we have

a
µγ(a4)−1

1 ∈ B

by 2.14(i). Therefore a1 = 1. 2

Proposition 5.3. Let a4 ∈ U ]4. Then [U1, µγ(a4)2] = 1 and a
µγ(a4)
2 = a−1

2 for
every a2 ∈ [U1, a

−1
4 ]2.

Proof. By 2.17, U1 = 〈U ]1〉. By 4.10, [U1, a
−1
4 ]2 is generated by [U ]1 , a

−1
4 ]2. Since

U1 = Y1, the claims hold now by 4.14 and 5.1(ii). 2

Proposition 5.4. Let a1 ∈ U ]1. Then µγ(a1)−1 ∈ µγ(U ]1) and

M = 〈µγ(a1)µγ(b1) | b1 ∈ U ]1〉,

where M is as in 5.1(iv).

Proof. The first claim holds by 2.12(i) and the second claim follows from the first.
2

Notation 5.5. Choose e1 ∈ U ]1 and let S = {µγ(e1)−1µγ(a1) | a1 ∈ U ]1}. By 5.4,
we have M = 〈S〉.

Proposition 5.6. Let S and M be as in 5.5. Then aS2 = [U ]1 , a
−1
4 ]2 and

〈aS2 〉 = 〈aM2 〉 = [U1, a
−1
4 ]2

for all a2 ∈ U ]2, where a4 = a
µγ(e1)−1

2 .

Proof. Choose a2 ∈ U ]2 and let a4 = a
µγ(e1)−1

2 . By 2.14(i), a2 = [e1, a
−1
4 ]2. By

4.19(i), therefore, [U ]1 , a
−1
4 ]2 = aS2 . By 2.17, 〈U ]1〉 = U1. Therefore 〈aS2 〉 = [U1, a

−1
4 ]2

by 4.10. Since X is normal as defined in 4.5, we thus have aM2 ⊂ 〈aS2 〉. Hence
〈aM2 〉 = 〈aS2 〉. 2

Proposition 5.7. Let a2 ∈ U ]2 and let a4 = a
µγ(e1)−1

2 . Then µγ(a4) inverts every
element of 〈aM2 〉.

Proof. This holds by 5.3 and 5.6. 2

Proposition 5.8. M is abelian.

Proof. We first claim that [M,M ] acts trivially on U ]2 . Let a2 ∈ U ]2 and let a4 =

a
µγ(e1)−1

2 . By 5.6, we have 〈aM2 〉 = [U1, a
−1
4 ]2. Let h ∈ M and let h′ = hµγ(a4), so

h′ ∈ N , where N is as in 5.1(iv). By 5.7, µγ(a4) inverts every element of 〈aM2 〉. It
follows that h and h′ induce the same automorphism of 〈aM2 〉. Hence [h,M ] and
[h′,M ] induce the same group of automorphisms on 〈aM2 〉. By 5.1(iv), we have
[h′,M ] ⊂ [N,M ] = 1. Since h is arbitrary and a2 ∈ 〈aM2 〉, we deduce that [M,M ]

fixes a2. Since a2 is arbitrary, we conclude that [M,M ] acts trivially on U ]2 as
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claimed. By 2.17, therefore, [[M,M ], U2] = 1. By 5.1(iii), [M,U3] = 1. By 2.13,
therefore, [M,M ] = 1. 2

Proposition 5.9. hµγ(a1) = h−1 for each h ∈M and each a1 ∈ U ]1.

Proof. Choose a1, b1 ∈ U ]1 . By 4.12, µγ(a1)2µγ(b1)−2 centralizes both U2 and U3.
Thus µγ(a1)2 = µγ(b1)2 by 2.13. It follows that

hµγ(a1) = µγ(a1)−2µγ(b1)µγ(a1) = µγ(b1)−1µγ(a1) = h−1

for h = µγ(a1)−1µγ(b1). By 5.4, we have M = 〈µγ(a1)µγ(c1) | c1 ∈ U ]1〉. By 5.8,
therefore, hµγ(a1) = h−1 for all h ∈M . 2

Proposition 5.10. [a1, a
−1
4 ]h

2

2 = [ah1 , a
−1
4 ]2 for all a1 ∈ U1, a4 ∈ U4 and h ∈M .

Proof. Choose a1 ∈ U1, a4 ∈ U4 and h ∈M . Since U1 is generated by U ]1 , it suffices
to assume that a1 ∈ U ]1 (by 4.10). With this assumption, we have

h2 = (h−1)µγ(a1)h = µγ(a1)−1µγ(a1)h = µγ(a1)−1µγ(ah1 )

by 2.12(i) and (iii) and 5.9 and therefore [a1, a
−1
4 ]h

2

2 = [ah1 , a
−1
4 ]2 by 4.19(i). 2

Proposition 5.11. aM2 = aN2 for all a2 ∈ U ]2, where N is as in 5.1(iv).

Proof. Let a2 ∈ U ]2 . Choose a1, b1 ∈ U ]1 and let h = µγ(a1)−1µγ(b1). By 2.14(i),
a2 = [a1, b

−1
4 ]2 for b4 = a

µγ(a1)−1

2 ∈ U ]4 . Thus ah2 = [b1, b
−1
4 ]2 by 4.19(i). Let

b0 = κγ(b4). By 2.14(ii), [b0, a
−1
3 ]2 = a2 for a3 = [a1, b

−1
4 ]3 and [b0, b

−1
3 ]2 = ah2 for

b3 = [b1, b
−1
4 ]3. By 2.14(i), aµγ(b4)

3 = a1 and bµγ(b4)
3 = b1. Thus a3 and b3 both lie

in U ]3 . Let h
′ = µγ(a3)µγ(b3)−1. Then h′ = µγ(a3)µγ(b−1

3 ) ∈ N and by 4.19(ii),

ah
′

2 = [b0, a
−1
3 ]h

′

2 = [b0, b
−1
3 ]2 = ah2 .

It follows that aM2 ⊂ aN2 for each a2 ∈ U ]2 . Conjugating by µγ(a4) for an arbitrary
a4 ∈ U ]4 , we deduce that aN2 ⊂ aM2 and therefore aM2 = aN2 for all a2 ∈ U ]2 . 2

Notation 5.12. The group M centralizes U3 (by 5.1(iv)) and hence acts faithfully
on U2 (by 2.13). The group M can thus be considered a subset of End(U2). Let
K denote the subring of End(U2) generated by M . Thus 1 ∈ K and by 5.8, K is
commutative. Note that K is generated additively by M and M ⊂ K×.

Notation 5.13. Let L be an additive group isomorphic to U2 and choose an iso-
morphism x2 from L to U2. Let (t, a) 7→ ta be the map from K ×L to L such that
x2(ta) is the image of x2(a) under the endomorphism t ∈ K ⊂ End(U2). This map
makes L into a module over K. Note that if ta = 0 for some t ∈ K and for all a ∈ L,
then t = 0. This holds because K ⊂ End(U2). Let x4 denote the isomorphism from
L to U4 given by

x4(a) = x2(−a)µγ(e1) (5.14)

for all a ∈ L and let L] = x−1
2 (U ]2). Thus xi(L]) = U ]i for i = 2 and 4. Since U4 is

generated by U ]4 , the group L is generated as an additive group by L]. By 4.12(i),
we have

x4(a)µγ(e1) = x2(a) (5.15)
for all a ∈ L.
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Proposition 5.16. [e1, x4(a)−1]2 = x2(a) for all a ∈ L.

Proof. This holds by 2.14(i) and (5.15). 2

Notation 5.17. For each b1 ∈ U ]1 , let ψ(b1) be the element of K× induced by
µγ(e1)−1µγ(b1) and let K1 denote the additive subgroup of K generated by ψ(U ]1).
Thus, in particular,

[b1, x4(a)−1]2 = x2(ψ(b1)a) (5.18)

for all b1 ∈ U ]1 and all a ∈ L by 4.19(i) and 5.16, and 1 = ψ(e1) ∈ K1.

Proposition 5.19. There exists a unique isomorphism x1 from K1 to U1 such that
x1(1) = e1 and

[x1(t), x4(a)−1]2 = x2(ta) (5.20)

for all t ∈ K1 and all a ∈ L.

Proof. Let t ∈ K1 and a ∈ L. Then there exist b1, . . . , b′1 ∈ U
]
1 such that

t = ψ(b1) + · · ·+ ψ(b′1).

Let a1 = b1 · · · b′1. Then a1 depends on t and the choice of b1, . . . , b′1 and

[a1, x4(a)−1]2 = [b1, x4(a)−1]2 · · · [b′1, x4(a)−1]2

(by 4.10) and by (5.18), the expression on the right hand side is the image of x2(a)
under t. Hence [a1, x4(a)−1]2 = x2(ta). Since a is arbitrary, it follows by 4.11 that
the element a1 is the unique element of U1 satisfying this identity for all a ∈ L.
Therefore a1 is independent of the choice of b1, . . . , b′1. We conclude that there
exists a unique homomorphism x1 from K1 to U1 such that (5.20) holds. If t 6= 0
for some t ∈ K1, then ta 6= 0 for some a ∈ L, so by (5.20), x1(t) 6= 0. Hence x1 is
injective. Now let a1 be an arbitrary element of U1. Then a1 = b1 · · · b′1 for some
b1, . . . , b

′
1 ∈ U

]
1 (by 2.17) and a1 = x1(t) for t = ψ(b1) + · · · + ψ(b′1). Hence x1 is

surjective. 2

Proposition 5.21. Let s ∈ K and a ∈ L]. Then there exists t ∈ K1 such that
sa = ta.

Proof. We have x2(sa) ∈ 〈x2(a)M 〉 = [U1, x4(a)−1]2 by 5.6 and 5.12. The claim
holds, therefore, by (5.20). 2

Proposition 5.22. Let t ∈ K1 and a ∈ L]. If ta = 0, then t = 0.

Proof. If ta = 0, then by 5.19, [x1(t), x4(a)−1]2 = 1. By 5.2, therefore, x1(t) = 0
and hence t = 0. 2

We emphasize that in 5.21 and 5.22, a must be an element of L] (not L) and in
5.22, t must be an element of K1 (not K).

Notation 5.23. Let K]
1 = x−1

1 (U ]1). Thus 1 ∈ K]
1 since x1(1) = e1 by 5.19 and

e1 ∈ U ]1 by 5.5. Note that by (5.18) and (5.20), x1(ψ(b1)) = b1 for all b1 ∈ U ]1 .
Thus ψ(U ]1) ∈ K]

1. By 5.17, therefore, K1 is generated (additively) by K]
1. Let

αt = µγ(x1(1))−1µγ(x1(t))
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for each t ∈ K]
1. By 5.5, we have

M = 〈αt | t ∈ K]
1〉. (5.24)

Note, too, that by 5.5 and 5.12, K is generated by K]
1 as a ring.

Proposition 5.25. Let t ∈ K]
1. Then x1(s)αt = x1(t2s) and x2(a)αt = x2(ta) for

all s ∈ K1 and all a ∈ L.

Proof. Choose s ∈ K1 and t ∈ K]
1. Then

x2(ta) = [x1(t), x4(a)−1]2 = [x1(1), x4(a)−1]αt2 = x2(a)αt (5.26)

for all a ∈ L by 4.19(i) and (5.20). By 5.19, U1 = x1(K1). Thus x1(s)αt = x1(r)
for some r ∈ K1. It follows from 5.10, (5.20) and (5.26) that

x2(ra) = [x1(s)αt , x4(a)−1]2 = [x1(s), x4(a)−1]
α2
t

2 = x2(st2a)

for all a ∈ L. Since K operates faithfully on L (by 5.12), it follows that r = st2. 2

Proposition 5.27. For each t ∈ K]
1, let ϕt be the map from K to itself given by

ϕt(s) = t2s for each s ∈ K. Then ϕt(K1) = K1 and the restriction of ϕt to K1 is
an (additive) automorphism of K1. In particular, t2 = ϕt(1) ∈ K1 for all t ∈ K]

1.

Proof. This follows from 5.25. 2

Proposition 5.28. K]
1 ⊂ K×.

Proof. Let t ∈ K]
1. By 5.27, there exists r ∈ K1 such that t2r = 1. Hence t ∈ K×.

2

Proposition 5.29. t−1 ∈ K]
1 and α−1

t = αt−1 for each t ∈ K]
1.

Proof. Let t ∈ K]
1. By 5.28, t ∈ K× and by 5.25, x1(t)α

−1
t = x1(t−1). Since

x1(t) ∈ U ]1 , it follows that x1(t−1) ∈ U ]1 . Hence t−1 ∈ K]
1. By 2.13 and 5.25, it

follows that α−1
t = αt−1 . 2

Proposition 5.30. The set {αt | t ∈ K]
1} is closed under inverses and generates

M as a monoid.

Proof. The first claim holds by 5.28 and 5.29 and the second claim follows by (5.24).
2

Proposition 5.31. K∗1 ⊂ K×.

Proof. Let t be a non-zero element of K1 and let I = Kt. Then t ∈ I and by 5.25
and 5.30, x1(I ∩K1) is M -invariant. Since X is razor-sharp at U1, it follows that
I ∩K]

1 6= 0. By 5.28, therefore, ts ∈ K× for some s ∈ K. Hence t ∈ K×. 2

Proposition 5.32. Let K0 denote the subring of K generated by {t2 | t ∈ K]
1}.

Then K0 ⊂ K1 = K0K1 and K0 is a field.

Proof. By 5.25, 5.27 and 5.30, K0K1 ⊂ K1 (and hence K0 ⊂ K1 = K0K1 since
1 ∈ K0 ∩ K1) and every ideal of K0 is M -invariant. Let I be a non-zero ideal of
K0. Since X is razor-sharp at U1, there exists t ∈ I ∩K]

1. By 5.28, t ∈ K× and by
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5.29, t−1 ∈ K]
1. Since t−1 = (t−1)2 · t and t ∈ K0, it follows that t−1 ∈ K0. Hence

t ∈ K×0 . It follows that I = K0. Thus K0 is a field. 2

From now on, we denote by 2 the element 1 + 1 in K1.

Proposition 5.33. Either 2 ∈ K× or 2 = 0.

Proof. This holds by 5.31. 2

Proposition 5.34. Suppose that 2 = 0 and let I = {t ∈ K | t2 = 0}. Then
K = I ∪K×.

Proof. Let K0 be as in 5.32. If t ∈ K]
1, then t

2 ∈ K0. Since 2 = 0, the map t 7→ t2

is an endomorphism of K whose kernel is I. Since K is generated by K]
1 as a ring

(as was observed in 5.23), the image of this endomorphism is K0. Thus if t is an
element of K not in I, then t2 is a non-zero element of K0 and hence t ∈ K× by
5.32. 2

Proposition 5.35. Suppose that 2 = 0. Then K = K1 and K is a field.

Proof. Let I be as in 5.34 and suppose that s is a non-zero element of I. By 5.12,
sa 6= 0 for some non-zero a ∈ L. Since L is generated by L], we can assume that
a ∈ L]. By 5.21, sa = ta for some t ∈ K1. Since sa 6= 0, we have t 6= 0. By
5.31, therefore, t ∈ K×. We have s2 = 0 and hence sta = s2a = 0. This implies,
however, that sa = 0. We conclude that I = 0. By 5.34, therefore, K is a field.

Now suppose that s is an arbitrary element of K× and let a be an arbitrary
element of L]. By another application of 5.21, there exists t ∈ K1 such that
sa = ta. Thus (s − t)a = 0. Since a 6= 0, it follows that s − t 6∈ K×. Hence
s = t ∈ K1. Thus K = K1. 2

We note that in the case that 2 6= 0 it will take us until 5.87 to reach the conclusions
in 5.35.

Proposition 5.36. µγ(b4)2 = 1 for all b4 ∈ U ]4.

Proof. We have assumed that Y1 = U1 and by 2.17, U1 = 〈U ]1〉. The claim holds,
therefore, by 2.13 and 4.18. 2

Proposition 5.37. For all b ∈ L], the subgroup [M,µγ(x4(b))] centralizes U2.

Proof. Let b ∈ L] be arbitrary. By (5.20), we have

[U1, x4(b)−1]2 = {x2(tb) | t ∈ K1}. (5.38)

By 4.15 and 5.19, therefore, there exists a function a 7→ pa from L to K1 such that

x2(a)µγ(x4(b)) = x2(a+ pab) (5.39)

for all a ∈ L. Since
x2(a+ c)µγ(x4(b)) = x2(a)µγ(x4(b))x2(c)µγ(x4(b))

for all a, c ∈ L, the map a 7→ pab is additive. Let

gt(a) = pta − tpa (5.40)

for all t ∈ K]
1 and all a ∈ L. By (5.24), 5.25 and (5.39), [M,µγ(x4(b))] centralizes

U2 if and only if for each t ∈ K]
1, the map a 7→ gt(a)b is identically zero. Thus our
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goal is to show that for all t ∈ K]
1, the map a 7→ gt(a)b is identically zero. Since

this map is additive and L is generated by L], it suffices to show that gt(a)b = 0

for all t ∈ K]
1 and all a ∈ L].

Choose t ∈ K]
1 and let αt be as in 5.23. Then

x2(a)µγ(x4(b))αt = x2(a+ pab)
αt

= x2(ta+ tpab)
(5.41)

for all a ∈ L. Let
βt = α

µγ(x4(b))
t . (5.42)

By (5.24), we have βt ∈Mµγ(x4(b)) = N . By 5.36 and (5.41), we have

x2(a)βt = x2(ta+ tpab)
µγ(x4(b))

= x2

(
ta+ (tpa + pta + ptpab)b

) (5.43)

for all a ∈ L. By 5.7, µγ(x4(b)) inverts every element of 〈x2(b)M 〉. Thus by (5.39),

x2(−ub) = x2(ub)µγ(x4(b)) = x2(ub+ pubb)

for all u ∈ K. Hence ub+ pubb = −ub and therefore

pubb = −2ub (5.44)

for all u ∈ K. Thus, in particular,

ptpabb = −2tpab. (5.45)

for all a ∈ L. By (5.40) and (5.44), we have

gt(ub)b = ptubb− tpubb = 0 (5.46)

for all u ∈ K and by (5.43) and (5.45), we have

x2(a)βt = x2(ta+ gt(a)b) (5.47)

for all a ∈ L and all t ∈ K]
1.

Now let a be an arbitrary non-zero element of L]. By 5.1(iv) and (5.24), [αu, βt] ∈
[M,N ] = 1 for all u ∈ K]

1. By (5.47), therefore, wgt(a)b = gt(wa)b whenever w is
the product of elements in K]

1. Since K is generated additively by the set of all
such products (by 5.12), we have wgt(a)b = gt(wa)b for all w ∈ K. By 5.6 and
5.11,

x2(a)βt = x2(a)αu = x2(ua)

for some u ∈ K]
1. By (5.47), it follows that

ta+ gt(a)b = ua.

Let w = u− t. Then w ∈ K1 and

wa = gt(a)b. (5.48)

Hence w2a = wgt(a)b = gt(wa)b = gt(gt(a)b)b. By (5.46), therefore, w2a = 0.
Hence w 6∈ K×. By 5.31, therefore, w = 0. By 5.48, we conclude that gt(a)b = 0.
2

Notation 5.49. Choose e4 ∈ U ]4 . Let x3(t) = x1(t)µγ(e4) for all t ∈ K1 and let
βt = α

µγ(e4)
t for each t ∈ K]

1. Thus x3 is an isomorphism from K1 to U3 and by
5.36, we have x1(t) = x3(t)µγ(e4) for all t ∈ K1.
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Proposition 5.50. Let t ∈ K]
1. Then x3(t)αt = x3(t) and x4(a)αt = x4(t−1a) for

all s ∈ K1 and all a ∈ L.

Proof. By 5.1(iii), [αt, U3] = 1. Choose a ∈ L. By 5.13, U4 = x4(L), so x4(a)αt =
x4(b) for some b ∈ L. Conjugating the identity [x1(1), x4(a)−1]2 = x2(a) by αt, we
find that [x1(t2), x4(b)−1]2 = x2(ta) by 5.25. By (5.20), it follows that t2b = ta. By
5.28, t ∈ K×. Hence b = t−1a. 2

Proposition 5.51. Let a ∈ L, u ∈ K1 and t ∈ K]
1 and let βt be as in 5.49. Then

x1(u)βt = x1(u), x2(a)βt = x2(ta), x3(u)βt = x3(t2u), and x4(a)βt = x4(ta).

Proof. Choose a ∈ L, u ∈ K and t ∈ K]
1. We have [βt, U1] = 1 by 5.1(iii). By 5.37,

x2(a)βt = x2(a)αt = x2(ta).

We have x4(a)βt = x4(b) for some b ∈ L. Conjugating [x1(1), x4(a)−1]2 = x2(a) by
βt, we obtain [x1(1), x4(b)−1]2 = x2(ta). Therefore b = ta. Finally, we have

x3(u)βt = x3(u)µγ(e4)αtµγ(e4) = x1(u)αtµγ(e4) = x3(t2u)

by 5.25 and 5.49. 2

Definition 5.52. Let h : K1×L→ K1 and f : L×L→ K1 be the functions defined
so that

[x1(t), x4(a)−1]3 = x3(h(t, a))

and
[x2(a), x4(b)−1] = x3(f(a, b)) (5.53)

for all t ∈ K1 and a, b ∈ L. Let q(a) = h(1, a) for all a ∈ L.

Proposition 5.54. The function f is symmetric and bi-additive and for all s, t ∈
K1 and all a, b ∈ L,

h(s+ t, a) = h(s, a) + h(t, a) (5.55)
and

h(t, a+ b) = h(t, a) + h(t, b) + f(ta, b). (5.56)
In particular,

q(a+ b) = q(a) + q(b) + f(a, b) (5.57)
for a, b ∈ L.

Proof. Choose a, b, c ∈ L and s, t ∈ K1. Recall that [U1, U3] = 1. By 1.1(i),

x2((s+ t)a)x3(h(s+ t, a)) = [x1(s+ t), x4(a)−1]

= [x1(s), x4(a)−1] · [x1(t), x4(a)−1]

= x2(sa+ ta)x3(h(s, a) + h(t, a))

and thus (5.55) holds. By 1.1(ii),

x2(t(a+ b))x3(h(t, a+ b)) = [x1(t), x4(a+ b)−1]

= [x1(t), x4(b)−1] · [x1(t), x4(a)−1]x4(b)−1

= x2(t(a+ b))x3

(
h(t, a) + h(t, b) + f(ta, b)

)
and

[x2(a+ b), x4(c)−1] = [x2(a), x4(c)−1] · [x2(b), x4(c)−1].
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Therefore (5.56) holds and

f(a+ b, c) = f(a, c) + f(b, c).

Setting t = 1 in (5.56), we obtain (5.57) and by (5.57), f is symmetric. 2

Proposition 5.58. f(ta, b) = f(a, tb) for all a, b ∈ L and all t ∈ K.

Proof. Let t ∈ K]
1 and a, b ∈ L. Conjugating the identity [x2(a), x4(b)−1] =

x3(f(a, b)) by αt, we conclude that f(ta, t−1b) = f(a, b) by 5.25 and 5.50. Hence
f(a, tb) = f(ta, t−1 · tb) = f(ta, b). Since f is bi-additive (by 5.54) and K is gener-
ated as a ring by K]

1, it follows that f(a, tb) = f(ta, b) for all t ∈ K. 2

Proposition 5.59. Let t ∈ K]
1. Then h(s, ta) = h(t2s, a) for all s ∈ K1 and all

a ∈ L.

Proof. By 5.25 and 5.50, it suffices to conjugate the identity [x1(s), x4(ta)−1]3 =
x3(h(s, ta)) by αt. 2

Proposition 5.60. h(t, a) = h(t,−a) for all t ∈ K1 and all a ∈ L

Proof. By 2.12(i), −1 ∈ K]
1. It thus suffices to set t = −1 in 5.59. 2

Proposition 5.61. Let x5(t) = x1(t)µγ(e1) for all t ∈ K1. Then

[x2(a), x5(t)] = x3(−h(t, a))x4(−ta)

for all a ∈ L and all t ∈ K1.

Proof. In light of 5.1(iii), (5.14) and (5.15), conjugating the identity

[x1(t), x4(−a)−1] = x2(−ta)x3(h(t,−a))

by µγ(e1) yields
[x5(t), x2(a)] = x4(ta)x3(h(t,−a)).

The claim holds, therefore, by 5.60. 2

Proposition 5.62. Suppose that either 2 = 0 or 2q(a) = f(a, a) for all a ∈ L.
Then K]

1 = {t ∈ K1 ∩K× | t−1 ∈ K1}.

Proof. By 5.28 and 5.29, K]
1 ⊂ {t ∈ K1 ∩K× | t−1 ∈ K1}. We only need to show

the other inclusion holds. Let t be an element of K1 ∩K× such that t−1 ∈ K1 and
suppose that

h(t, a) = h(t−1, ta) (5.63)
for all a ∈ L. By 5.61 and (5.63), we have

[x2(ta), x5(t−1)] = x3(−h(t−1, ta))x4(−a) = x3(−h(t, a))x4(−a)

for all a ∈ L. Therefore

x4(a)x1(t)x5(t−1) =
(
[x1(t), x4(a)−1] · x4(a)

)x5(t−1)

=
(
x2(ta)x3(h(a, t))x4(a)

)x5(t−1)

= x2(ta) · [x2(ta), x5(t−1)] · x3(h(a, t))x4(a)

= x2(ta) ∈ U2
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for all a ∈ L. By 2.15, it follows that t ∈ K]
1. It thus suffices to show that the

identity (5.63) holds for all a ∈ L.
Let a ∈ L. Suppose first that 2 6= 0. Since 2 ∈ K0, it follows (by 5.32) that

2 ∈ K×0 and thus
2−1 ∈ K0 ⊂ K1 (5.64)

by 5.32. By (5.55), 2h(2, a) = 4h(1, a) = 4q(a) and 2h(2−1, 2a) = h(1, 2a) = q(2a).
By (5.57), q(2a) = 2q(a) + f(a, a). By hypothesis, f(a, a) = 2q(a). Thus q(2a) =

4q(a). It follows that (5.63) holds with 2 in place of t. Hence 2 ∈ K]
1.

By 5.59 and the conclusion of the previous paragraph, we have h(t, 2a) = h(4t, a)
if 2 6= 0 (where t continues to be an arbitrary element of K1 ∩ K× such that
t−1 ∈ K1). By 5.52, h(t, a) = 0 if t = 0 or a = 0, so h(t, 2a) = h(4t, a) also if 2 = 0.
By (5.55) and (5.56), it follows that

4h(t, a) = h(t, 2a) = 2h(t, a) + f(ta, a) (5.65)

whether or not 2 6= 0. Therefore f(ta, a) = 2h(t, a). Since K1 is generated by K]
1

and K]
1 ⊂ K1 ∩K×, it follows that K1 is generated by {t ∈ K1 ∩K× | t−1 ∈ K1}.

By 5.54 and (5.55), the maps w 7→ f(wa, a) and w 7→ 2h(w, a) from K1 to K1 are
additive. Hence

f(wa, a) = 2h(w, a) (5.66)

for all w ∈ K1. By 2.17, we can assume that there exist s, u ∈ K]
1 such that t = s+u.

Note that sut−1 = 2−1
(
t − t−1(s2 + u2)

)
and that 2−1

(
t − t−1(s2 + u2)

)
∈ K1 by

5.32 and (5.64). Thus sut−1 ∈ K1. Therefore

h(t−1, ta) = h(t−1, sa) + h(t−1, ua) + f(t−1sa, ua) by (5.56)

= h(t−1, sa) + h(t−1, ua) + f(sut−1a, a) by 5.58

= h(t−1, sa) + h(t−1, ua) + 2h(sut−1, a) by 5.66

= h(t−1s2, a) + h(t−1u2, a) + 2h(sut−1, a) by 5.59

= h
(
t−1(s2 + u2 + 2su), a

)
= h(t, a) by (5.55).

Thus (5.63) holds. 2

It will take us until 5.86 to show that the hypothesis 2q(a) = f(a, a) for all a ∈ L
if 2 6= 0 in 5.62, in fact, holds.

Notation 5.67. Let ε be the inverse image in L of e4 under the map a 7→ x4(a),
where e4 is as in 5.49.

Proposition 5.68. Let ε be as in 5.67. Then q(ε) = 1 and

x2(a)µγ(e4) = x2(a− f(a, ε)ε)

for all a ∈ L.

Proof. Choose a ∈ L and let v0 = κγ(e4), where κγ is as in 2.9. Then v0 ∈ U0, so
there exists u ∈ K1 such that x1(u) = [v0, x2(a)−1]. By 2.14(i), (5.20) and 5.49,

[x1(u), e−1
4 ] = [x1(u), x4(ε)−1] = x2(uε)x3(u).

Conjugating with µγ(e1)2, we have

[x1(u), e4] = x2(−uε)x3(u)
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by 4.12. By (5.53), we have [x2(a), e4] = x3(−f(a, ε)). Thus

x2(a)µγ(e4) = x2(a)v0e4λγ(e4) =
(
x1(u)x2(a)

)e4λγ(e4)

=
(
x1(u)x2(a− uε)x3(u− f(a, ε))

)λγ(e4)
.

Since Uµγ(e4)
2 = U2, it follows now by 2.5(i) and 2.5(ii) that u = f(a, ε) and

x2(a)µγ(e4) = x2(a− uε).
Since [x1(1), x4(ε)−1]3 = x3(1), we have q(ε) = 1 by 5.52. 2

Notation 5.69. Let ā = f(a, ε)ε− a for all a ∈ L.

Proposition 5.70. The map a 7→ ā is a K-linear map from L to itself whose
square is the identity.

Proof. By 5.68, µγ(e4) induces the map x2(a) 7→ x2(−ā) on U2 and by (5.24) and
5.25, M induces the group generated by {x2(a) 7→ x2(ta) | t ∈ K]

1} on U2. Thus by
5.37, the map a 7→ ā is K-linear and by 5.36, its square is the identity. 2

Proposition 5.71. f(ta, ε)ε = tf(a, ε)ε for all t ∈ K and all a ∈ L.

Proof. This holds by 5.70. 2

Notation 5.72. Let x0(a) = x4(ā)µγ(e4) for all a ∈ L. By 5.70, the map a 7→ x0(a)
is an isomorphism from L to U0 and by 5.36 and 5.70 that x4(a)µγ(e4) = x0(ā) for
all a ∈ L.

Proposition 5.73. Let a ∈ L]. Then q(a) ∈ K]
1 ⊂ K×, κγ(x4(a)) = x0(q(a)−1a)

and
(
h(t, a)− tq(a)

)
a = 0 for all t ∈ K1.

Proof. Let t ∈ K1 and a ∈ L. Since µγ(e4)2 = 1, we have

x2(ta− f(ta, ε)ε)µγ(e4) = x2(ta)

by 5.68. By 5.71, we have

[x1(t), x4(a− f(a, ε)ε)−1]2 = x2(t(a− f(a, ε)ε))

= x2(ta− f(ta, ε)ε).

Conjugating this equation by µγ(e4), we thus obtain [x3(t), x0(a)]2 = x2(ta) and
hence

[x0(a), x3(t)−1]2 = x2(ta) (5.74)
for all t ∈ K1 and all a ∈ L.

Now choose t ∈ K1 and a ∈ L] and let a′ denote the unique element of L] such
that κγ(x4(a)) = x0(a′). By 2.14(ii) applied to

[x1(t), x4(a)−1] = x2(ta)x3(h(t, a)), (5.75)

we have
[x0(a′), x3(h(t, a))−1]2 = x2(ta).

By (5.74), therefore,
h(t, a)a′ = ta. (5.76)

Setting t = 1 in (5.76), we obtain q(a)a′ = a. By 2.14(i) applied to (5.75), we have

x3(h(1, a))µγ(x4(a)) = x1(1).
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Since 1 ∈ K]
1 (by 5.23), it follows that q(a) = h(1, a) ∈ K]

1. By 5.28, K]
1 ⊂ K×.

Hence q(a) ∈ K× and a′ = q(a)−1a. By (5.76), therefore, h(t, a)a = tq(a)a. 2

Proposition 5.77. Let a ∈ L and b ∈ L]. Then

x2(a)µγ(x4(b)) = x2

(
a− q(b)−1f(ā, b̄)b

)
(5.78)

and
tf(ā, b̄)b = f(tā, b̄)b (5.79)

for all a ∈ L and all t ∈ K.

Proof. By 5.73, q(b) ∈ K]
1 ⊂ K× and κγ(x4(b)) = x0(q(b)−1b). Conjugating the

identity
[x2(a), x4(c)−1] = x3(f(a, c))

by µγ(e4), we obtain
[x2(−ā), x0(c̄)−1] = x1(f(a, c))

by 5.68 and 5.72. Thus

[x0(c), x2(a)−1] = x1(f(ā, c̄))

for all a, c ∈ L. Hence
[x0(q(b)−1b), x2(a)−1] = x1(f(ā, q(b)−1b̄))

for all a ∈ L. Choose a ∈ L and let u = f(ā, q(b)−1b̄). Then

x2(a)µγ(x4(b)) = x2(a)x0(q(b)−1b)x4(b)λγ(x4(b)) = (x1(u)x2(a))x4(b)λγ(e4)

∈
(
x1(u)x2(a− ub)U3

)λγ(x4(b))
.

Since Uµγ(x4(b))
2 = U2, it follows now by 2.5(i) and 2.5(ii) that

x2(a)µγ(x4(b)) = x2(a− ub). (5.80)

By 5.37, it follows that tf(ā, q(b)−1b̄)b = f(tā, q(b)−1b̄)b for all t ∈ K]
1. Since K is

generated by K]
1, this identity holds for all t ∈ K. By 5.58, therefore, (5.79) holds,

and by (5.79) and (5.80), (5.78) holds. 2

Proposition 5.81. If a ∈ L], then ā ∈ L].

Proof. Let a ∈ L]. By 5.68 and 5.69, x2(a)µγ(x4(ε)) = x2(−ā). By 2.12(i), therefore,
x2(ā) ∈ U ]2 and hence ā ∈ L]. 2

Proposition 5.82. If 2 6= 0, then q(tε)ε = t2ε for all t ∈ K1.

Proof. By 5.68 and 5.69, x2(ε)µγ(x4(ε)) = x2(−ε̄). By 5.7 and (5.15), on the other
hand, we have x2(ε)µγ(x4(ε)) = x2(−ε). Thus ε = ε̄. By 5.69 and 5.70, it follows
that f(ε, ε)ε = 2ε and tε = tε̄ for all t ∈ K.

Now let t ∈ K]
1. By 5.25, we have x2(tε) = x2(ε)αt . Thus tε ∈ L]. We have

x2(tε)µγ(x4(tε)) = x2(−tε) by 5.7. By (5.78) with tε in place of both a and b, it
follows (since tε = tε̄) that

2q(tε)tε = f(tε, tε)tε.

By 5.58 and 5.71, we have

f(rε, sε)ε = rsf(ε, ε)ε = 2rsε (5.83)
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for all r, s ∈ K. Hence f(tε, tε)ε = 2t2ε. Since 2t ∈ K× (by 5.28 and 5.33), we
thus have wε = 0 for w = q(tε)− t2. By 5.32, w ∈ K1. Hence w = 0 by 5.22. Thus
q(tε) = t2 for all t ∈ K]

1.
Now let t be an element of K1 not in K]

1. By 2.17, there exist r, s ∈ K]
1 such

that t = r + s. Thus

q(tε) = q(rε+ sε) = r2 + s2 + f(rε, sε)

by (5.57). By (5.83), it follows that q(tε)ε = (r2 + s2 + 2rs)ε = t2ε. 2

Proposition 5.84. Suppose that 2 6= 0. Then f(a, a) = 2q(a) all a ∈ L].

Proof. Let a ∈ L]. Setting a = b in (5.78), we have

x2(a)µγ(x4(a)) = x2(a− f(ā, ā)q(a)−1a).

On the other hand, x2(a)µγ(x4(a)) = x2(−a) by 5.7. Hence 2q(a)a = f(ā, ā)a. Since
2q(a) and f(ā, b̄) both lie in K1, it follows from 5.22 that 2q(a) = f(ā, ā). By 5.81,
we can replace a by ā in this equation to obtain

2q(ā) = f(a, a). (5.85)

Next, we note that
q(a+ ā) = q(a) + q(ā) + f(a, ā)

by (5.57). By 5.69 and 5.82, we have q(a+ ā)ε = q(f(a, ε)ε)ε = f(a, ε)2ε and

f(a, ā) = −f(a, a) + f(a, f(a, ε)ε).

By (5.79),
f(a, f(a, ε)ε)ε = f(a, ε)2ε.

By (5.85), it follows that(
q(a) + q(ā)

)
ε = f(a, a)ε = 2q(ā)ε

and hence (
q(a)− q(ā)

)
ε = 0.

Since q(a)−q(ā) lies in K1, we have q(ā) = q(a) by 5.22. The claim holds, therefore,
by (5.85). 2

Proposition 5.86. Suppose that 2 6= 0. Then 2q(a) = f(a, a) for all a ∈ L.

Proof. By 5.84, 2q(a) = f(a, a) for all a ∈ L]. Since f is symmetric (by 5.54), we
have

f(a+ b, a+ b) = f(a, a) + f(b, b) + 2f(a, b)

for all a, b ∈ L. By 2.17, every element of L is a sum of at most two elements of
L]. The claim follows by (5.57). 2

Proposition 5.87. K = K1 and K is a field.

Proof. By 5.35, we can assume that 2 6= 0. Suppose that K1 = K0, where K0 is as
in 5.32. Thus K0 is a field, t2 ∈ K0 for all t ∈ K]

1 and K0 ⊂ K0K1 = K1. Since K0

is a subring of K and K1 generates K as a ring, it follows that K = K1. Therefore
K = K0, so K is a field. It thus suffices to show that K1 = K0. Note that since
2 6= 0 and 2 ∈ K0, we have 2 ∈ K×0 .
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Suppose first that t2 = 1 for all t ∈ K]
1. Let t be an arbitrary element of K∗1 not

in K]
1. By 2.17, there exist u, v ∈ K]

1 such that t = u + v. Since u2 = v2 = 1, we
have tuv = (u + v)uv = v + u = t. Since t ∈ K× (by 5.31), it follows that uv = 1
and hence u = v. Thus t = 2u and hence t2 = 4 ∈ K0. Therefore t2 ∈ K0 for all
t ∈ K1. Hence 2t = (t+ 1)2 − t2 − 1 ∈ K0 for all t ∈ K1. Since 2 ∈ K×0 , it follows
that t ∈ K0. Hence K1 = K0.

Next suppose that t ∈ K]
1 and t2 6= 1. Let u = t + 1 and b = t2 − 1. Then

u(t − 1) = b ∈ K×0 and hence u−1 = b−1(t − 1) ∈ K0K1 = K1. By 5.62 and 5.86,
it follows that u ∈ K]

1. Thus u2 ∈ K0. Since t2 ∈ K0 and 2 ∈ K×0 , it follows that
t ∈ K0. We conclude that t ∈ K0 whenever t ∈ K]

1 and t2 6= 1.
Finally, suppose there exist s, t ∈ K]

1 such that t2 = 1 but s2 6= 1 and let b =
(s−t)(s+t). Then b = s2−t2 ∈ K×0 and hence (s+t)−1 = b−1(s−t) ∈ K0K1 = K1.
By 5.62 and 5.86, it follows that s+ t ∈ K]

1. Hence (s+ t)2 ∈ K0. By the conclusion
of the previous paragraph, s ∈ K0. Hence 2s ∈ K×0 and thus t ∈ K0.

We conclude that in every case K]
1 ⊂ K0. Since K1 is generated by K]

1, it follows
that K0 = K1. 2

Proposition 5.88. K∗ = K]
1.

Proof. This holds by 5.62, 5.86 and 5.87. 2

Proposition 5.89. The map f is bilinear.

Proof. By 5.54, f is symmetric and bi-additive. Let a ∈ L, b ∈ L] and t ∈ K.
By 5.81, b̄ ∈ L]. We can thus replace a and b by ā and b̄ in (5.79) to obtain
tf(a, b)b̄ = f(ta, b)b̄. Since K is a field, it follows that tf(a, b) = f(ta, b) for all
a ∈ L and all b ∈ L]. Since L is generated by L], this identity holds for all a, b ∈ L.
2

Proposition 5.90. q(ta) = t2q(a) for all t ∈ K and all a ∈ L.

Proof. Let a ∈ L and let t ∈ K∗. By 5.88, t ∈ K]
1. Conjugating the identity

[x1(1), x4(a)−1]3 = x3(q(a))

by βt, we obtain [x1(1), x4(ta)−1]3 = x3(t2q(a)) by 5.51. Thus q(ta) = t2q(a). 2

Proposition 5.91. (K,L, q) is a quadratic space as defined in 3.1 and f is the
associated bilinear form.

Proof. This holds by (5.57), 5.87, 5.89 and 5.90. 2

Proposition 5.92. The identities

[x1(t), x4(a)−1] = x2(ta)x3(tq(a))

and
[x2(a), x4(b)−1] = x3(f(a, b))

hold for all t ∈ K and all a, b ∈ L.

Proof. Let t ∈ K. Since K is a field and K = K1 (by 5.87), it follows from 5.73
that h(t, a) = tq(a) for all a ∈ L]. By (5.56) and 5.89, we have

h(t, a+ b) = h(t, a) + h(t, b) + tf(a, b)
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for all a, b ∈ L. Since L is generated by L], it follows by (5.57) that h(t, a) = tq(a)
for all a ∈ L. The claims hold now by (5.20) and 5.52. 2

By 5.91 and 5.92, X is orthogonal of type Λ for Λ = (K,L, q). Suppose that
f(a, L) = q(a) = 0 for some a ∈ L. Then x4(a) ∈ NU4

(U[1,2]) by 5.92. Hence a = 0
by 4.11. Thus Λ is non-degenerate (as defined in 3.2). This concludes the proof of
3.11.

Remark 5.93. We observe that in the proof of 3.11, we needed to assume only that
X is 3-plump (in order to be able to apply 2.17), but that the uniqueness result 3.7
requires that X be 4-plump. In an earlier version of [2], the results [2, 1.5.2, 1.5.19,
1.5.28 and 1.5.29] all contained the hypothesis that X is (n + 1)-plump. Before
publication, it was noticed that this hypothesis is unnecessary in the first two of
these results and that 4-plump suffices in the remaining two. As a consequence, the
hypothesis |K| > 4 in [5, 6.10, 7.4 and 8.2] can be replaced by |K| ≥ 4. We note,
too, that the proofs of [6, 1.1 and 1.2] remain valid if it is assumed only that X is
3-plump.
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