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Abstract. In this paper, it is shown how the Banach-Steinhaus theorem for

the space P of all primitives of Henstock-Kurzweil integrable functions on a
closed bounded interval, equipped with the uniform norm, can follow from

the Banach-Steinhaus theorem for the Denjoy space by applying the classical

Hahn-Banach theorem and Riesz representation theorem.

1. Introduction

The Banach-Steinhaus theorem is an important result in the field of functional
analysis. The statement of the theorem is often given in various forms, one of
which states that any family of continuous linear operators between Banach spaces
is uniformly bounded provided that it is bounded pointwise. A Banach space is a
complete normed linear space and a normed linear space X equipped with a norm
‖ · ‖X is complete if ‖xn − xm‖X → 0 as n,m → ∞ implies that there is x ∈ X
such that ‖xn − x‖X → 0 as n→∞, that is, every Cauchy sequence is convergent.

In [2, Theorem 11.6], the Banach-Steinhaus theorem for Sargent spaces, a special
kind of normed linear spaces, is proved. More precisely, given a sequence {Tn} of
continuous linear operators from a Sargent space E to a normed linear space Z,
if sup {‖Tn(x)‖Z : n ≥ 1} < +∞ for every x ∈ E, then sup {‖Tn‖ : n ≥ 1} < +∞.
Here ‖Tn‖ denotes the norm of Tn.

Note that every Banach space is a Sargent space but a Sargent space is not
necessarily a Banach space. Furthermore, the Denjoy space is a special case of
Sargent spaces [2]. The Denjoy space of [a, b], or simply the Denjoy space when
there is no ambiguity, denoted by H[a, b], is the space of all Henstock-Kurzweil
integrable functions on a closed bounded interval [a, b] equipped with the Alexiewicz
norm as given below.

‖f‖H[a,b] := sup

{∣∣∣∣∫ x

b

f(t)dt

∣∣∣∣ : a ≤ x ≤ b
}

for every f ∈ H[a, b]. Here f is a real-valued point function defined on [a, b]. Clearly,
H[a, b] is a normed linear space. Note that two functions f and g in H[a, b] are
regarded as identical if f(x) = g(x) almost everywhere in [a, b], that is f and g
agree everywhere except perhaps in a set of measure zero.
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Since the Denjoy space is a Sargent space (see [2, Example 11.3]), the Banach-
Steinhaus theorem for H[a, b] can be obtained as a consequence of that for Sargent
spaces. This is a useful result for the study of integrals which are nonabsolute,
such as the Henstock-Kurzweil integral, because the Denjoy space is not a Banach
space, and thus the Banach-Steinhaus theorem for H[a, b] can be considered as an
extension of the classical version of the theorem. Integrals such as the Riemann
integral and the Lebesgue integral are absolute in the sense that if f is integrable,
then so is |f |, where |f | denotes the absolute value of f . We refer the interested
reader to [3] for two definitions of the Henstock-Kurzweil integral on the real line,
and [4] for properties and results of the integral in a more abstract setting.

It is known that if T is a continuous linear functional on H[a, b], then

T (f) =

∫ b

a

f(x)g(x)dx

for every f ∈ H[a, b], where g is of bounded variation on [a, b] (see, for example, [2,
Theorem 12.7]). Following the work of Kurzweil and Jarnik [1], we find that func-
tionals defined on a function space should be expressed in terms of the primitives
F of integrable functions f rather than the functions f per se.

In this paper, we shall thus prove the Banach-Steinhaus theorem for the space
P[a, b], or for brevity P, of all primitives of Henstock-Kurzweil integrable functions
defined on a closed bounded interval [a, b], in which continuous linear operators
are replaced with continuous linear functionals. This will be done by applying the
classical Hahn-Banach theorem and Riesz representation theorem, and the Banach-
Steinhaus theorem for H[a, b]. An operator taking real values is called a functional.

2. Preliminaries

A functional T defined on a normed linear space X is linear if

T (x+ y) = T (x) + T (y)

and

T (λx) = λT (x)

for all x, y ∈ X and λ ∈ R. It is continuous if ‖xn − x‖X → 0 as n → ∞ implies
that T (xn)→ T (x) as n→∞.

The norm of the functional T is defined as

‖T‖ := inf{m ≥ 0 : |T (x)| ≤ m ‖x‖X}.
The functional T is bounded if there exists M ≥ 0 such that |T (x)| ≤ M ‖x‖X for
every x ∈ X. It is well known that a linear functional on a normed linear space is
bounded if and only if it is continuous.

We first state the Banach-Steinhaus theorem for H[a, b] which, as pointed out
previously, follows from that for Sargent spaces because the Denjoy space is a
Sargent space.

Theorem 1. Let {Tn} be a sequence of continuous linear functionals on H[a, b]. If
sup { |Tn(f)| : n ≥ 1} < +∞ for every f ∈ H[a, b], then sup {‖Tn‖ : n ≥ 1} < +∞.
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We shall show that the Banach-Steinhaus theorem for P follows from the above
theorem by applying the classical Hahn-Banach theorem and Riesz representation
theorem.

The Hahn-Banach theorem is a useful tool in functional analysis which allows the
extension of bounded linear functionals defined on a subspace of some linear space
to the whole space. There are now many versions of the Hahn-Banach theorem
and in this paper we shall use the following version which we state here for ease of
discussion.

Theorem 2 (Hahn-Banach). Suppose Y is a non-trivial proper subspace of a
normed linear space X. Let T be a bounded linear functional on Y . Then there is
a bounded linear functional T ∗ on X such that ‖T ∗‖ = ‖T‖ and T ∗(x) = T (x) if
x ∈ Y .

Let C[a, b] denote the space of all continuous functions defined on [a, b] with the
uniform norm given by

‖F‖C[a,b] = sup
a≤x≤b

|F (x)|

for every F ∈ C[a, b]. Since the primitive of a Henstock-Kurzweil integrable function
defined on [a, b] is continuous on [a, b] (see [2, Corollary 3.8]), the space P is a proper
subspace of C[a, b] as a normed linear space (see [2, Theorem 5.7]). As a result,
Theorem 2 holds for X = C[a, b] and Y = P.

The classical Riesz representation theorem, which we state below, tells us ex-
plicitly what functionals on C[a, b], and in particular those on P, are.

Theorem 3 (Riesz). A functional T defined on C[a, b] is linear and continuous if
and only if

T (F ) =

∫ b

a

F (x)dg(x)

for every F ∈ C[a, b] and for some function g of bounded variation on [a, b] where
the integral is in the sense of Riemann-Stieltjes. Furthermore, ‖T‖ = V (g; [a, b]).

Here V (g; [a, b]) denotes the total variation of the function g on [a, b] and is
defined as

V (g; [a, b]) = sup

n∑
i=1

|g(ti)− g(ti−1)|,

where the supremum is taken over partitions a = t0 < t1 < · · · < tn = b of the
interval [a, b]. We say that g is of bounded variation if V (g; [a, b]) < +∞.

Since P is a proper subspace of C[a, b], it follows readily from Theorems 2 and
3 that the following result holds.

Proposition 1. If T is a continuous linear functional defined on P, then there is
a continuous linear functional T ∗ defined on C[a, b] such that

T ∗(F ) =

∫ b

a

F (x)dg(x)

for every F ∈ C[a, b], where g is of bounded variation on [a, b]. Furthermore,
T ∗(F ) = T (F ) for every F ∈ P and

‖T ∗‖ = ‖T‖ = V (g; [a, b]).
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3. Main Results

We are now ready to prove that the Banach-Steinhaus Theorem for P follows
from Theorem 1.

Theorem 4. Let {Tn} be a sequence of continuous linear functionals on P. If
sup { |Tn(F )| : n ≥ 1} < +∞ for every F ∈ P, then sup {‖Tn‖ : n ≥ 1} < +∞.

Proof. By Proposition 1, for each n we have

Tn(F ) =

∫ b

a

F (x)dgn(x)

for every F ∈ P, where gn is of bounded variation on [a, b] and the integral is in
the Riemann-Stieltjes sense. Furthermore,

‖Tn‖ = V (gn; [a, b]).

For every F ∈ P, let f be the function of which F is the primitive on [a, b]. By
means of the integration by parts formula for the Henstock-Kurzweil integral (see
[2, Corollary 12.2]), we have∫ b

a

f(x)gn(x)dx = F (b)gn(b)− F (a)gn(a)−
∫ b

a

F (x)dgn(x)

where F (a) = 0. For each n we define

Sn(f) =

∫ b

a

f(x)hn(x)dx

for every f ∈ H[a, b], and hn(x) = −gn(x) when x ∈ [a, b) and hn(b) = 0.
Clearly, the functionals Tn and Sn are equivalent. Hence {Sn} is a sequence of
continuous linear functionals on H[a, b] and ‖Sn‖ = ‖Tn‖. By the hypothesis that
sup { |Tn(F )| : n ≥ 1} < +∞ for every F ∈ P, we also have sup { |Sn(f)| : n ≥ 1} <
+∞ for every f ∈ H[a, b]. It follows from Theorem 1 that sup {‖Sn‖ : n ≥ 1} < +∞
and equivalently sup {‖Tn‖ : n ≥ 1} < +∞ as desired. �

Note that in the statement of Theorem 4, it is not necessary to restrict the
functionals to be a sequence. Take an arbitrary family K of continuous linear
functionals on P which is pointwise bounded on P. For each T in K define the
functional S as in the proof of Theorem 4. This gives a pointwise bounded family
of continuous linear functionals on the Denjoy space which is, therefore, uniformly
bounded implying K is uniformly bounded.

We shall end this paper with a useful result which is an immediate consequence
of Theorem 4.

Corollary 1. Let {Tn} be a sequence of continuous linear functionals on P. If

lim
n→∞

Tn(F ) = T (F )

for every F ∈ P, then T is also continuous.

Proof. By the hypothesis, we have sup { |Tn(F )| : n ≥ 1} < +∞ for every F ∈ P,
and thus, it follows from Theorem 4 that the functional T is bounded and, therefore,
continuous. �
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