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Abstract. Asking and answering the right questions about computability and

computational complexity of dynamical systems is more important than many
may realize. In this note, I discuss the principal challenges, their implications,

and some instructive open problems.

1. Preface

It is a privilege to contribute to the volume in memory of Vaughan Jones. I was
one of the invited speakers at NZMRI Summer meeting in January 2009. These
”Summer schools” were a wonderful initiative of Jones’, leading to the creation
of NZMRI which he co-founded and chaired. For me it was a remarkable trip.
Although I delivered a series of lectures, I also felt a bit like a student, being
a newcomer to the questions of algorithmic computability and complexity which
were the focus of the meeting. The study of computational complexity in dynamics
was making its first baby steps (it is only a little more mature now). It was fun
to talk to a receptive audience about results which I was finding exciting, and it
was instructive for me to see it as a part of the broader development of the field
of algorithmic complexity in continuous (as opposed to discrete) mathematics. It
helped me to focus on what I see as the main theoretical challenges of modeling
dynamics on a computer, which I attempt to convey in this paper.

2. Motivation

In discrete mathematics, techniques of numerical modeling and theoretical study
of computational complexity of the corresponding problems go hand-in-hand. In-
deed, typically the same people develop practical algorithms and establish rigorous
complexity bounds. The culture of modeling continuous phenomena is completely
different. Thus, practitioners bravely use computers to model nuclear explosions,
weather systems, or, indeed, the Earth’s climate decades from now without ever
asking whether such modeling is theoretically possible. I see two principal reasons
for this:
(I) the modern development of the mathematical study of dynamical systems has

been led by computer experiments since the 1950’s. Numerical studies have
informed the general paradigm of the expected behaviour of typical dynamical
systems. In a way, this has become a self-fulfilling prophecy – we look to model
natural phenomena using mathematics which was developed to interpret the
results of the modeling;
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(II) numerical experiments of this nature seem to “work” – that is, they produce
plausible results which agree with the established paradigm.

In this note I aim to describe the modern paradigm of numerical modeling of dy-
namical systems, and its limitations from the point of view of computational com-
plexity and computability, posing questions on what can and cannot be computed
in theory. I also speculate on what happens when computer simulations of complex
natural processes are performed, why the results appear to make sense, and what
they actually describe.

3. Modern Paradigm of Numerical Modeling of a Dynamical System

3.1. Computers versus chaos. In what follows, I will only consider discrete-time
dynamical systems on a finite-dimensional space. The latter condition means that
a state of the system can be described by finitely many parameters, conveniently
represented as coordinates of a point in Rm. Discreteness means that the evolution
of the system will be represented by a map F from a domain Ω ⊂ Rm to Rm: in
one tick of the clock a point x̄ ∈ Ω will transition to F (x̄). Assuming the successive
images of x̄ remain in Ω, we can continue applying iterates of F , to obtain the orbit

x̄ 7→ F (x̄) 7→ F (F (x̄)) 7→ · · · 7→ F (· · · (F︸ ︷︷ ︸
n times

(x̄) · · · ) ≡ F ◦n(x̄) 7→ · · ·

which represents the long-term evolution of the system starting at x̄. This is in line
with actual computational practice. Even if studying a continuous-time dynamical
system, which is the flow 1 Φ(t; x̄0) of a system of differential equations

x̄′ = G(x̄), (3.1)

in practice one would use a numerical method to estimate

F (x̄0) = Φ(∆t; x̄0)

for some suitably small ∆t.
When computing the values of F (x̄), by necessity, the real point x̄ has to be

rounded up to a rational approximation x̄r. Round-off errors in numerical experi-
ments have inadvertently led to the empirical discovery of “chaos”, the key to the
modern theory of dynamical systems. The most famous and, probably, the most
influential of these experiments was performed by a meteorologist E. Lorenz in
1961 [16]. To save time, Lorenz attempted to reproduce a simulation of a weather
pattern, using the output corresponding to some intermediate point in time. The
predictions of the model were completely different from the original calculation. The
culprit: a round-off error introduced when outputting the intermediate results.

In retrospect, one of the most surprising aspects of this and other similar experi-
mental discoveries is that they were surprising. The general question of (in)stability
in dynamical system was investigated by A.M. Lyapunov [18] in the late 1800’s.
An example of what we would now describe as chaotic dynamics was discovered

1That is, the solution of (3.1) with the initial condition x̄(0) = x̄0 is given by x̄(t) = Φ(t; x̄0); we

implicitly assume that existence and uniqueness of the solution is guaranteed.
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around the same time by H. Poincaré in his seminal study [28] of the Three-Body
Problem of the relative motion of the Sun, the Earth, and the Moon.2

Rounding off does not need to lead to a dramatic change in the results of the
numerical experiments, if the orbit of x̄ is Lyapunov-stable. For instance, the con-
tracting one-dimensional map F (x) = 0.5x has a single fixed point x0 = 0 which
attracts the orbits of every point x ∈ R. Round-off error is decreased by half with
every iterate, thus the precision of the calculation actually improves (by a single
dyadic bit) with each step. The scenario when an orbit converges to an attracting
periodic point is commonly referred to as regular dynamics – it presents no obstacles
to numerical modeling.

To see how things can go wrong, note first that if the map F is smooth on Ω,
and ||DF || is bounded by some M > 0, when we replace x̄ with a rounded off value
x̄r, the distance ||x̄ − x̄r|| may grow at most M times after one iterate. But, if
this happens at every step of the iteration, then in order to calculate k = [log2M ]
steps of the orbit of x̄, we have to increase the precision of the computation by one
dyadic bit – which will quickly become prohibitive.

As an elementary example, consider the doubling map D(x) = 2xmod 1 defined
on the circle T = R/Z. Since D′(x) = 2 at every point, iterating one step further
requires adding one binary digit to the precision of computing the function, so an
orbit cannot be followed too long in practice, the phenomenon known as sensitive
dependence on initial conditions which is the main hallmark of “chaos”. And the
behavior of an orbit can be complicated indeed: some of the sequences {Dn(x)}n≥0

are dense in the circle T (for instance, if x is a number whose binary expansion
consists of all possible finite binary sequences ordered lexicographically). This is
another common feature of chaos, known as transitivity.

Tracing individual orbits of D(x) on a computer is out of reach. However, it is
easy to describe statistical properties of typical orbits. Recall, that a number x ∈ T
is normal base b if for any string Θ = θ1θ2 . . . θn of base b digits of length n ∈ N,
denoting Nl(Θ, x) the number of times Θ appears as a substring in the first l digits
in base b expansion of x, we have

lim
l→∞

Nl(Θ, x)

l
= b−n,

that is, all finite strings appear with equal frequency in the base b expansion of x.
This concept was introduced by Émile Borel, who showed that almost all x ∈ T have
this property (this is a consequence of Borel-Cantelli Lemma). Wall [35] proved that
normality is equivalent to the fact that the sequence {bnx} is uniformly distributed
in T. Given an arc A ⊂ T and a point x ∈ T, we will generally not be able to
identify the iterates Dn(x) ∈ A, however, the fraction of time the orbit of a typical
point x spends in A is equal to the length of A.

2This situation is far from unique in the history of the subject. In 1951, a Russian chemist B.P. Be-

lousov made an experimental discovery of a periodically oscillating chemical reaction. Quasiperi-
odic behaviour is central to the study of flows in two dimensions since the work of H. Poincaré

(Poincaré-Bendixson Theorem is a standard feature of textbooks on differental equations). Still,
Belousov’s discovery was met with a complete disbelief by fellow practitioners, and was only ac-
cepted 15 years later after it was “defended” by a young Russian chemist A.M. Zhabotinsky.
Oscillating chemical reactions are now favorite examples of applications of Poincaré-Bendixson

Theorem in textbooks.
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3.2. Attractors and physical measures. To formalize the discussion of statis-
tical averages, let us say that a probability measure µ on Ω is a physical measure
of F if the set B(µ) ⊂ Ω (the basin of µ) of points x̄ for which

1

n

n∑
m=1

δF◦m(x̄) −→
weak−∗

µ

has positive Lebesgue measure. A physical measure which is ergodic is known as
Sinai-Ruelle-Bowen (SRB) measure. The support of an SRB measure is an attractor
for F . Regular dynamics gives one such example: if

x̄1 7→ x̄2 7→ · · · x̄p 7→ x̄1

is an attracting periodic orbit of F , then the combination of delta-masses

µ =
1

p

p∑
k=1

δx̄k

is an ergodic physical measure. The unique SRB measure of D(x) is the Lebesgue
measure on the circle, which is another simple example. Attractors (and measures)
may be much more complicated, however, such as the Lorenz “butterfly” attractor
made famous by E. Lorenz’s discovery, whose existence was rigorously proved by
W. Tucker [32] (see Figure 1).

The principal conjecture (see [27]) in the field can be formulated as follows:

Finitness of attractors conjecture. For a typical dynamical system F almost
every orbit lies in the basin of an SRB measure, and there are finitely many such
measures.

Typicality is understood with respect to Lebesgue measure in a finite-parameter

(a) (b)

Figure 1. (a) Lorenz butterfly attractor. (b) Two intermingled
basins of attraction for a diffeomorphism of the cylinder [12, 3];
picture courtesy A. Bonifant and J. Milnor. The upper and lower
circles are the measure-theoretic attractors, each supporting an
SRB measure. Each of the two basins has positive Lebesgue mea-
sure in every open set; the shading reflects their local prevalence.

family of maps, presumably given by an application of a physical law, and could
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be suitably interpreted in an infinite dimensional space of all maps of a given
regularity. This statement is clearly motivated by the numerical experimentation
and in its turn informs how we approach computer experiments. There is a lot
of supporting evidence in its favor (more on that below), but there have also been
voices of caution. Notably, D. Ruelle [31] has discussed examples of maps for which
the averages

1

n

n∑
m=1

δF◦m(x̄)

do not converge for points x̄ in some set of positive Lebegue measure, and con-
jectured that in high enough dimension such dynamical systems may occupy open
subsets of the parameter space. But at this point no convincing evidence of this
has been offered, to my knowledge.

To round off the discussion, let me turn now to the principal example of discrete
dynamical systems, which has attracted more attention than the rest of the field
combined: quadratic polynomial maps.

3.3. The star of the show. Studying the dynamics of quadratic polynomials has
kept everyone in the subject busy from the 1970’s to this day. Since linear changes
of coordinate turn one quadratic into another, two out of the three coefficients of a
degree 2 map can be normalized to our liking. Most commonly, the family

fλ(x) = 4λx(1− x) (3.2)

is considered; with the additional restriction λ ∈ [0, 1], the function fλ maps the
closed interval [0, 1] to itself. In this family, a very strong version of the Finitness
conjecture holds. To formulate it, let us first introduce some terminology. As usual,
the ω-limit set ω(x) of a point x ∈ [0, 1] is the set of limit points of its orbit:

ω(x) ≡
⋂
k≥0

∪n≥kf◦nλ (x).

Let us say that fλ is renormalizable with period p if there exists a periodic cycle of
disjoint intervals

C = (I0, . . . , Ip−1) where fλ(Ij) = Ij+1 mod p.

It is infinitely renormalizable if there exists an infinite nested sequence of cycles of
periodic sub-intervals of [0, 1]: C0 ⊃ C1 ⊃ C2 ⊃ · · · with increasing periods. We say
that the Feigenbaum-like Cantor set of an infinitely renormalizable polynomial is
the intersection ∩k∈NCk; it actually is a Cantor set in this case.

There are only three possibilities for the structure of the ω-limit set of a typical
orbit of a real quadratic polynomial (see [19] where the classification was completed,
and references therein):

Theorem 3.1. Let λ ∈ [0, 1]. Then there is a unique set Aλ (a measure-theoretic
attractor in the sense of Milnor [24]) such that Aλ = ω(x) for Lebesgue almost all
x ∈ [0, 1], and only one of the following three possibilities can occur:
(1) Aλ is an attracting periodic cycle;
(2) Aλ is a periodic cycle of intervals;
(3) Aλ = ω(0.5) is a Feigenbaum-like Cantor set.

In all of the above cases, Aλ = ω(x) for a dense-Gδ set of points in [0, 1] (the
topological attractor of fλ in the sense of Milnor [24]).
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Furthermore, M. Lyubich [20] showed that:

Theorem 3.2. For almost every λ ∈ [0, 1], the attractor Aλ is as in (1) or (2) of
Theorem 3.1, is equal to ω(0.5), and is the support of the unique SRB measure µλ
of fλ, whose basin has full measure in [0, 1]. Moreover, in case (2), the measure µλ
is absolutely continuous on each of the intervals forming Aλ.

Thus, for almost all parameters λ, the maps of the family fλ possess a unique
SRB measure µλ supported on an attractor Aλ whose structure is well understood,
and which attracts typical (in every reasonable sense) orbits of fλ. One potential
cause of concern is the instability of the statistical properties of orbits with respect
to λ. M. Misiurewicz showed in [25], that there exists a test function φ : [0, 1]→ R,
a set S ⊂ [0, 1] of positive measure, and ε > 0, such that for any λ ∈ S and a
neighborhood U ⊂ [0, 1] of λ, there is a set Z ⊂ U of positive measure with∣∣∣∣∫ φdµλ −

∫
φdµ`

∣∣∣∣ > ε for all ` ∈ Z,

the property which he called strong structural instability, and which is likely com-
mon in other natural families of examples.

Quadratic polynomials play a similarly central role in the study of dynamics of
functions of one complex variable. In this case, the normalization

Pc(z) = z2 + c, with the parameter c ∈ C
is more common. A polynomial Pc has a single repeller Jc, which attracts all of the
inverse orbits

z 7→
Pc

z−1 7→
Pc

z−2 7→
Pc

· · ·

except at most one3. It is called the Julia set of Pc. Again, for all points z ∈ C but
at most one, the weighted averages

1

2k

∑
f◦k(w)=z

δw

weakly converge to a measure ωc whose support is equal to Jc. It is known as
Brolin-Lyubich measure and coincides with the harmonic measure of the Julia set
seen from the point at infinity. The subject of computability and computational
complexity of Julia sets is rich and subtle, to keep the discussion focused I will
mostly leave it out of this note. I refer the interested reader to my monograph
with M. Braverman [8], and also the paper [2], in which the computability of ωc is
addressed.

4. Computability and Computational Complexity: Briefly

The formal model of computation widely accepted in computer science is a Turing
machine (TM); it is provably equivalent to a program in any common programming
language running on a computer with unlimited storage. I will use the terms TM,
computer program, or an algorithm interchengeably. Definitions of computability of
continuous objects took a while to develop; the subject is not without controversy
(see [4] for a review). The first step was taken by Turing in his foundational work

3The only quadratic map which has such an exceptional inverse orbit is P0(z) = z2. The unique

inverse orbit of 0 under P0 remains stuck at 0 and does not converge to J0 = {|z| = 1}
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[33], in which he defined a computable real number x as a number for which there
exists a TM which takes a single input n ∈ N and outputs a rational number dn such
that |x − dn| < 2−n. The bound 2−n can be replaced by any other quantity that
converges to 0 with n in a constructive fashion – for instance, using 1

n in its stead
will give an equivalent defintion. This specific choice reflects the fact that modern
computers think in binary. If dn ∈ Z[2−1] is a dyadic rational, represented in base 2
as a finite string of dyadic bits, then we can think of it as an approximation of x to
the n-th bit. Most numbers are not, in fact, computable, since in any programming
language there can be only countably many programs; in his paper, Turing gave a
“specific” example of a non-computable real. Starting with computable reals, one
can define, for instance, computable complex numbers, computable points in Rm
and so on.

Turing’s idea clearly corresponds to the actual computational practice, and gives
the direction for further development of computability in analysis. It is interesting
to note (and is not as well known) that further progress owes much to S. Banach
and S. Mazur [1, 21]. Most of the subtlety in this development lies in the difficulty
of defining a computable function f(x) of a real variable x. Since only countably
many real numbers x are computable, one has to somehow account for the inputs
which are not. The modern approach again corresponds to the actual computing
practice:

a real function f(x) is computable if there is an algorithm to approximate the value
of f(x) with an arbitrary desired precision, assuming that the value of x can be read
by the algorithm with whatever precision is required.

To formalize this, let us say that a function φ : N → Q is an oracle for x if
|x − φ(x)| < 2−n. An oracle for z ∈ C or x̄ ∈ Rm is defined in the same way. A
TM may be allowed to query an oracle, that is, to read the values φ(n). A real
function f is computable if there exists a TM which takes a single input n ∈ N and,
given an oracle for x in the domain of definition of f , outputs dn ∈ Q such that
|f(x)− dn| < 2−n.

If all of this sounds a bit confusing, think, for example, of the problem of com-
puting the value of the exponential function exp(x) with a given precision 2−n. To
fix the ideas, let us suppose that we use the Maclaurin series for the exponential.
The formula for the remainder term is

Rm(x) =
exp(c)xm

m!
,

where c is a real number between 0 and x. The algorithm can first ask the user for
a rough approximation of the value of x to get an integer upper bound B > |x|+ 1
for it (in practice, a uniform such bound may be imposed by restricting the range
of allowed inputs x). The value of |Rm(x)| can be bounded from above crudely by

Em =
3BBm

m!
.

From this, the algorithm can calculate the value of m needed to get Em < 2−(n+1),
and the precision 2−s with which x needs to be known to compute the sum of the
first m terms of the Maclaurin series with error of at most 2−(n+1). Now the user is
again asked to input the value of x, this time with precision 2−s, and the calculation
is completed. This is cumbersome, of course, but the key point here is that it can



460 MICHAEL YAMPOLSKY

actually be done for the exponential function, so there is no theoretical obstacle to
approximating the value exp(x) if we set our mind to it.

In our discussion of computability of attractors in the quadratic family, we will
talk about computable compact sets in the plane. In practice, by computing a set,
we mean visualizing it on a computer screen. A visualization is a finite collection
of pixels. If we fix a specific pixel size (commonly taken to be 2−n for some n) then
to accurately draw the set within one pixel size, we should fill in the pixels which
are close to the set (for instance, within distance 2−n from it), and leave blank the
pixels which are far from it (for instance, at least 2−(n−1)-far). Thus, for the set
K to be computable, there has to exist an algorithm which for every square of size
2−n with dyadic rational vertices correctly decides whether it should be filled in or
not according to the above criteria. 4 This definition easily generalizes to subsets
of Rm for any m.

Suppose that we are trying to compute the attractor Aλ of fλ(x). Then we
should assume that the algorithm has an access to the oracle for λ. In other words,
we will treat the dependence of the attractor on λ as a function

Φ : λ 7→ Aλ,
and will ask whether it is computable at a point {λ0}, or, more generally, on some
subset of [0, 1]. This is completely consistent with the computing practice – if we
would like to compute an object (an invariant set, an SRB measure, etc) associated
with a dynamical system F : Ω → Rm, then we expect the algorithm to “know”
what the function F is, that is, to be able to approximate the values of F with any
given precision.5

To talk about computability of measures, we can follow the same strategy, using
approximations by a dense subset of explicitly defined measures, such as rational
combinations of delta-masses at rational points, for instance. However, the way it
typically is with measures, it is more convenient to take the dual approach. We will
say that a measure µ is computable if the following is true. There is a TM which,
given a computable test function φ (as a subprogram, or a black box) and n ∈ N
outputs dn ∈ Q such that ∣∣∣∣∫ φdµ− dn

∣∣∣∣ < 2−n.

I would like to emphasize that all of the above definitions are consistent with
the actual computing practice. While it is true that practitioners will often cut
corners and not worry too much about the round-off error in the calculation, at
least, for a computable object (real number, value of a real function, an integral
over a measure, etc) the calculation can in principle be carried out with the desired
precision. For a non-computable object no algorithm can do the job, all of them
will provably fail. Moreover, they must fail in such a way that we would not have
a systematic way (an algorithm) of detecting it (which would otherwise enable us
to pick a correct finite precision approximation by discarding the incorrect ones).

4Note that we let the algorithm treat the ”in-between” pixels in an arbitrary fashion, to reflect

the fact that a finite-precision computation may have round-off errors. We only require that these

errors are small enough, so the ”fuzz” around the approximation of the set is at most one pixel
thick.
5Think of having a black box which, given an oracle for x, outputs the values of F (x) with any
desired precision.
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An extremely important practical consideration for a computable object is its
computational complexity, since computing resources are finite in practice. In this
note I will only address the time complexity of the computations. A complexity
bound is expressed by a function T : N → N, whose argument is the desired
precision, and the output is a bound on the computing time. For instance, we say
that the complexity of a set K b R2 is bounded above by T (n) if there exists an
algorithm to visualize K on a computer screen, and N ∈ N such that for every
n ≥ N and each pixel of size 2−n the time that the algorithm takes to decide the
pixel is bounded above by T (n). If this is not the case, we say that T (n) is a lower
complexity bound for the set. In other words, the time complexity is bounded below
by T (n) if for every program computing the set, there exists an infinite sequence
of pixels Pnk

of size 2−nk such that the time it takes the program to decide Pnk
is

greater than T (nk).
You will have noticed that the above definition of complexity depends on the

programming language that is used, the computation may run faster in some of
them than in others. However, changing the language changes the computing time
for each step by at most a constant multiple – and we are generally only inter-
ested in the rate at which T (n) increases with n. Any computation whose time
grows faster than polynomial in n becomes impossible in practice for large values
of n.6 Problems with polynomial-time complexity are generally considered to be
computably tractable; having a polynomial upper bound for time complexity is not
the same, of course, as having an efficient algorithm, but the two usually go hand-
in-hand. If the lower bound on T (n) is, for example, exponential in n, then there
is no realistic hope of computing a high-precision approximation of a continuous
object, no matter what we try.

5. Can the Statistical Behavior of a Dynamical System be Modeled on
a Computer?

5.1. Monte Carlo modeling. Lorenz’ observations on the difficulty of modeling
the weather have not put an end to weather modeling. Instead, weather forecasts
are made in the language of statistics (e.g. there is a 40% chance of rain tomorrow).
The probabilistic approach to modeling is consistent with the paradigm which we
have presented above, in which a typical dynamical system has finitely many stable
limiting regimes into which almost all orbits eventually fall. The technique itself,
known as Monte Carlo method, dates to the very dawn of computer modeling of
natural processes. It was pioneered by S. Ulam and J. von Neumann during their
work in Los Alamos in 1946 [34, 23, 22] to model neutron diffusion. Informally
speaking, given a numerical simulation of a dynamical system F : Ω→ Rm, one can
throw random darts to select a large number of initial values; run the simulation
for the desired duration for each of them; then statistically average the outcomes.
We then expect these averages to reflect the true average statistics of our system.

More formally, let x̄1, . . . , x̄k be k points in Ω randomly chosen, for some k � 1
and consider the probability measure

µk,n =
1

kn

k∑
l=1

n∑
m=1

δF◦m(x̄l), (5.1)

6This is equally true if T (n) is a polynomial of a high degree.
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Figure 2. Stanis law Ulam holding the FERMIAC – an analogue
device for performing Monte Carlo simulation of neutron diffusion
designed by E. Fermi.

where δx̄ is the delta-mass at the point x̄ ∈ Rn. The expectation is then that for
k, n → ∞ the probabilities µk,n converge to a limiting statistical distribution that
we can use to make meaningful long-term statistical predictions of our system. If
the finitness of attractors postulate holds for F , then the limit of the sums (5.1)
is almost surely equal to the weighted average of the physical measures, where the
weights correspond to the proportions of Ω occupied by the basins of the measures.
In particular, if there is a unique attractor with an SRB measure in our dynamical
system, as is the case for a typical quadratic map fλ, then one random dart to
pick an orbit in (5.1) will suffice to obtain this measure in the limit. Of course,
there are examples of systems with infinitely many physical measures. For instance,
Newhouse [26] showed that a polynomial map f in dimension 2 can have infinitely
many attracting basins, on each of which the dynamics will converge to a different
stable periodic regime. This in itself, however, is not necessarily an obstacle to the
Monte-Carlo method, since the weighted average of the attracting basins is still a
meaningful statistic. Indeed, the empirical belief is that Monte Carlo method still
succeeds in these cases.

5.2. When limiting statistics cannot be computed. It is hard to overestimate
the importance of Monte Carlo simulations in computing practice, it is the go-to
tool of numerical simulations. In light of this, it was particuarly surprising for
C. Rojas and I [30] to discover the following:

Theorem 5.1. There exist uncountably many parameters λ ∈ [0, 1] such that:
• the quadratic map fλ has a unique SRB measure µλ whose basin has full mea-

sure in [0, 1];
• the measure µλ is not computable by a TM with an oracle for λ.

Monte Carlo method (as well as any other numerical algorithm) would thus
definitely fail to compute the limiting statistics of the orbits – even though almost
every orbit has the same limiting statistics.
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The measures µλ constructed in [30] are not absolutely continuous with respect
to the Lebesgue measure, however, this does not seem to be a distinguishing feature.
It is not yet known whether absolutely continuous non-computable examples exist
in this family, but I suspect that this is the case.

The first instinct of a theoretical computer scientist would be to ask whether a
value of λ with non-computable µλ can be made computable. While we have not
proved that it is so, it is very likely to be the case. In fact, the proof of Theorem 5.1
has little to do with the parameter λ itself, but rather is based on a very precise
description of the instability of the dependence λ 7→ µλ, similar in spirit to the
strong structural instability of [25]. Instability does therefore become a theoretical
barrier to computing the limiting distribution.

A more important question to ask is whether such parameters λ can form a set
of positive Lebesgue measure. The answer to this is likely “no”: we expect µλ
to be computable for almost all λ. The set of parameters produced in [30] has
zero Lebesgue measure. However, the situation may change when one considers
higher dimensional dynamical systems – it is possible that there exist large sets of
parameters for which limiting statistics cannot be computed.

Even if in the quadratic family fλ, the measure µλ is almost always computable,
would it almost always be computable in polynomial time? The existence of non-
computable examples may forecast trouble.

Modelers should be at least aware that even in the simplest families with the
nicest limiting statistical properties, numerical methods such as Monte Carlo may
fail for reasons of non-computability or high computational complexity. There is
no practical way around this obstacle. The limiting distribution µλ for maps in
Theorem 5.1 is truly unknowable.

6. Can one Compute an Attractor as a Set?

To be more precise, can we compute the set of limit points of a typical orbit? This
is another very natural question from the point of view of modeling. It is clearly
complementary to the statistical modeling discussed above, and the evidence is
mixed as we will see below.

In the family fλ, together with C. Rojas [29] we have shown:

Theorem 6.1. The attractor Aλ is always computable by a TM with an oracle for
λ. However, for any lower bound T : N → N, there exists a parameter λ ∈ [0, 1]
such that the attractor Aλ is a Feigenbaum-like Cantor set whose computational
complexity (given an oracle for λ) is bounded below by T .

By M. Lyubich’s Theorem 3.2, Feigenbaum-like attractors only occur for a set
of parameters of measure zero, and indeed, as shown in [29], in all other cases
the attractor is computable in polynomial time, given an oracle for λ. I note that
despite this encouraging fact, the mechanism of creating a high-complexity attractor
in Theorem 6.1 is quite robust, and it is again likely that in higher-dimensional
families of maps this phenomenon is much more prevalent.

As I have mentioned, M. Braverman and I have studied the question of com-
putability of the Julia sets Jc of complex quadratic polynomials Pc(z) = z2 + c and
demonstrated [6, 8, 9] that there exist values of c ∈ C such that Jc is not com-
putable with an oracle for c (and, in fact, such c’s can be produced constructively
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[7], negating the need for an oracle). Values of c for which Jc is not computable
form an uncountable set, which is, however, quite small in the measure-theoretic
sense. It not only has zero area, but, subject to a natural conjecture, also has
zero Hausdorff dimension. It is plausible that for a typical value of c, the set Jc is
computable in polynomial time, and this is indeed true for a typical real value of c
as shown by A. Dudko and I in [10].

The situation with Julia sets in two or more complex dimensions is entirely
unknown, and any results, either positive or negative, would be most interesting.

7. What does Computer Modeling tell us in Practice?

I am far from being the first person asking this question, and there are numerous
papers on this; as a sample of references spanning three decades see [15, 14, 17].
Of course, the only theoretical obstacle to rigorously approximating a computable
object such as a physical measure or an attractor of a dynamical system with
whatever precision is desired are the required computational resources. In the case
when there is an efficient (polynomial-time) algorithm, the computation can be
carried out with an arbitrary degree of accuracy – but it has to be done carefully,
to control the round-off error. There are widely available computing packages which
realize computations with an arbitrary precision arithmetic, which automate the
process. However, this approach is computationally costly, as I could see first
hand from my own very limited experience with this type of computations [11].
Arbitrary precision computations are immensely valuable in the situations when a
single high-precision estimate needs to be obtained. They are the foundation of
computer-assisted proofs in Analysis, since the pioneering work of Lanford [13].

Still, in most situations, numerical computations are carried out with a high, but
finite precision, usually based on the rounding off conventions of the programming
language used – something along the lines of double precision “reals” in C. Clearly,
we cannot hope to faithfully recreate the properties of the orbits of a dynamical
system with this approach. Suppose, we are given a dynamical system F acting
on a bounded domain Ω ⊂ Rm. A finite-precision discretization of F replaces it
with a map G whose domain and range consist of points whose coordinates are
dyadic rationals of the form p · 2−n where both n and p are bounded integers. This
means that G acts on a finite set, all of its orbits are finite, and so eventually fall
into periodic cycles. This is an artefact of the discretization, and, if the latter is
not well-chosen, may result in an unfortunate scenario when all of the orbits seem
to quickly collapse into very few cycles (see the insightful discussion in [14] and
references therein). To provide a mathematical justification, iteration of a rounded-
off map is usually interpreted as random iteration. That is, at the k-th step of the
iteration, F is replaced with F + εk, where εk is randomly chosen in a ball of radius
δ > 0 around the origin. This approach has been studied since the early days of
the subject; in [14], Lanford credits D. Ruelle with suggesting it to explain the
empirical behaviour of discretized chaotic maps.

Random iteration was studied from the point of view of algorithmic computabil-
ity by the authors of [5], who found that, if εk is chosen uniformly and F is given by
an oracle, then for almost all δ all ergodic measures of the random dynamical system
are algorithmically computable. Thus, random noise destroys non-computability.
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Rounding off, at least if interpreted in this way, masks the non-computable phe-
nomena.

Another approach is to study the computability of the products {(ν,Oν)| ||ν|| <
δ}, where ν is the parameter of the dynamical system Fν , and the object Oν is, for
instance, an attractor. This seems to mask non-computability in a similar fashion;
for instance, M. Braverman and I showed that the set {(c, Jc)} is computable7 [8].

Rather than interpreting such statements as positive news, I see them as yet
another reason for caution – since they suggest that the results produced by finite-
precision iteration may be much nicer than the underlying dynamics.

8. A few Words in Conclusion

The field of computational complexity of continuous processes is only begin-
ning to take shape now. Practitioners should be aware of the potential theoretical
obstacles to numerical modeling of dynamical systems. There are two plausible ex-
planations for the seeming effectiveness of numerical methods: the possibility that
a typical dynamical system is computably tractable (and thus, all is good with the
modeling world), or the less welcome scenario in which our approach to numerical
modeling replaces the underlying dynamical systems with ones that are computably
tractable and may thus blind us to the reality in some instances. Distinguishing
between them motivates most of the open problems I have discussed in this note.
Without a doubt, many fascinating discoveries await in the emerging new synthesis
of analysis and theoretical computer science.
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