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Abstract. The lines of curvature of a surface embedded in R3 comprise its
principal foliations. Principal foliations of surfaces embedded in R3 resemble

phase portraits of two dimensional vector fields, but there are significant dif-
ferences in their geometry because principal foliations are not orientable. The

Poincaré-Bendixson Theorem precludes flows on the two sphere S2 with re-

current trajectories larger than a periodic orbit, but there are convex surfaces
whose principal foliations are closely related to non-vanishing vector fields on

the torus T 2. This paper investigates families of such surfaces that have dense

lines of curvature at a Cantor set C of parameters. It introduces discrete one
dimensional return maps of a cross-section whose trajectories are the intersec-

tions of a line of curvature with the cross-section. The main result proved here

is that the return map of a generic surface has breaks; i.e., jump discontinuities
of its derivative. Khanin and Vul discovered a qualitative difference between

one parameter families of smooth diffeomorphisms of the circle and those with

breaks: smooth families have positive Lebesgue measure sets of parameters
with irrational rotation number and dense trajectories while families of diffeo-

morphisms with a single break do not. This paper discusses whether Lebesgue
almost all parameters yield closed lines of curvature in families of embedded

surfaces.

1. Introduction

Vaughan Jones’ generous support of the New Zealand Mathematics Research
Institute, specifically the 2016 Raglan Summer School on Continuation Methods
in Dynamical Systems, helped launch the work described here. Like Jones own
work, this paper forges connections between different areas of mathematics – in this
case differential geometry and dynamical systems. The primary objects of interest
are principal foliations consisting of the lines of curvature on surfaces embedded
in three space. They are similar to the phase portraits of dynamical systems, but
differ in that their tangent line fields are not orientable like vector fields. Numerical
methods for computing phase portraits of dynamical systems are a prominent part
of dynamical systems theory, and they were the focus of the Raglan Summer School.
While software that draws phase portraits of two dimensional vector fields is widely
available, that has not been the case for principal foliations. Few examples of
principal foliations appear in the mathematics literature, with the notable exception
of surfaces of revolution and the foliations of triaxial ellipsoids. Baffled by the
paucity of examples, I set out to create algorithms that visualize principal foliations,
similar to those that draw phase portraits of vector fields. My journey has led me to
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a far richer world than I expected to find. In the spirit of Vaughan Jones, this paper
is a travelogue, presenting an informal description of my recent discoveries. The
interplay between algorithm development, careful study of numerical examples and
mathematical theory that has been so illuminating in dynamical systems theory
has again been indispensable in these investigations.

Dynamical systems theory studies the geometry of phase portraits of generic
vector fields on compact manifolds. A seminal result is Peixoto’s Theorem [14]
characterizing structurally stable vector fields on orientable, compact two dimen-
sional manifolds. Structurally stable vector fields on surfaces are characterized by
the following four properties: (1) equilibrium points are hyperbolic, (2) periodic
orbits are hyperbolic, (3) there are no saddle connections (trajectories that tend to
saddles as t→ ±∞) and (4) all trajectories tend to an equilibrium point or closed
curve as t → ±∞. Moreover, vector fields satisfying these properties are dense in
the space of Cr vector fields. Using these results as a backdrop, Sotomayor and
Gutiérrez [16, 17], proved analogous results for principal foliations. The Poincaré-
Bendixson Theorem [8] states that the fourth condition is satisfied by all vector
fields on the two sphere S2, so is not needed in that case.

The simplest dynamical systems with large limit sets are non-vanishing vec-
tor fields on the two torus T 2 with a global cross-section Σ. Their return maps
σ : Σ → Σ are smooth diffeomorphisms of the circle. The rotation number ρ is a
continuous function on the space of circle diffeomorphisms that distinguishes the
two types of dynamics that are possible: limit sets of diffeomorphisms with ra-
tional ρ are periodic orbits, while diffeomorphisms with irrational ρ have dense,
quasiperiodic trajectories. In families of diffeomorphisms, quasiperiodic trajecto-
ries typically occur for positive measure sets of parameters. Principal foliations on
surfaces close to triaxial ellipsoids are more similar to these vector fields on the
torus than to dynamical systems on the sphere. I pursued that relationship in a
previous paper [6] by lifting the non-orientable line field of principal foliations to
vector fields on a double cover ramified at umbilic points. I gave one example in
which the lifted vector field on the torus was rescaled to remove its equilibrium
points, but that example now seems to be special. Here, I take a different approach
to studying these principal foliations, constructing return maps to cross-sections of
the foliations whose trajectories lie in the intersections of the cross-section with lines
of curvature. In contrast to the return maps of dynamical systems, these return
maps are homeomorphisms of the circle that are smooth except for breaks (jump
discontinuities of their derivative) located at lines of curvature that approach an
umbilic point without returning to the cross-section. Khanin and Vul [10] analyzed
the dynamics of circle diffeomorphisms with a single break and found two qualita-
tive differences with diffeomorphisms that have no breaks. First, diffeomorphisms
with a single break do not have smooth invariant measures, and second, quasiperi-
odic dynamics occurs only for parameter sets of measure zero in generic families of
diffeomorphisms with a single break. Khmelev [11] studied diffeomorphisms with
multiple breaks, but did not fully answer questions about which families of such
diffeomorphisms have quasiperiodic dynamics for positive measure sets of parame-
ters.

In the rest of this paper, I recall the theory of generic vector fields on two
manifolds and the parallel theory of principal foliations developed by Sotomayor
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and Gutiérrez [16, 17]. Next, I describe how to produce circle homeomorphisms as
return maps for principal foliations on simply connected surfaces with a minimal
number of generic umbilic points. This is followed by a review of relevant aspects of
the theory of circle diffeomorphisms and circle diffeomorphisms with breaks. Breaks
in return maps of surfaces are the central issue examined in this paper. I present a
numerical example and prove that return maps of generic principal foliations have
breaks at separatrices that approach lemon umbilic points without returning to the
cross-section. Finally, I apply the theory of circle diffeomorphisms with breaks to
simply connected surfaces with only lemon umbilic points.

2. Principal Curvatures and Foliations

Let S ⊂ R3 be a smooth compact surface of genus 0; i.e., diffeomorphic to the
two sphere S2. If p ∈ S, N(p) is the unit (outward) normal to S at p, γ(s) is

a planar curve on S parameterized by arc length with γ(0) = p and dγ
ds (0) = v,

then the normal curvature at p in the direction v is κ(p, v) = d2(γ)
ds2 (0) · N(p). If

κ(p, v) is not constant as a function of v, then its maximum and minimum values
κ1 ≥ κ2 are the principal curvatures at p. Points where the normal curvatures are
constant in all directions are umbilic points. Elsewhere, vectors v1 and v2 whose
normal curvatures are κ1 and κ2 are principal vectors. γ is a line of curvature if all
of its tangent vectors lie in principal directions. Rodrigues formula states that the
tangent vector dγ

dt (p) to γ is a principal vector v if and only if dN◦γdt (p) = κdγdt (p) [17].
In this case, κ is the principal curvature in the direction v. Rodrigues formula yields
a system of equations whose solutions v are principal unit vectors [17]:

N · v = 0

v · v = 1

det(N, v, dN · v) = 0

(2.1)

The equations (2.1) express that v is a tangent vector to S, v has unit length and
that dN · v lies in the plane spanned by N and v. The first of these equations is
linear in v while the second two are quadratic and even in v. Typically, there will
be four solutions in two pairs of the form ±v. If v1 and v2 are solutions that are not
collinear, then they are orthogonal to each other since dN is a symmetric matrix.

Except at umbilic points, principal vectors v1 and v2 are distinguished from
each other globally on S by the inequality κ1 > κ2; however, there is no way
to choose the orientations of the principal vectors so that they vary continuously.
As with equilibria of vector fields, the index of an umbilic point measures the
number of rotations that the direction of the principal foliation makes when varied
continuously along a closed curve surrounding the umbilic point. The index of a
generic umbilic point is ± 1

2 . Indeed, the orientation of a principal vector is reversed
if it is continued around the boundary of a disk that encloses the umbilic point (and
no others). Darboux [3] first classified generic umbilic points: there are three types,
classified as lemons (one separatrix), monstars (two separatrices) and stars (three
separatrices) [1]. Unlike trajectories of a vector field on S2, lines of curvature of an
embedding of S2 in R3 can intersect a cross-section of the principal foliation with
both orientations.
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Figure 1. Maximal principal foliation on an ellipsoid. All of the
lines of curvature are closed curves except two umbilic connections
(plotted green). Umbilic points are large black dots. Note that
the foliations is not orientable near an umbilic connection because
a nearby line of curvature that follows the connection from front
to back on its right makes a half turn around an umbilic at the
end of the connection and follows it from back to front on the left
side. More formally, if one traces the direction of the foliation
continuously on a closed curve that surrounds an umbilic point,
that direction rotates by π – returning with the opposite orienta-
tion.

Figure 1 displays a principal foliation of a triaxial ellipsoid S0. In 1796, Monge [13]
found that the lines of curvature on the ellipsoid are intersections with hyperboloids
in a triply orthogonal family of confocal quadric surfaces. There are four umbilic
points, all lemons. Each principal foliation has two umbilic point separatrices, each
connecting two of the umbilic points. All other lines of curvature on the ellipsoid
are closed curves. Using this example as a starting point, I [6] investigated principal
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foliations in the one parameter family of surfaces Sλ defined by

fλ(x, y, z) = x2 +
1

3
y2 +

1

5
z2 + λxyz − 1, |λ| < λ0 (2.2)

with λ0 > 0 chosen so that the Sλ are all simply connected and have four umbilic
points that are lemons. (See Garcia and Sotomayor [5], Exercise 3.6.3.) Throughout
the remainder of this paper, I restrict attention to the class SL of simply connected
surfaces S satisfying
• S has four umbilic points all lemons, and
• the maximal principal foliation of S is transverse to the coordinate plane x = 0.

Later, I restrict the class SL further.
Numerical computations of the principal foliations of Sλ discovered two types:
(1) foliations with isolated lines of curvature, and
(2) foliations with dense lines of curvature

Figure 2 shows both types. There are similarities between this family of principal
foliations on Sλ and families of non-vanishing vector fields on the torus T 2 with a
global cross-section. I [6] pursued this relationship by defining maps T 2 → Sλ that
are double covers ramified at umbilic points and vector fields on T 2 that project to
vectors in the principal foliations of Sλ in the complement of the umbilic points.
Here I use an alternative approach to study the geometry of principal foliations of
surfaces in SL.

Figure 2. Maximal principal foliations on two surfaces in the fam-
ily (2.2). Umbilic points are black dots and their separatrices are
plotted green. On the left, the single blue trajectory of the surface
S0.11 appears to be dense. On the right, closed lines of curvature
of S0.1857 are plotted red and blue. All other lines of curvature
tend to these closed ones.

The dynamics of some continuous time vector fields can be reduced to discrete
time iterations by choosing cross-sections and defining their return maps. Parame-
terize the torus T 2 = S1 × S1 with circular coordinates (θ1, θ2). The circle Σ con-

sisting of points with θ1 = 0 is a global cross-section Σ to vector fields with θ̇1 > 0.
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The return maps σ : Σ→ Σ of these vector fields are circle diffeomorphisms, defined
by setting σ(0, θ2) to be the first point of intersection of the trajectory starting at
(0, θ2) with Σ. The dynamics of σ characterize the dynamics of the vector field up
to topological equivalence. While many vector fields have the same return map,
all of them are topologically equivalent. Moreover, the diffeomorphism σ can be
suspended to create a vector field with σ as its return map [15]. A return map
can also be defined to a cross-section of a principal foliation of a surface in SL. Its
trajectories will lie in intersections of lines of curvature with the cross-section. The
dynamics of the return map will distinguish foliations with dense lines of curvature
from foliations with closed lines of curvature.

Figure 3. Lines of curvature that contribute to the definition of
σ on the surface S0.11. Σ is a light dotted black curve. Twenty-five
points w ∈ Σ are blue dots. Lines of curvature connecting the w
with σ(w) are blue curves. The four umbilic points are green dots
and segments of their separatrices are heavy green curves.

Here is a construction of σ for surfaces S ∈ SL close to S0. The intersection
Σ of S with the coordinate plane x = 0 is a global cross-section that divides S
into two regions R+ (x > 0) and R− (x < 0). Define the map σ : Σ → Σ that
follows lines of curvature into R+, then across Σ into R−, and finally to the next
intersection of that line of curvature with Σ. If p ∈ Σ, σ(p) is the second point of
intersection of the line of curvature starting at p with Σ. This definition fails on
umbilic separatrices that approach an umbilic point before they return to Σ, but
there is a continuous extension of σ to these points. Iterating σ gives successive
intersections of lines of curvature with Σ in the direction from R− to R+. Figure 3
visualizes the construction of σ for the surface S0.11 and Figure 4 plots its graph
on a mesh of one thousand points. The green vertical lines have values of θ ∈ Σ
whose lines of curvature are umbilic separatrices which do not return to Σ.
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Figure 4. One thousand points on the graph of σ on the surface
S0.11. Σ is parameterized by an angular coordinate θ ∈ [−π, π].
This graph represents a continuous curve on the torus, obtained
by identifying −π and π on both axes. The map σ : Σ → Σ is
evidently a homeomorphism. The green vertical lines mark the
location of intersections of separatrices with Σ.

For S0, the map σ is the identity (except at umbilic separatrices) since its lines of
curvature are closed curves lying in the intersections of orthogonal quadric surfaces.
Clearly σ0 extends as the identity at intersections of umbilic separatrices with Σ:
imagine the separatrix reaching the umbilic point and then retracing itself in the
reversed direction. This paper analyzes σ near separatrices of lemon umbilic points
on other surfaces S in SL. The graph of σ in Figure 4 appears to have a break (jump
in its first derivative) at the intersections of umbilic separatrices with Σ. Strong
evidence for this observation is displayed in Figure 5 which shows finite difference
approximations for the first and second derivatives of σ. The next section proves
that the return maps of generic surfaces do have breaks at intersections with the
separatrices of lemon umbilic points.

3. Breaks of Return Maps for Principal Foliations

This section analyzes breaks in the returns of principal foliations at separatrices
of umbilic points. Figure 6 illustrates the geometry of these returns, using the
surface S0.02 defined by x2 + 1

3y
2 + 1

5z
2 + 0.02xyz = 1 as an example. The figure

shows a region around two umbilic points ul and ur to the left and right of the
cross-section Σ defined by x = 0. Two lines of curvature straddling the black
separatrix of ul are plotted in blue and green from initial points pi, qi ∈ Σ to their
second intersections with Σ at pf , qf . These blue and green lines of curvature bend
around the umbilic point in opposite directions. Decompose the return map σ as
σl ◦σr where σr : Σ→ Σ is the first return map to Σ for lines of curvature entering
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Figure 5. Finite difference approximations of the first and sec-
ond derivatives σ′ and σ′′ of σ. These are computed by applying
the matlab command diff to the vector of values of σ and then
rescaling by the length of the mesh intervals of θ. The green verti-
cal lines again mark the location of umbilic separatrix intersections
with Σ

R+ = {x > 0} and σl is the first return map to Σ for lines of curvature entering
R− = {x < 0}. The map σl above the intersection w of the separatrix with Σ is
the inverse of σl below w since they connect the ends of the same lines of curvature
in opposite directions. Thus, the limits of σ′l(u) as u approaches w from above and
below are reciprocals. Since σl reverses orientation, they are different if the limit
value is not −1. Now observe that σr is smooth at w, so the limit values of σ′l at w
determine whether σ has a break at w. Figure 5 exhibits numerical evidence that
there are breaks in the return map of S0.11.

If the surface S does not have a break at the separatrix of a lemon, I assert that
there are perturbations of S which do have breaks at this separatrix. A precise
statement is the following theorem:

Theorem 3.1. Let S be a surface with a lemon umbilic point and Σ a cross-section
intersecting its separatrix transversally at the point p. If the return map σ : Σ→ Σ
does not have a break at p, there are perturbations of S that do.

Proof. The crux of the proof of this theorem is to calculate the breaks of a proto-
typical family analytically. It will be apparent that the construction of this family
can be modified to perturb surfaces without a break at a lemon separatrix to ones
that do have a break.

Monge coordinates for a surface S represent the surface as the graph of a function
g : R2 → R with g(0) = dg(0) = 0. The origin is an umbilic point of the Monge
surface if and only if d2g is a multiple of the identity. Whether this umbilic point
is generic and its type is determined by the cubic terms in the Taylor expansion
of g [16, 2]. Monge coordinates can be introduced at any point of a surface by an
orthonormal transformation around that point. Thus, there is no loss of generality
in analyzing breaks by restricting attention to surfaces in Monge form near an
umbilic point.

Consider the family of surfaces Ma defined implicitly by w − (u2 + v2 − 8u3 −
8uv2+av3) = 0 = ga(u, v, w) with small parameter a. The origin is a lemon umbilic
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Figure 6. Two umbilic points on S0.02 and segments of their sep-
aratrices, plotted in black and red. Segments of two additional
lines of curvature with initial points pi and qi on the cross-section
Σ are plotted as blue and green curves. The images pf and qf
of these points under σ are marked by x’s. The blue and green
initial points straddle the intersection of the black separatrix with
Σ. The blue line of curvature starts at pi above the black separa-
trix, stays to the left of the separatrix as it bends around the right
umbilic point ur, and then bends around the left umbilic point ul
to intersect Σ above the black separatrix at pf . The green line of
curvature does the opposite: it starts below the black separatrix
at qi, stays to the right of the separatrix as it bends around the
right umbilic point, and then bends around the left umbilic point
to intersect Σ below the black separatrix at qf . The points pi and
qi can be chosen so that the segments of their lines of curvature to
the left of Σ coincide, but with opposite orientations.

point of all the Ma. When a = 0, g is even in y and M0 is symmetric with respect
to the reflection v → −v. Consequently, the separatrix lies along the u axis and the
return map σ0 of the cross-section u = −0.1 is σ0(v) = −v. As a varies from 0, the
separatrix of the origin remains along the u axis, but the return map σa changes
as described below.

The normal vector N to Ma is parallel to dg = (−gu,−gv, gz). Principal vec-
tors of Ma satisfy the Rodrigues formula det(N, ξ, dN · ξ) = 0 or equivalently
det(dg, ξ, d2g · ξ) = 0. Writing the vector ξ as (x, y, z), the modified Rodrigues for-
mula is a polynomial equation in (u, v, w, x, y, z). Eliminating w, z from this equa-
tion by solving g = 0 for w and dg · ξ = 0 for z leaves an equation R̄(u, v, x, y) = 0
that is homogeneous quadratic in (x, y). Solutions of R̄ = 0 give projections
(x(u, v), y(u, v)) of the principal directions of Ma to the tangent space of the (u, v)
plane. Although the principal foliation is not orientable, off the u axis it contains a
vector field normalized so that x = u̇ = 1. Integrating the normalized vector fields
Xa = (1, ya(u, v)) produces projections of the lines of curvature to the (u, v) plane.
The goal here is to prove that as a varies ya is a monotonic function of a, so that
the vector fields Xa are transverse to each other.

The function ya(u, v) is obtained by solving R̄ = 0 with x = 1. Since the algebraic
expressions are moderately complicated, the Taylor series of ya(u, v) − y0(u, v) as
a function of v was computed from R̄ using the symbolic toolbox of Matlab. These
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Figure 7. Ten lines of curvature of the Monge surface M0.01 with
initial values equally spaced in the interval [−0.01,−0.001] on the
line u = −0.1.
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Figure 8. Deviation of the return map σa for the Monge surfaces
Ma from σ0(v) = −v. For the lines of curvature displayed in
Figure 7, the left panel plots the quantity σ0.01(v) + v vs. the
initial v. The green line is a linear fit to this data. The right panel
of the figure plots values of σa(−0.01)− 0.01 for ten values of a in
the interval [0.001, 0.01].

calculations approximate ya(u, v) − y0(u, v) as −3av 576u3−72u2+2u
−576u4+96u3−4u2−1 + o(av2)

which is negative when a > 0 and v > 0 are small and u ∈ [−0.1, 0). This implies
that ya(u, v)/(av) is bounded away from 0 in rectangles [−0.1,−u0]× [−v0, v0] for
u0 > 0 and v0 > 0 sufficiently small. Integration over lines of curvature of Ma

demonstrates that the return map of Ma has a break at v = 0 with jump of its
derivative comparable to a. Figure 7 displays lines of curvature for the surface
M0.01, showing how they bend around the umbilic point at the origin. Figure 8
illustrates the fit of return maps of the Ma to the estimates derived above. The left
panel fixes a = 0.01 and plots the dependence of σ0.01(v) + v on v. The right panel
fixes v = −0.01 and plots σa(v)− 0.01 as a function of a. Linear fits to these data
are very good indeed. These calculations establish that return maps of the surfaces
Ma, a 6= 0 have breaks at the separatrix of the origin, which is the u axis.

Summarizing, the surface S0 whose return map is smooth at the separatrix of
a lemon umbilic point p is embedded in a family of surfaces Sa so that p and its
separatrix remain fixed as a varies, but the derivative of the return map at the
separatrix changes at a non-zero rate as a varies. The calculations are algebraic,
so in the space of surfaces in Monge form that have a lemon umbilic point at the
origin, those which do not have a break in their return map will be an algebraic
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variety. Since algebraic varieties are closed sets of lower dimension than the space
in which they sit, there is a dense, open subset of surfaces with a lemon umbilic
point whose return maps have a break at the separatrix of the umbilic point.

�

4. Homeomorphisms of the Circle with Breaks

Homeomorphisms of the circle S1 are a remarkable class of dynamical systems
that has been studied extensively, beginning with Poincaré in the nineteenth cen-
tury. Herman [7] and de Melo and van Strien [4] gave systematic presentations
that preceded the definitive results of Yoccoz [18] cited in the award of his 1994
Fields medal. Since my analysis of principal foliations for surfaces in SL is based
upon this theory, I recall relevant results. This section parameterizes the circle S1

as R/Z and sets π : R→ S1 to be the projection.
If f : S1 → S1, lifts of f are maps F : R → R that satisfy π ◦ F = f ◦ π.

Since π(x + 1) = π(x), F (x + 1) = F (x) + 1. This identity establishes a close
connection between orientation preserving circle homeomorphisms and increasing
maps of R that commute with the translation T (x+ 1) = x+ 1. If F is a lift of the
homeomorphism f , the rotation number ρ(F ) of F is

lim
n→∞

Fn(x)− x
n

.

The rotation number ρ(F ) is independent of x ∈ R, and ρ(F ) (mod 1), regarded
as a point on the circle, is the rotation number ρ(f) of f .

Geometrically, a homeomorphism f : S1 → S1 preserves the cyclic order of
points on the circle: if θ1 < θ2 < θ3, then f(θ1) < f(θ2) < f(θ3). Consequently,
if θ is periodic of period n, then the points f j(θ), 0 ≤ j < n, partition S1 into n
intervals that are permuted by f , and fn maps each of these intervals onto itself
by an increasing function. A corollary of this observation is that all trajectories
will tend to a periodic orbit of period n. It is immediate that nρ(f) = 0. On the
other hand, there are homeomorphisms without periodic orbits: the translations
Tω(x) = x+ ω with ω irrational are fundamental examples. Note that ρ(Tω) = ω.
If f is a homeomorphism with irrational ρ(f) = ω, the cyclic order of points in
its trajectories agree with those of π ◦ Tω. A basic theorem of Poincaré is that a
homeomorphism f : S1 → S1 has periodic orbits if and only if ρ(f) is rational.
The Denjoy Theorem states that if f : S1 → S1 is C1, its derivative has bounded
variation and ρ(f) = ω is irrational, then all of the trajectories of f are dense in
S1.

If fλ is a smooth family of diffeomorphisms and ∂F
∂λ > 0, then ∂ρ(F )

∂λ ≥ 0. In
generic families, the graph of ρ(f) vs λ is a “devil’s staircase.” Specifically, it
assumes each rational value on a closed interval and each irrational value at a
single point. For smooth families of diffeomorphisms, more is known. If fλ is C3+ε,
then the set of λ with ρ irrational has positive Lebesgue measure even though it is
nowhere dense. I explain more about this result since the return maps constructed
from principal foliations seem to have different behavior.

Let fλ be a C3+ε family of circle diffeomorphisms with lifts Fλ. When fλ has
irrational rotation number ω, Denjoy’s theorem implies that its trajectories are all
dense. Since the trajectories of f have the same cyclic order as those of the rotation
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Rω = π ◦ Tω, the map h that sends fn(0) to nω (mod 1) extends to a topological
conjugacy of f with Rω: h ◦ f = Rω ◦ h. The only topological conjugacies of an
irrational rotation with itself are rotations, so the conjugacy h is unique up to a
composition with a rotation. Remarkably, if ω satisfies a Diophantine condition,
then the conjugacy h is smooth [18]. Since smooth maps are almost linear on
short length scales, the relative distances between adjacent points in a long finite
trajectory f j(x), 0 < j < N approximate those of the rotation Rω. Moreover,
the derivative of f j is uniformly bounded, with a bound independent of j because
f j = h−1 ◦Rjω ◦ h and (Rjω)′ ≡ 1.

Periodic orbits of f with rotation number p/q are projected solutions of the
equation F qλ(x) = x+p. In generic families, the solutions of this equation constitute
a smooth curve in the (x, λ) plane, invariant under the translation (x, λ) → (x +
1, λ). The range of λ on this curve is the width of the step at value p/q for the devil’s
staircase function ρ(Fλ). In order for the parameter set with ρ(Fλ) irrational to
have positive measure, the widths of the phase locked steps with ρ(Fλ) = p/q must
decrease rapidly with q. If Fλ is the translation T (x) = x+ω, then T q(x) = x+ qω
for all x and the phase locked step shrinks to a single point. In other families,
∂
∂λ (F q(x) − x) grows linearly with q and the derivative of F q(x) − x decreases
rapidly with q. The speed of the decrease is closely related to the results about
smooth conjugacy described above. Renormalization is a strategy for analyzing
both the smoothness of conjugacies and the widths of phase locked steps.

The ordering of trajectories of a homeomorphism f : S1 → S1 with rotation
number ω can be inferred from the expression of ω as a continued fraction or,
equivalently, its trajectory under the Gauss map ω → 1/ω (mod 1). Iterates fn(x)
which are closer to x than previous iterates f j(x), 0 < j < n, are of particular
interest. Two concepts facilitate the study of these closest returns:

• If J is a subinterval of the circle, then the induced map f̂ : J → J is defined

by f̂(x) = f j(x) with j > 0 the smallest positive integer for which f j(x) ∈ J .

Note that f̂ is usually discontinuous at points where f̂(x) is in the boundary
of J .

• Renormalization combines the construction of an induced map with rescaling
the length of J to a standard size (usually 1).

Renormalization can be viewed as an operator on the space of circle homeomor-
phisms without fixed points. Since the trajectories of maps with irrational rotation
number ω have the same order as those of the rotation Rω, it suffices to describe suc-
cessive renormalizations for Rω. The trajectory of 0 for the rotation Rω(x) = x+ω
consists of the points nω (mod 1). The point xl = qlω (mod 1) is a left nearest
neighbor of 0 ∈ S1 if xn ∈ (xl, 0) implies n > ql. Similarly, xr = qrω (mod 1) is
a right nearest neighbor of 0 if xn ∈ (0, xr) implies n > qr. Assume further that

xl + xr < 0 if qr > ql and xl + xr > 0 if qr < ql. The induced map R̂ω of Rω
on the interval [xl, xr] then has two branches: Rqrω : [xl, 0] → [fqr+ql(0), xr] and

Rqlω : [0, xr] → [xl, f
qr+ql(0)]. Identifying xl with xr and rescaling R̂ω by a factor

of xr − xl produces a new homeomorphism of S1.
If xl < 0 < xr are nearest neighbors of 0 with xr + xl > 0, then the smallest

right nearest neighbor x∗r of 0 with q∗r > ql has q∗r = qr + kql where k is the integer
with qr + (k + 1)ql < 0 < qr + kql. Equivalently, k is the integer part of −xr/xl.
It also is a term in the continued fraction expansion of ω. With rescaling, the
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Figure 9. An induced map of the rotation f(x) = x + 1√
11

mod (1). Initially, f was replaced by f3 in the interval [0, f(0)],
producing the discontinuous map enclosed in the black square. The
next induced map replaces f by f10 in the interval [f3(0), 0], pro-
ducing the map on [f3(0), f10(0)] with branches f10 and f3 dis-
played in the green square.

renormalization operator R maps the induced map on [xl, xr] to the induced map
on [xl, x

∗
r ]. Its iterates are rescaled induced maps on intervals joining left and right

nearest neighbors in the trajectory of 0.
Figure 9 displays the first two induced maps for the rotation f(x) = x+ 1√

11
. The

points in [f3(0), 0] are mapped by f itself into [f4(0), f(0)], while f3 maps [0, f(0)]
to [f3(0), f4(0)]. The black square encloses this map which was induced from f to
the interval J = [f3(0), f(0)]. The next induced map has domain [f3(0), f10(0)]
and branches f10 on [f3(0), 0] and f3 on [0, f10(0)]. Its values at both endpoints
of J are f13(0).

For a general circle diffeomorphism f , renormalization replaces f by iterates
that are closest returns. A key observation is that if the rotation number of f
satisfies a Diophantine condition, the trajectories of the renormalization operator
converge to maps whose branches are translations. This observation is based upon
analysis of distortion of the maps. A scale invariant measure of the “nonlinearity“

of an increasing map f : J → J is the maximum value of log( f
′(y)
f ′(x) ) = log(f ′(y))−

log(f ′(x)) for x, y ∈ J . The distortion of rotations is zero, so the iterates of a map
smoothly conjugate to a rotation have bounded distortion. The converse is also
true [7]. Now, the fundamental theorem of calculus gives

log(f ′(y))− log(f ′(x)) =

∫ y

x

f ′′(u)

f ′(u)
du

and the chain rule implies

log((fn)′(y))− log((fn)′(x)) =

n−1∑
j=0

log(f ′(f j(y)))− log(f ′(f j(x))).
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Thus, bounds on f ′′/f ′ and the sum of the lengths of the first n iterates of J
give bounds on the distortion of fn on J . If n is an iterate appearing in the
renormalizations of f and J = [x, fn(x)], the intervals f j(J), 0 ≤ j < n are
disjoint, establishing a uniform bound on the distortion of fn on J .

In addition to the quantity f ′′/f ′ as an infinitesimal measure of nonlinear distor-

tion, the Schwarzian derivative S(f) = f ′′′

f ′ − 3
2 ( f

′′

f ′ )2 is an infinitesimal measure of

how much f deviates from a fractional linear transformation φ(x) = ax+b
cx+b . Straight-

forward calculations yield the composition formula S(g◦f)(x) = (S(g))(f(x))(f ′(x))2+
S(f(x)) and the result that Sf is identically 0 if and only if f is a fractional lin-
ear transformation. Estimates of the Schwarzian derivative of iterates of a circle
diffeomorphism lead to stronger estimates of their distortion. The Schwarzian de-
rivative of fn is a sum of n terms which are individually bounded while renor-
malization rescales fn by a factor comparable to n, so the Schwarzian derivative
of the renormalized f is comparable to 1/n. This suggests that the sequences of
renormalizations of f converge locally to fractional linear transformations. In the
case of diffeomorphisms, boundary conditions on the renormalizations imply that
the only fractional linear transformations that can be limits are rotations. On the
other hand, if f has breaks (jump discontinuities of its derivative), then the iterates
of f do as well. Moreover, in a finite trajectory of length n that has a single break,
the ratio of the left and right derivatives of fn is the same as that of f at the break.
Thus the limits of renormalization in a map f with a finite number of breaks are
piecewise fractional linear transformations, joined at breaks with derivative ratios
determined by those of f itself. This observation is largely responsible for the result
of Khanin and Vul [10] that periodic orbits occur at a full measure set of param-
eters in generic families of diffeomorphisms with a single break whose derivative
jump has magnitude bounded away from one.

Turn now to families of lifts of homeomorphisms fλ : S1 → S1 in which fλ(x)
is a strictly increasing function of λ and the range of the rotation number function
ρ(fλ) is [0, 1]. Iterates of f are readily seen to also be increasing functions of
λ. Maps with rational rotation number p/q have lifts F that are solutions of the
equation F qλ(x) = x+ p. For fixed x, this equation can only have a single solution
because F qλ(x) increases with λ. Since the range of the rotation number function
includes p/q in its interior then there will be a solution of F qλ(x) = x+ p for every
x. Consequently, unless F qλ(x) − x − p is identically zero for a fixed λ, there will
be an interval Λp/q of λ values with solutions of F qλ(x) = x + p. Mimicking the
construction of Cantor sets as a nested intersection of sets Cn consisting of 2n

disjoint intervals can determine whether the union of the Λp/q has full Lebesgue
measure and the set of λ with irrational rotation numbers has zero measure.

The Farey tree of rational numbers relates the pattern of renormalizations of a
map to its rotation number. Beginning with 0 and 1, the Farey tree of rational num-
bers is constructed inductively in levels. Each pair of adjacent nodes p/q < p′/q′

at level n has child (p + p′)/(q + q′) which is inserted as a level n + 1 node. The
difference p′/q′ − p/q = 1/qq′ of adjacent numbers in the Farey tree is as small as
possible for rational numbers with these denominators. If p/q is in level n of the
Farey tree and its two children in level n+ 1 are pl/ql and pr/qr, homeomorphisms
with rotation number pl/ql < ρ < pr/qr use the same iterates in their successive
renormalizations to this level. Restricting a family of homeomorphisms fλ to the
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Figure 10. A renormalization of the return map of the surface
S0.11 to an interval bounded by a pair of nearest neighbors to the
trajectory of θ = 0.
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Figure 11. The left graph plots finite difference calculations of
the derivative of the renormalized return map shown in Figure 10.
The right graph compares the renormalized return map σ̂ with a
fractional linear transformation by fitting a parabola to 1/(σ̂′2)

subfamily with rotation numbers in the interval (pl/ql, pr/qr) produces a family in
which the period orbits of f with rotation number p/q become fixed points of the

nth renormalization f̂λ. Additionally, the rotation numbers of the renormalized

family f̂λ cover the full interval (0, 1). If q is large, estimates of distortion and

Schwarzian derivatives imply that the f̂λ have bounded distortion and are approx-
imately fractional linear transformations.

Figure 10 displays a renormalization σ̂ (without rescaling) of the return map σ
of S0.11, shown in Figure 4. The two branches of σ̂ are σ23 and σ77. Figure 11 plots
estimates of the derivative of σ̂. The breaks of σ persist in σ̂, and the derivative
increases across each jump. The discontinuity at θ = 0 results from the change
of branches rather than a jump of the derivative. The derivative of a fractional
linear transformation ax+b

cx+d is (ad − bc)/(cx + d)2, so its reciprocal is a quadratic
polynomial. Figure 11 also tests how closely the fourth branch of σ̂ approximates a
fractional linear transformations by computing 1/(σ̂′)2 and overlaying a parabola.
The fit is striking.

I return now to the question: does the parameter set C with dense lines of
curvature in a family of surfaces Sλ have zero measure? Denote by Cn the closure
of the parameter set of λ that do not have closed lines of curvature represented by
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periodic orbits of the return map with Farey level at most n. As in the construction
of the classical Cantor set, Cn+1 is obtained by removing an open interval from
each component of Cn, and C is the nested intersection of the Cn. Denote one
dimensional Lebesgue measure by µ. If the relative length of the interval removed
from each component is always bounded below by 0 < β < 1, then µ(Cn) <
(1 − β)nµ(C0). This implies C has measure zero, a conclusion that continues to
hold with the weaker property that the bound on relative lengths holds infinitely
often in every sequence of nested intervals whose intersection is a point of C. Thus,
the key issue is to obtain bounds on

µ(ρ−1(p/q))

µ(ρ−1(pl/ql, pr/qr)
(4.1)

where pl/ql and pr/qr are Farey neighbors of p/q and ρ(λ) is the rotation number
of the return map of the surface Sλ.

Khanin and Vul [10] found the desired bound on relative lengths (4.1) in fam-
ilies of circle diffeomorphisms with a single break whose derivative jumps all have
magnitude at least α > 1. Renormalization preserves such families and successive
renormalizations tend to families of piecewise fractional linear transformations φ
with a single break of magnitude at least α. If the break is translated to the origin
in the domain and range, φ will have the form φ(x) = ax/(1 + (a − 1)x) since
φ(0) = 0 and φ(1) = 1. The magnitude of the break is φ′(0)/φ′(1) = a2. Moreover,
if a > 1 the range of φ(x) − x is [0,

√
a − 1/

√
a]. This leads to a lower bound on

the quantity (4.1) and the conclusion that the set of parameters with irrational
rotation number has measure zero.

Khmelev [11] discussed the extension of the results to Khanin and Vul [10] to
families with multiple breaks, but characterization of which families have phase
locked parameter sets of full measure remains an open question. In families where
the product of break sizes in each trajectory with breaks is one, the breaks can
disappear in induced maps whose branches encompass all of the breaks in individual
trajectories. This cancellation cannot occur if all of the breaks have derivative jumps
in which the derivative increases. Figure 5 shows that this is indeed the case for
the surface S0.11. So we impose the additional constraint on the space of surfaces
SL that that derivatives increase across jumps.

The return maps of surfaces in the class SL have four umbilic points, each lemons.
The previous section establishes that generic surfaces have return maps with breaks
at intersections of a cross-section with umbilic separatrices. The numerical calcula-
tion of the return map of the surface S0.11 displayed in Figures 4 and 5 show these
breaks. At each break, the derivative jumps up. Since the cumulative derivative
jump in a trajectory with multiple breaks is the product of the individual jumps,
renormalizations of these return maps have breaks of at least the same magnitude
as the original return map. Moreover, it appears that σ′′ is almost negative. This
prompts consideration of families of circle homeomorphisms consisting of piecewise,
concave down linear fractional transformations with k breaks, at each of which the
derivative increases.

Theorem 4.1. Assume σλ : S1 → S1, λ ∈ Λ is a family of homeomorphisms such
that
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• σλ is a piecewise fractional linear transformation on each of the intervals in
the partition with boundary points [x1, x2, · · · , xk, x1]. The xj may depend on
λ.

• σ′′λ < 0
• The left and right derivatives h′λ−(xj) = aj, h

′
λ+(xj) = bj satisfy aj > 0,

bj > 0 and bj/aj > α > 1
• The rotation number function ρ : Λ→ S1 that assigns the rotation number of
σλ to λ is onto.

Then ρ−1(R−Q) ⊂ Λ has measure zero.

Proof. Each phase locked interval ρ−1(p/q) is contained inside ρ−1(pl/ql, pr/qr)
where (pl/ql, pr/qr) is the Farey interval of p/q. To prove the theorem, it suffices
to establish the estimate (4.1) holds for each p/q. The renormalization operator
maps the space of fractional linear transformations satisfying the hypotheses of
the theorem to itself, except that the partition size k may decrease if there is a
trajectory containing multiple partition points. This reduces the estimate (4.1) for
rotation number p/q to that for rotation number 0.

The function σ′λ decreases on each partition interval Ij . Let c > 1 be a lower
bound for σ′λ(xj)/σ

′
λ(xj+1), quantifying the derivative drop across Ij . Since σ′λ is a

decreasing function on each Ij , c also is a lower bound for the derivative drop across

branches of its renormalizations ĥλ. Let Jj = [uj , uj+1] be a partition interval of

the renormalization ĥ with length uj+1 − uj ≥ 1/k and assume that the range of

ĥ(x) − x has length smaller than δ. If v0 = ĥ(uj) − uj , v1 = ĥ((uj + uj+1)/2) −
(uj + uj+1)/2) − v0 + d1 and v2 = ĥ(uj+1)) − uj+1 − v0 + d2 with d1 < δ, d2 < δ,
then there is a unique fractional linear transformation that interpolates the points

(uj , v0), ((uj + uj+1)/2, v1), (uj+1, v2). Explicit computation yields ĥ′(uj) = 1 −
(4d1 + d2)/(uj+1 − uj) + o(δ) and ĥ′(uj+1) = 1 + (4d1 + 3d2)/(uj+1 − uj) + o(δ).

This implies that ĥ′(uj)/ĥ
′(uj+1) > 1 + 12kδ + o(δ) so that δ has a lower bound

comparable to (c − 1)/12k, independent of the renormalization. This estimate
completes the proof of the theorem. �

Together with the numerical computation of the surfaces defined by (2.2), The-
orem 4.1 locates an open region U in the space of Cr, r > 3, surfaces inside which
closed lines of curvature are prevalent [9]; i.e., in generic one parameter families,
parameter sets yielding surfaces with dense lines of curvature have measure zero.
This dynamical behavior stands in contrast to that of families of vector fields on
the torus T 2, where quasiperiodic dynamics occurs at positive measure sets of pa-
rameters. It remains an open question whether there are regions in the space of
simply connected surfaces where closed lines of curvature are not prevalent. Even
in the finite dimensional space of piecewise fractional linear transformations of S1

with multiple breakpoints, it is not known whether those with dense trajectories
constitute a set of measure zero. Finally, I note that there are surfaces that have
both global cross-sections and more than four umbilic points. Their return maps
are generalized interval exchange maps [12] of S1 with discontinuities and still more
complicated dynamics than circle diffeomorphisms with breaks. Further study of
these one dimensional maps can give additional insight into the geometry of prin-
cipal foliations of embedded surfaces.
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del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of
Mathematics and Related Sciences]. Instituto de Matemática y Ciencias Afines,
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