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Abstract. We show that the wreath product of two finite symmetric or alter-
nating groups is 2-generated.

1. Introduction and Statement of the Main Result

For a positive integer n, we write Sn and An for the symmetric and alternating
groups of degree n, regarded as groups of permutations of {1, . . . , n} in the usual
way. We write permutations to the right of their arguments, and compose from left
to right.

For a subgroup S of Sn, and an arbitrary group G, the wreath product G o S
is the semidirect product Gn o S, where S acts on Gn by permuting coordinates.
Formally, if a = (a1, . . . , an) ∈ Gn, and if f ∈ S, then we define fa = (a1f , . . . , anf ).
The elements of G o S are of the form (a, f), where a ∈ Gn and f ∈ S, and such a
pair will often be denoted by (a, f) = (a1, . . . , an; f). The product in G oS is given
by (a, f)(b, g) = (a(fb), fg), or in the alternative form by

(a1, . . . , an; f)(b1, . . . , bn; g) = (a1b1f , . . . , anbnf ; fg).

There is a useful diagrammatic interpretation of this product, which will help with
many of the calculations below. Figure 1 gives an example in the case that n = 5,
and f = (1, 2, 3, 4) and g = (1, 2)(3, 4, 5).

(a, f) =

a1 a2 a3 a4 a5

(b, g) =

b1 b2 b3 b4 b5

= (a, f)(b, g)

a1b2 a2b3 a3b4 a4b1 a5b5

Figure 1. Calculating a product in G o S.
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As usual, for a group G, we write d(G) for the minimum number of elements
required to generate G. Throughout the paper, generation always means generation
as a semigroup: i.e., every element of the group is a product of positive powers of the
generators. For a finite non-trivial group, this is of course equivalent to generation
as a group (where negative powers of the generators are allowed), but some later
results apply to finitely-generated infinite groups. Here is our main result:

Theorem 1.1. If G and S are arbitrary finite symmetric or alternating groups,
then d(G o S) ≤ 2. Moreover, d(G o S) = 1 if and only if one of the following holds:
(i) G is one of S1( = A1) or A2, and S is one of S1, S2, A2 or A3, or
(ii) G is one of S1, S2, A2 or A3, and S = S1.

Our interest in Theorem 1.1 comes primarily from the paper [1], the main result
of which determines the minimum number of generators for a semigroup of trans-
formations preserving a uniform partition of a finite set. Such a semigroup can be
thought of as a wreath product Tm o Tn of two full transformation semigroups, and
a key step was to show that a wreath product Sm o Sn is 2-generated, which is of
course a special case of Theorem 1.1. This fact about Sm o Sn was proved in [1]
using rather sophisticated methods from representation theory; see also [3]. Our
original motivation was to find an elementary proof that d(Sm o Sn) = 2. The argu-
ment we found is also applicable to wreath products involving alternating and/or
symmetric groups, and indeed to larger classes of wreath products, as described in
Lemmas 3.2–3.4.

As a first step, we establish a number of two-element generating sets for finite
symmetric and alternating groups in Section 2, taking as our starting point only
the most basic generating sets that have been known for well over a century [10].
It might seem somewhat strange that we would need to prove such results, seeing
as “almost all” pairs of permutations from Sn generate all of Sn or An, as shown
in [5]. See also [11] and [9]; the latter shows that for n 6= 4, any non-trivial
permutation from Sn is part of a two-element generating set for Sn.1 However, we
need generating sets with elements of specific orders and with specific fixed points;
see especially Lemma 2.7. In Section 3, we combine the main results of Section 2
to prove a number of general (albeit technical) results concerning generation of
wreath products, and use these to complete the proof of Theorem 1.1. In Section 4
we discuss the challenges of extending Theorem 1.1 to wreath products with more
than two factors. We thank the referee for their helpful comments.

2. Generating Symmetric and Alternating Groups

If a is an element of a group, ord(a) denotes the order of a: i.e., the least positive
integer n such that an = 1 (the identity of the group) if such an n exists, or else
ord(a) =∞.

1This property is known as 3
2

-generation. It is known that every finite simple group is 3
2

-generated

[7]. Although our main result shows that wreath products of finite symmetric or alternating groups

are 2-generated, they are not 3
2

-generated, apart from trivially small exceptions. For example, if

S is not cyclic, then any non-trivial pair (a; idn) cannot be part of a two-element generating set

for G o S.
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Lemma 2.1. Let a and b be elements of (possibly distinct) groups, and suppose
ord(a) and ord(b) are finite and coprime. Suppose also that r ≥ 1 is coprime to
ord(a). Then there exists k ≥ 1 such that akr = a and bk = 1.

Proof. Write p = ord(a) and q = ord(b). By the Chinese Remainder Theorem,
kr ≡ 1 (mod p) and k ≡ 0 (mod q) for some k ≥ 1. �

We now prove some results concerning generators for Sn and An; some of the
earlier ones are known (see for example [2, 4, 10]), but simple proofs are included
for convenience. In the proofs, for m ≤ n we identify Sm with the subgroup of Sn
consisting of the permutations fixing {m+ 1, . . . , n} pointwise.

Lemma 2.2. (i) If n ≥ 2, then Sn =
〈
(1, 2), (2, 3), . . . , (n− 1, n)

〉
.

(ii) If n ≥ 3, then An =
〈
(1, 2, 3), (2, 3, 4), . . . , (n− 2, n− 1, n)

〉
If n ≥ 3, then =

〈
(1, 2, 3), (1, 2, 4), . . . , (1, 2, n)

〉
If n ≥ 3, then =

〈
(1, 2, 3), (1, 3, 4), . . . , (1, n− 1, n)

〉
.

Proof. Part (i) and the first generating set in part (ii) may be found in [10]. (The
generators from (i) generate Sn as a Coxeter group [8].) Let

Un =
〈
(1, 2, 3), (1, 2, 4), . . . , (1, 2, n)

〉
and Vn =

〈
(1, 2, 3), (1, 3, 4), . . . , (1, n− 1, n)

〉
.

We first show by induction on n that Un = An. This is clearly true for n = 3, so
suppose n ≥ 4, and assume inductively that Un−1 = An−1. Then Un−1 contains
(1, 2, 3), (2, 3, 4), . . . , (n − 3, n − 2, n − 1), and hence so too does Un. It therefore
suffices to show that (n− 2, n− 1, n) ∈ Un. But

(n− 2, n− 1, n) = (2, 1, n− 1)(1, 2, n)(1, n− 2, n− 1),

with (1, 2, n) ∈ Un and (2, 1, n− 1), (1, n− 2, n− 1) ∈ An−1 = Un−1 ⊆ Un.
Finally, we can show that Vn = An by showing that Vn contains the generators

for Un. But this follows from (1, 2, i) = (1, 2, 3)(1, 3, 4) · · · (1, i− 1, i). �

For f, g ∈ Sn, we write fg = g−1fg.

Lemma 2.3. The following statements hold:
(i) If n ≥ 2, then Sn =

〈
(1, 2), (1, 2, 3, . . . , n)

〉
=
〈
(1, 2), (2, 3, . . . , n)

〉
.

(ii) If n ≥ 3 is odd, then An =
〈
(1, 2, 3), (1, 2, 3, . . . , n)

〉
.

(iii) If n ≥ 4 is even, then An =
〈
(1, 2, 3), (2, 3, . . . , n)

〉
.

Proof. (i). This is also contained in [10].

(ii). Let f = (1, 2, 3) and g = (1, 2, 3, . . . , n). Then for any 1 ≤ i ≤ n − 2 we have

(i, i+ 1, i+ 2) = fg
i−1

. The claim then follows from Lemma 2.2(ii).

(iii). Let f = (1, 2, 3) and g = (2, 3, . . . , n). Then for any 1 ≤ i ≤ n − 2 we have

(1, i+ 1, i+ 2) = fg
i−1

. The claim then follows from Lemma 2.2(ii). �

Lemma 2.4. The following statements hold for n ≥ 3:

(i)
〈
(1, 2, 3), (3, 4, 5, . . . , n)

〉
=

{
An if n is odd

Sn if n is even,

(ii)
〈
(1, 2, 3), (2, 3, 4, . . . , n)

〉
=

{
Sn if n is odd

An if n is even.
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Proof. (i). Let S = 〈f, g〉, where f = (1, 2, 3) and g = (3, 4, 5, . . . , n). Then
gf = (1, 2, 3, . . . , n). As in the proof of Lemma 2.3(ii), S contains (i, i + 1, i + 2)
for each 1 ≤ i ≤ n − 2. Thus, An ⊆ S. If n is odd, then S ⊆ An (since both
(1, 2, 3) and (3, 4, 5, . . . , n) are odd cycles, and hence even permutations), so that
S = An in this case. If n is even, then S contains An and also the odd permutation
(3, 4, 5, . . . , n), so it follows that S = Sn.

(ii). The proof is almost identical to the previous part, using the third generating
set from Lemma 2.2(ii). �

Lemma 2.5. The following statements hold:

(i) If n ≥ 4, then
〈
(1, 2)(3, 4), (2, 3, 4, . . . , n)

〉
=

{
Sn if n 6= 5 is odd

An if n is even.

(ii) If n ≥ 5, then
〈
(1, 2)(3, 4), (2, 4, 5, 6, . . . , n)

〉
=

{
An if n is odd

Sn if n 6= 6 is even.

Proof. (i). This may be easily verfied with GAP [6] for n = 4, 6, so we assume
n ≥ 7 for the rest of the proof. Write f = (1, 2)(3, 4) and g = (2, 3, 4, . . . , n),

and put S = 〈f, g〉. Then fg = (1, 3)(4, 5) and fg
2

= (1, 4)(5, 6). One may check

with GAP that A6 = 〈f, fg, fg2〉 ⊆ S. It follows that (1, 2, 3) ∈ S. Since also
(2, 3, 4, . . . , n) ∈ S, the result then follows from Lemma 2.4(ii).

(ii). Again, this may be checked with GAP for n = 5, so we assume that n ≥ 7.
Write f = (1, 2)(3, 4) and g = (2, 4, 5, 6, . . . , n), and put S = 〈f, g〉. This time,

fg = (1, 4)(3, 5), fg
2

= (1, 5)(3, 6) and fg
3

= (1, 6)(3, 7), and GAP verifies that

A7 = 〈f, fg, fg2

, fg
3〉 ⊆ S. In particular, S contains (1, 2, 3) and (2, 3, 4). Since

also (3, 4, 5, . . . , n) = g(2, 3, 4) ∈ S, the result follows from Lemma 2.4(i). �

Lemma 2.6. If n = 5 or if n ≥ 7, then Sn =
〈
(1, 2, 3, 4), (3, 4, 5, . . . , n)

〉
.

Proof. Again GAP deals with the n = 5 case, so we assume n ≥ 7. Write
f = (1, 2, 3, 4) and g = (3, 4, 5, . . . , n), and put S = 〈f, g〉. GAP shows that

S7 = 〈f, fg, fg2

, fg
3〉 ⊆ S. In particular, (1, 2) and (1, 2, 3) both belong to S.

So too therefore does (1, 2, 3, . . . , n) = g(1, 2, 3), and the result then follows from
Lemma 2.3(i). �

We note that Lemma 2.5(i) does not hold for n = 5, and Lemmas 2.5(ii) and 2.6
do not hold for n = 6. Here is the main technical result of this section:

Lemma 2.7. If S = Sn for some n ≥ 4, or if S = An for some n ≥ 5, then
S = 〈f, g〉 for some f, g ∈ S such that

nf = n, 1g = 1, ord(f) is a power of 2, ord(g) is odd.

Proof. We prove the lemma by investigating the cases separately.
• If S = Sn for even n ≥ 4, then by Lemma 2.3(i) we may take f = (1, 2) and
g = (2, 3, 4, . . . , n).

• If S = Sn for odd n ≥ 5, then by Lemma 2.6 we may take f = (1, 2, 3, 4) and
g = (3, 4, 5, . . . , n).

• If S = An for even n ≥ 6, then by Lemma 2.5(i) we may take f = (1, 2)(3, 4)
and g = (2, 3, 4, . . . , n).
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• If S = An for odd n ≥ 5, then by Lemma 2.5(ii) we may take f = (1, 2)(3, 4)
and g = (2, 4, 5, 6, . . . , n). �

We will also need the following simple consequence:

Lemma 2.8. If G is a finite symmetric or alternating group, then G = 〈a, b〉 for
some a, b ∈ G such that ord(a) is odd, and ord(b) is a power of 2.

Proof. This follows from Lemma 2.7 unless G = Sn for some n ≤ 3 or G = An

for some n ≤ 4. These remaining cases are easily checked. Note that the identity
element has order 1 = 20. �

3. Generating Wreath Products

We now turn our attention to wreath products G o S, where G is a group and S
a subgroup of Sn for some n ≥ 1. Although we are primarily interested in the case
that G and S are (finite) symmetric or alternating groups, it will be convenient
to consider more general situations, as this will allow us to treat multiple cases
simultaneously. We will denote the identity of Sn (and hence of S) by idn, and
the identity of G by 1. We will also denote the n-tuple (1, . . . , 1) by 1. The
identity of G o S is (1, idn) = (1, . . . , 1; idn). In the following lemmas, G could
be (countably) infinite, and we recall that any generating sets are assumed to be
semigroup generating sets.

Lemma 3.1. Suppose S = 〈f, g〉 is a transitive subgroup of Sn for some n ≥ 1,
and G is a group with G = 〈a, b〉. Then for arbitrary h1, h2 ∈ S, G oS = 〈α, β, γ, δ〉
with

α = (1, f), γ = (1, . . . , 1, a, 1, . . . , 1;h1),

β = (1, g), δ = (1, . . . , 1, b, 1, . . . , 1;h2),

where the a and b can be in arbitrary (and possibly different) coordinates in γ and δ.

Proof. Let P = 〈α, β, γ, δ〉. Certainly P ⊆ G o S. Since S = 〈f, g〉, P contains
every element of the form (1, h), for h ∈ S.

Suppose a is in the ith coordinate of γ. Since S is transitive, there exists h ∈ S
such that 1h = i. But then

γ′ := (a, 1, . . . , 1; idn) = (1, h) · γ · (1, h−11 h−1) ∈ P.

A similar calculation shows that δ′ := (b, 1, . . . , 1; idn) ∈ P . Since G = 〈a, b〉,
it quickly follows that every element of the form (c, 1, . . . , 1; idn), for c ∈ G, is
contained in 〈γ′, δ′〉 ⊆ P .

Using transitivity of S again, P contains every element that is of the form
(1, . . . , 1, c, 1, . . . , 1; idn), with c ∈ G in an arbitrary coordinate. It then quickly
follows that P contains every element of the form (a, idn) for a ∈ Gn. But then for
any a ∈ Gn and h ∈ S, (a, h) = (a, idn) · (1, h) ∈ P . This shows that G oS ⊆ P . �

Lemma 3.2. Suppose S = 〈f, g〉 is a transitive subgroup of Sn for some n ≥ 4,
where

nf = n, 1g = 1, ord(f) is a power of 2, ord(g) is odd.
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Suppose G = 〈a, b〉 is a group, where ord(a) is odd, and ord(b) is a power of 2.
Then G o S = 〈α, β〉, where

α = (1, . . . , 1, a; f) and β = (b, 1, . . . , 1; g).

Proof. Let P = 〈α, β〉. Certainly P ⊆ G oS. Since ord(a) and ord(f) are coprime,
it follows from Lemma 2.1 (with r = 1) that ak = a and fk = idn for some k ≥ 1.
Similarly, bl = b and gl = idn for some l ≥ 1. But then, using nf = n and 1g = 1,
we see that

γ := (1, . . . , 1, a; idn) = (1, . . . , 1, ak; fk) = αk ∈ P
and similarly

δ := (b, 1, . . . , 1; idn) = βl ∈ P.
Since ord(γ) = ord(a) and ord(δ) = ord(b) are finite, γ−1 and δ−1 both belong
to P . So too therefore do

α′ := γ−1α = (1, f) and β′ := δ−1β = (1, g).

It follows from Lemma 3.1 that G o S = 〈α′, β′, γ, δ〉 ⊆ P . �

We will use Lemma 3.2 to establish Theorem 1.1 in the generic case in which S
has large enough degree. For the cases in which S has small degree, we require the
following two results.

Lemma 3.3. Suppose G = 〈a, b〉 is a group, where ord(a) is odd, and ord(b) is a
power of 2. Then
(i) G o S2 = 〈α, β〉, where α = (ab−1, 1; id2) and β = (1, b; (1, 2)),
(ii) G o S3 = 〈α, β〉, where α = (a, b, 1; (2, 3)) and β = (1, 1, 1; (1, 2)).

Proof. For both parts we write P = 〈α, β〉. As above, we just need to show that
G o Sn ⊆ P (n = 2, 3).

(i). First note that αβ2 = (a, b; id2). Let k, l ≥ 1 be such that ak = a, bl = b and
al = bk = 1 (cf. Lemma 2.1). Then P contains

γ := (αβ2)k = (ak, bk; id2) = (a, 1; id2)

and

δ := (αβ2)l = (al, bl; id2) = (1, b; id2).

Since ord(δ) = ord(b) is finite, P contains δ−1, and hence also α′ := δ−1β =
(1, 1; (1, 2)). Lemma 3.1 then gives G o S2 = 〈α′, γ, δ〉 ⊆ P .

(ii). Here we note that α2 = (a2, b, b; id3). By Lemma 2.1 (with r = 2), a2k = a
and bk = 1 for some k ≥ 1. But then P contains γ := α2k = (a2k, bk, bk; id3) =
(a, 1, 1; id3), and hence also δ := γ−1α = (1, b, 1; (2, 3)). Then with α′ := δβδ−1 =
(1, 1, 1; (1, 3)), Lemma 3.1 gives G o S3 = 〈α′, β, γ, δ〉 ⊆ P . �

Lemma 3.4. Suppose G = 〈a, b〉 is a group, where ord(a) is odd, and ord(b) is a
power of 2. Then
(i) G o A2 = 〈α, β〉, where α = (a, b; id2) and β = (b, a; id2),
(ii) G o A3 = 〈α, β〉, where α = (ab−1, 1, 1; id3) and β = (b, 1, 1; (1, 2, 3)),

(iii) G o A4 = 〈α, β〉, where α = (a, 1, 1, b; (1, 2, 3)) and β = (1, 1, 1, 1; (2, 3, 4)).
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Proof. For all parts we write P = 〈α, β〉. As usual, we must show that G oAn ⊆ P
(n = 2, 3, 4).

(i). Let k, l ≥ 1 be such that ak = a, bl = b and al = bk = 1 (cf. Lemma 2.1). Then
the claim follows from

αk = (a, 1; id2), βl = (b, 1; id2), βk = (1, a; id2), αl = (1, b; id2).

(ii). First note that αβ3 = (a, b, b; id3). Let k ≥ 1 be such that ak = a and bk = 1
(cf. Lemma 2.1). Then P contains γ := (αβ3)k = (ak, bk, bk; id3) = (a, 1, 1; id3),
and hence also α′ := γ−1αβ = (1, 1, 1; (1, 2, 3)). Lemma 3.1 then gives G o A3 =
〈α′, β, γ〉 ⊆ P .

(iii). Now, α3 = (a, a, a, b3; id4). By Lemma 2.1 (with r = 3, and with the roles of
a and b swapped), ak = 1 and b3k = b for some k ≥ 1. So P contains γ := α3k =
(ak, ak, ak, b3k; id4) = (1, 1, 1, b; id4), and hence also δ := γ−1α = (a, 1, 1, 1; (1, 2, 3)),
and α′ := δ−1βδ = (1, 1, 1, 1; (1, 4, 3)). Since

〈
(1, 4, 3), (2, 3, 4)

〉
= A4, Lemma 3.1

then gives G o A4 = 〈α′, β, γ, δ〉 ⊆ P . �

We may now tie together the loose ends.

Proof of Theorem 1.1. Suppose G and S are arbitrary finite symmetric or al-
ternating groups.

We begin with the second statement. First, if either of (i) or (ii) holds, then
G o S is clearly cyclic. For the converse, we make two observations:
• If either G or S is not cyclic, then it is non-abelian (recall that G and S are

symmetric or alternating groups), in which case G o S is also non-abelian, and
therefore not cyclic.

• If G and S are both non-trivial, say with non-identity elements f ∈ G and
g ∈ S, then the elements (1, . . . , 1, f, 1, . . . , 1; idn) and (1, . . . , 1; g) do not
commute (here the f is in position i for some i 6= ig), so again G o S is not
cyclic.

The above two points show that if G o S is cyclic, then G and S are both cyclic,
and at most one of them is non-trivial. This still includes the cases in which G is
non-trivial and cyclic (i.e., one of S2 or A3), and S = A2, which are not listed in
the theorem. But in these cases, G o S ∼= G2 is non-cyclic.

We now prove the first statement: i.e., that G oS is 2-generated. By Lemma 2.8,
G = 〈a, b〉 for some a, b with ord(a) odd, and ord(b) a power of 2. The cases in
which S = Sn (n = 2, 3) or S = An (n = 2, 3, 4) are covered by Lemmas 3.3 and 3.4.
The case in which S = S1 = A1 is clear. If S = Sn (n ≥ 4) or S = An (n ≥ 5),
then Lemma 2.7 tells us that Lemma 3.2 applies to S, and the conclusion of that
lemma completes the proof. �

4. Wreath Products with more than Two Factors

We believe it would be interesting to investigate minimal generation of iterated
wreath products of the form

G1 oG2 oG3 o · · · oGk := (· · · ((G1 oG2) oG3) o · · · ) oGk,

where each factor is a finite symmetric or alternating group. For example, Table 1
gives values of d(G1 oG2 oG3) where the Gi are symmetric or alternating groups of
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relatively small degree, computed using GAP [6]. Note that the rows are indexed
by G1 oG2, and the columns by G3; thus, for example,

d(S3 o S3 o A2) = 4 and d(S3 o A3 o A2) = 2.

Even this limited data shows that a formula for d(G1 oG2 oG3 o · · · oGk) is likely to
be rather complicated for k ≥ 3. On the other hand, the proof of Lemma 3.1 may
easily be modified to show that d(G o S) ≤ d(G) + d(S) for any group G and any
transitive subgroup S of Sn. Thus, if G1, . . . , Gk are non-trivial finite symmetric
or alternating groups (so we are excluding the non-transitive A2), then

d(G1 oG2 oG3 o · · · oGk) ≤ d(G1 oG2) + d(G3) + · · ·+ d(Gk) ≤ 2(k − 1).

We note that this inequality does not hold in general if we allow A2 factors. For
example, since G o A2

∼= G2 for any group G, it follows that S2 o A2 o A2 o A2
∼= S82 ,

which is minimally 8-generated.

A2 A3 A4 S2 S3 S4
A2 o A2 1 1 2 1 2 2

A2 o A3 2 2 2 2 2 2

A2 o S2 2 2 2 2 2 2

A2 o S3 2 2 2 2 2 2

A3 o A2 4 3 3 3 2 2

A3 o A3 4 3 3 3 2 2

A3 o S2 2 2 2 2 2 2

A3 o S3 2 2 2 2 2 2

S2 o A2 4 3 2 3 3 3

S2 o A3 2 2 2 2 2 2

S2 o S2 4 3 2 3 3 3

S2 o S3 4 3 2 3 3 3

S3 o A2 4 3 2 3 3 3

S3 o A3 2 2 2 2 2 2

S3 o S2 4 3 2 3 3 3

S3 o S3 4 3 2 3 3 3

Table 1. Values of d(G1 o G2 o G3), where the Gi are symmetric
or alternating groups of small degree.
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