
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 52 (2021), 175–231
https://doi.org/10.53733/133

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES,

II: SOME RECENT DEVELOPMENTS AND NEW DIRECTIONS

Rod Downey, Noam Greenberg, and Ellen Hammatt

(Received 29 June, 2021)

Abstract. A transfinite hierarchy of Turing degrees of c.e. sets has been used

to calibrate the dynamics of families of constructions in computability theory,

and yields natural definability results. We review the main results of the area,
and discuss splittings of c.e. degrees, and finding maximal degrees in upper

cones.

1. Vaughan Jones

This paper is part of for the Vaughan Jones memorial issue of the New Zealand
Journal of Mathematics. Vaughan had a massive influence on World and New
Zealand mathematics, both through his work and his personal commitment.
Downey first met Vaughan in the early 1990’s, around the time he won the Fields
Medal. Vaughan had the vision of improving mathematics in New Zealand, and
hoped his Fields Medal could be leveraged to this effect. It is fair to say that at
the time, maths in New Zealand was not as well-connected internationally as it
might have been. It was fortunate that not only was there a lot of press coverage,
at the same time another visionary was operating in New Zealand: Sir Ian Axford.
Ian pioneered the Marsden Fund, and a group of mathematicians gathered by
Vaughan, Marston Conder, David Gauld, Gaven Martin, and Rod Downey, put
forth a proposal for summer meetings to the Marsden Fund. The huge influence
of Vaughan saw to it that this was approved, and this group set about bringing in
external experts to enrich the NZ scene. It is hard for someone now to understand
what little exposure there was at the time to research trends at the time. Vaughan
would attend the meetings, guide them, help with the washing up, talk to the
students, help with all academic things. He never lost his Kiwi commitment. The
rest, as they say, is history, and the New Zealand mathematics community is now
full of excellent world class mathematicians.

On a personal note, Downey talked mathematics (and life) with Vaughan, had
amazing “field trips” down to the Catlins, for example, where Vaughan entertained
the Fortrose locals with kite boarding, and had an amazing, nearly 30 year long
relationship. Vaughan had great vision for mathematics and saw great value, for
example, in mathematical logic. Certainly he was a great mentor and friend to
Downey. Greenberg would also like to acknowledge Vaughan’s support over the
last 15 years, and many fruitful interactions at NZMRI meetings, in Auckland and
Southland. Vaughan’s passing is a terrible loss to our community.

The authors’ research was supported by the Marsden Fund of New Zealand. One of the Theorems

was part of the third author’s MSc Thesis.

176 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

2. Introduction

The goal of this paper is to look at the hierarchy of Turing degrees introduced by
Downey and Greenberg [16, 22]. Whilst we concentrate on recent work not covered
in either the monograph [22] or the BSL survey [16], we will give enough back-
ground material for the reader to understand the issues addressed by the hierarchy.
We will give some proofs and proof sketches so the the reader can understand the
techniques involved.

2.1. Background. This paper can be read by two audiences:
‚ A lay logician could read it to see some of the issues involved in a sub-area of

mathematical logic.
‚ A worker in computability theory can read this in more detail to glean ideas

about the development of this new classification hierarchy and its recent gen-
eralizations.

For the sake of the first audience, we will give this short background section. The
second one can skip this.

The area of this work is modern computability theory. This is an area of mathe-
matics devoted to understanding what part of mathematics can be performed by a
machine. Computational complexity theory is then concerned with what resources
are needed if it can. Computability theory is also concerned with calibrating how
hard a problem is, if it cannot be computed. As we see below, both computability
theory and complexity theory use various hierarchies and reducibilities as classi-
fication tools which allow us to understand how problems relate in terms of their
algorithmic difficulty.

In the mid-1930’s, Church, Kleene, Post and famously Turing [63] gave a math-
ematical definition of a the intuitive idea of a computable function, which we view
as being one that could be emulated by a Turing machine, in accordance with the
Church-Turing Thesis. Today, computers are ubiquitous, and we can consider a
function as being computable if we can write code to compute the function. A key
idea of these studies is that algorithms can be treated as data, and hence there is
an algorithm which enumerates all algorithms (or all Turing Machines), and hence
a computable list tϕe | e P Nu of all partial computable functions.

Famously, Church and Turing solved the Entscheidungsproblem, Turing by show-
ing that the algorithmically undecidable halting problem “Does the eth Turing ma-
chine on input e halt?” could be coded into first order logic and hence first order
logic was undecidable. We will use H1 to denote the collection of all halting al-
gorithms. This is an example of a computably enumerable set (abbreviated c.e.);
where A is computably enumerable iff it is empty or the range of a of computable
function g. The idea is that we can consider A “ tgp0q, gp1q, gp2q, . . . u as being
enumerated one number at a time, but unlike decidable sets, this enumeration may
not be in order.

Reducibilities calibrate the complexity of sets. A ď B informally means that A is
no more complicated than B. The simplest reducibility is m-reducibility A ďm B,
which is defined to mean that there is a computable function f such that for all
x, x P A iff fpxq P B. In classical mathematics, an example of such a reduction is
that an n ˆ n matrix is nonsingular iff it has non-zero determinant: the question
of singularity reduces to the calculation of a number.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 177

A generalization of m-reducibility is called truth-table reducibility, A ďtt B,
defined as follows. On input x we generate a finite collection σpxq of queries about
memebership and non-membership in B, such that x P A iff B satisfies all these
queries. The most general reducibility is Turing reducibility, A ďT B, meaning
that using B as read-only memory, there is a procedure which can determine x P A
using a computable process generating a finite number of quieries to B. Unlike
truth-table reducibility, these queries are adaptive in that they can depend on the
result of pervious queries; and in general, the computation process may or may
not halt. If A ďT B then we say that A is B-computable. Following Turing,
we sometimes refer to the set B as an “oracle” for a computation, or say that the
computational process is relativized to B. The relation ďT is reflexive and transitive
(it is a pre-ordering), and thus determines an equivalence relation A ”T B (Turing
equivalence) defined by A ďT B and B ďT A; and an induced partial ordering
of the equivalence classes, which are called Turing degrees. We can relativize the
halting problem to an oracle B, to obtain B1, the Turing jump of B (the collection
of halting algorithms which have access to B); this induces an increasing function
on the Turing degrees. We reamrk that polynomial time reducibility, which is the
polynomial time version of Turing reducibility, implies truth table reducibility.

Ever since Post’s seminal paper [57], two recurrent themes in computability the-
ory have been understanding the dynamic nature of constructions, and definability
in the natural structures of computability theory such as the computably enumer-
able sets (ordered by inclusion), and sub-orderings of the Turing degrees. For this
paper, an important example of this phenomenom is an old result of Shoenfield
called the Limit Lemma, which says that the sets computable from the halting
problem are those which can be pointwise computed algorithmically with a finite
number of mind changes.

Theorem 2.1 (Shoenfield [58]). A function g : NÑ N is computable relative to the
halting problem H1 iff it has a computable approximation: a sequence g0, g1, . . .
of uniformly computable functions such that for all n, gpnq “ lims gspnq, meaning
that for all but finitely many s, gpnq “ gspnq.

The result holds for sets A Ď N as well, by identifying a set with its characteristic
function.

A beautiful and deep example of this definability/dynamic phenomenom is the
definable solution to Post’s problem of Harrington and Soare [37]. Post asked
whether there was a computably enumerable set A with H ăT A ăT H

1. The
context was that up to the time of the solution, all undecidable c.e. sets were
basically the halting set in disguise; certainly they were all Turing equivalent to H1.
Post’s problem was solved by Friedberg [35] and Muchnik [52] using an intricate
combinatorial technique, which has become a hallmark of the area: the priority
method. The disappointing aspect of the solution is that the c.e. set A is only the
solution to a construction. It seems unnatural. There remain to this day many
questions relating to whether there is a natural solution to Post’s problem. The
Harrington-Soare result shows that there is a formula of predicate logic, in the
langauge of the partial ordering of c.e. sets under inclusion, such that some c.e. set
satisfies the formula, and any c.e. set satisfying the formula must be of intermediate
Turing degree.

178 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

2.2. The present paper. As we have said, along with [16], the goal of this
paper is to report on the current results of a program introduced by Downey,
Greenberg and some co-authors, which seeks to understand the fine structure of
relationship between dynamic properties of sets and functions, their definability,
and their algorithmic complexity. Many of the resuls and details can be found
in Downey and Greenberg’s monograph [24]. In that monograph, along with the
companion papers [23] and [21], the first two authors introduce a new hierarchy of
c.e. degrees (Turing degrees of c.e. sets) based on the complexity of approximations
of functions in these degrees. Logic is full of classification hierarchies. The reader
might well ask why we need yet another hierarchy in computability theory. As the
first two authors claim in [16, 22], the new hierarchy gives insight into

(i) A new methodology for classifying and unifying the combinatorics of a number
of constructions from the literature.

(ii) New natural definability results in the c.e. degrees. These definability results
are in the low2 degrees and hence are not covered by the metatheorems of
Nies, Shore and Slaman [55]. Moreover they are amongst the very few natural
definability results in the theory of the c.e. Turing degrees.

(iii) The introduction of a number of construction techniques which are injury-free
and highly non-uniform.

3. The New Hierarchy

There is a depressingly ad hoc aspect to a lot of classical computability theory.
Many combinatorial constructions occur and have a similar flavour. The question
is: are there any underlying principles which allow us to classify the combinatorics
into classes? There have been historical examples.

Martin [47] was a poineer here. He showed that sets which resemble the halting
set have a certain domination property: if A1 ”T pH

1q1 then A is called a high set1

and it is one indistinguishable from the halting problem in terms of its jump. Prior
to Martin’s paper, there had been a number of constructions which had similar
feel. Martin showed that A is high iff A computes a function g such that for all
computable f , there is an n such that for all m ě n, gpmq ą fpmq. We say that
g dominates f . Using this, Martin showed that a large collection of known classes
of c.e. sets existed in exactly the high c.e. degrees: dense simple, maximal, hh-
simple and other similar kinds of c.e. sets; see Soare [61]. Martin’s characterization
has proved extremely useful ever since. For example, using this it is possible to
show sets of high degree are those with with maximal EX-degree in Gold-style
learning [13] and high degrees are precisely those which allow for separation of
Martin-Löf, Schnorr and Computable randomness [56].

In relativised form (see e.g. Lerman [46]), Martin’s result allows for a character-
ization of the low2 degrees, where A is low2 iff A2 ”T H

2. That is,

Theorem 3.1 (Martin [47]). A degree d ă 01 is nonlow2 iff for every function
h ďT H

1, there is a d-computable function g which is not dominated by h.

Again this characterization has been widely used, for example in Jockusch’s
proof that every non-low2 degree bounds a 1-generic one. We use a function h
which grows sufficiently quickly, so that for all strings σ of length x and all e ď x,

1Recall that X is called low if X 1 ”T H
1.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 179

if σ has an extension in Ve, the eth c.e. set of strings, then we can see such an
extension by stage hpxq. Then given a non-low2 set D there is a function g ďT D
which infinitely often escapes h. We use gpxq as our search space to figure out
which requirement to pursue. Then a standard finite injury argument works. See,
for example, Lerman [46], or Downey and Shore [17].

Another example is the class of promptly simple degrees (see Ambos-Spies,
Jockusch, Shore and Soare [4]), which characterises a class of sets which resem-
ble the halting set in terms of a certain immediacy of change. One recent example
of current great interest is the class of K-trivial reals (see Downey, Hirschfeldt,
Nies and Stephan [25], and Nies [54, 53]), which are known to coincide with many
other “lowness” constructions. These are sets which resemble the computable sets
in terms of initial segment complexity.

Our concern will be the classification of c.e. sets in terms of how hard it is to
approximate the things they compute. To this end we will look at the fine structure
of the Limit Lemma. The next section gives a key tool.

3.1. α-c.a. functions. Our main concern will be functions and sets which are
∆0

2-definable, being the functions g ďT H
1. As mentioned, the Limit Lemma (The-

orem 2.1) states that these are the functions that have computable approximations
g “ lims gs. The idea is to classify their degrees according to the complexity of a
bound on the “mind change” function #ts : gs`1pxq ‰ gspxqu.

In [22], we follow a classification of ∆0
2 functions defined by Ershov in [32, 33,

34]. A witness to the approximation xgsy stabilising on an input is a counting
down some ordinal α. The greater the ordinal α, the more opportunities we have
for changes.

A notion of reducibility stronger than Turing and weaker than truth-table is
called weak truth table reducibility ; A ďwtt B if there is a computable function k and
a Turing reduction of A to B such that for each x, for deciding whether x P A, the
queries to B are limited to numbersď kpxq. Sometimes this is called bounded Turing
reducibility. A consequence of the proof of Theorem 2.1 is that g ďwtt H

1 iff f has
a computable approximation g “ lims gs where #ts : gs`1pxq ‰ gspxqu ď hpxq for
a computable function h. We would call such an approximation an ω-computable
approximation, since for each x we compute a finite ordinal hpxq for the mind-
change count; then, each time we change our mind about the value of gpxq, we
need to decrease our pointer. We can extend this to higher ordinals. For example,
a ω ¨ 2 ` 3-computable approximation gspxq would mean that initially we allow 3
mind-changes. If these are exhausted, then we declare a new bound (as large as we
like), and so supply ourselves with more mind-changes; and this can happen once
more. In terms of ordinals, we start by pointing at the ordinal ω ¨2`2, then ω ¨2`1
if we change our mind, then ω ¨2 if we change our mind again; if we want to change
our mind once more, we point at ω ` n for some n, then ω ` pn´ 1q, ω ` pn´ 2q,
. . . , until we point at ω; then after another change, we need to point at some finite
ordinal k, and from that step onwards, we are allowed no more than k changes, and
that number is final. The flexibility in this process is that the numbers n and k are
declared late; their size can correspond to the stage at which some event happens;
and if we do not need all the changes, then k, and perhaps even n, may not need
to be declared at all.

180 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

The extension to arbitrary ordinals α, at first glance, seems clear. An α-
computable approximation consists of a computable approximation xgsy of a func-
tion g, equipped with a sequence xosy of counting functions, each os : N Ñ α,
satisfying os`1pxq ď ospxq, and os`1pxq ă ospxq if gs`1pxq ‰ gspxq. As well as the
sequence xgsy, The functions os are also required to be uniformly computable. To
make sense of this, we cannot work with an abstract “set-theoretic” ordinal α; we
need to work with a computable well-ordering of the natural numbers, of order-
type α (alternatively we could work with notations for ordinals in the sense of
Kleene).

We would then like to define a function to be α-computably approximable (or
α-c.a. for short) if it has an α-computable approximation, for some computable
well-ordering of order-type α. This, however, requires some care, as “bad copies”
of some ordinals may code too much information, distorting the intended meaning of
this notion. Indeed, Ershov showed that under this definition, every ∆0

2 function is
ω-c.a.; the complexity of the function is reflected in a computable copy of ω in which
the successor relation is not computable (or if we are working with ordinal notations,
a notation for ω2 in which we cannot computably tell how many copies of ω precede
a given point). This points out a limitation of the Spector and Kleene method
outside of the Turing degrees (where it is successfully used to define iterations of
the Turing jump along computable ordinals).

A perhaps seemingly ad-hoc solution is to restrict ourselved to a class of copies
of ordinals in which all copies of a given ordinal are computably isomorphic. This
is in general impossible to achieve, but is possible if we restrict ourselves to a
proper initial segment of the computable ordinals. For this work, we only deal with
ordinals below ε0, where an effective Cantor normal form is sufficient to ensure such
“computable categoricity”. It may seem that using effective Cantor normal form
is an artefact to our studies, but as promised, the resulting hierarchies are robust,
characterize the combinatorics of several natural constructions in the literature, and
lead to a number of natural definability results. For example, using this approach we
will be able to precisely characterize those computably enumerable Turing degrees
which bound embeddings of the 5-element modular nondistributive lattice.

Before we move to new material, we will briefly review some of the results men-
tioned in [16].

3.2. Degree hierarchies. Ershov’s hierarchy of ∆0
2 functions is in some sense

“orthogonal” to Turing reducibility, in that within the ∆0
2 degrees, functions which

have very low rank in Ershov’s hierarchy can have all kinds of Turing degrees,
including the greatest ∆0

2 degree 01. The main idea now is to have a “shotgun
wedding” of both notions, as follows:

Definition 3.2. Let α ď ε0.
(1) A c.e. degree d is totally α-c.a. if every g P d is α-c.a.
(2) A c.e. degree d is totally ă α-c.a. if every g P d is γ-c.a. for some γ ă α.

We can replace g P d by g being any d-computable function, and get the same
notion. There is a further notion of uniformly totally α-c.a. degrees; this is like the
definition of totally α-c.a., except that there is a single h : N Ñ α such that every
function g P d has an α-computable approximation xgs, osy with ospxq ď hpxq for

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 181

all x. The classes are linearly ordered, as every totally ă α-c.a. degree is uniformly
totally α-c.a.

The case α “ ω is of particular interest, and the definition of totally ω-c.a. degrees
was first suggested by Joe Miller. The case of uniformly totally ω-c.a. degrees
had been considered earlier, under the name array computable2 (Downey, Jockusch
and Stob [26, 27]). The array computable degrees have seen wide applications in
computability theory as they characterize the combinatorics of constructions from
algorithmic randomness, degree theory and the like.

The following theorem characterises which levels of the hierarchy are proper.

Theorem 3.3 ([22]). Let α ă ε0.
(1) There is a totally α-c.a. degree that is not totally γ-c.a. for any γ ă α, if and

only if α is closed under addition, i.e. is of the form ωβ for some β. In this
case there is, in fact, a uniformly totally α-c.a. degree, which is not totally
ă α-c.a.; and there is a totally α-c.a. degree which is not uniformly so.

(2) There is a totally ă α-c.a. degree that is not totally γ-c.a. for any γ ă α iff α
is a limit of ordinals that are closed under addition, that is, is of the form ωβ

where β is a limit ordinal.

As mentioned above, Nies, Shore and Slaman [55] proved some general metathe-
orems which allow definability results in the c.e. degrees, via coding models of
arithmetic. All their results concern classes that are invariant under taking the
double jump, and so cannot be used to define subclasses of the low2 degrees.

Theorem 3.4 ([22]). For any α, any totally α-c.a. degree is low2.

Thus, the definability results we soon mention cannot be achieved using these
metatheorems. It is tempting to guess that all members of this hierarchy are low.
For example if A is superlow (meaning that A1 ”wtt H

1), then A is certainly
array computable and hence totally ω-c.a. Moreover, if A1 is wtt-reducible to
the wtt-jump of H1 then A1 is certainly totally ω2-c.a. However, even the array
noncomputable degrees contain non-low c.e. sets (Downey, Jockusch and Stob [26]),
and in fact, all levels of the hierarchy contain low sets which are not at lower levels;
but no level contains all low c.e. sets. Thus the hierarchy does not align itself with
the low sets.

Capturing dynamic combinatorics. As mentioned above, the array computable de-
grees capture the dynamics of a number of constructions. Two levels of our new
hierarchy can be used in this way as well. We give a few examples.

Recall that a real number r is left-c.e. if the left cut tq P Q : q ă ru is c.e., iff it is
the limit of an increasing computable sequence of rational numbers. One example of
such a real is Chaitin’s left-c.e. random real, defined as Ω “

ř

UpσqÓ 2´|σ|, where U

is a universal prefix-free machine.
In the same way that c.e. sets are halting sets, the theory of algorithmic random-

ness shows that r is left-c.e. iff it is a halting probability (see [24]). Another way of
expressing this is that the left-c.e. reals are precisely the measures of the effectively

2Of course, this was not the original definition of array noncomputability, but this version from
[27] captures the domination property of the notion in a way that shows the way that it weakens
the notion of non-low2-ness, in that a would be non-low2 using the same Martin’s characterization

above, but replacing ďwtt by ďT .

182 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

open sets (in either the reals, or Cantor space). A subset of Cantor space is gen-
erated by a c.e., equivalently a computable prefix-free set of finite binary strings.
Thus, a real r is left-c.e. iff there is some c.e. prefix-free set A of strings such that
r “

ř

σPA 2´|σ|; such a set A is said to present r.
Now it is easy to use padding to show that every left-c.e. real has a computable

presentation (Downey [19]). On the other hand, bizarre things can happen. In
[28], Downey and LaForte showed that there exist a noncomputable left-c.e. real,
all of whose c.e. presentations are computable.

Theorem 3.5 ([22]). The following are equivalent for a c.e. degree a.
(i) a is not totally ω-c.a.
(ii) a bounds a left-c.e. real r and a c.e. set B ăT r such that if A presents r, then

A ďT B.

The proof is quite intricate and uses an elaboration on the “drip feed” strategy
of Downey and LaForte [28] for the result mentioned above.

Other theorems relate total ω-c.a.-ness to algorithmic randomness. Recall that
a Martin-Löf test is a uniformly effectively open (c.e. open) sequence tUn : n P ωu
with µpUnq ď 2´n, where µ denotes the fair-coin measure on Cantor space. A real
A P 2ω passes the test if A R XnUn. If a real passes all Martin-Löf tests then we call
it Martin-Löf random. Schnorr proved that this is equivalent to KpA æ nq ě` n
for all n, where ě` means ě up to an additive constant, A æ n denotes the first n
bits of n, and K denotes prefix-free Kolmogorov complexity.

In the paper [11], Brodhead, Downey and Ng showed that totally ω-c.a. degrees
also capture a notion of randomness related to Martin-Löf randomness.

A Finite Martin-Löf test is a ML-test with each component Un clopen; so
each Un is generated by a finite set of strings, but these sets are effectively enumer-
ated, not given in a computable way. We say that the test is computably bounded
if there is a computable function f such that each Un is generated by at most fpnq
many strings.

In the usual way, these notions gives rise to a notion of randomness, namely finite
randomness and computably finite randomness. Note that if we require that the
sets of strings are given computably (as finite sets of strings), then we get the notion
of Kurtz randomness, see Kurtz [40] or Wang [64]. Also notice that if A ďT H

1

then A is Martin-Löf random iff A is finite random: Say A “ limsAs is not Martin-
Löf random; A P XnUn for some ML-test xUny. We pause the enumeration of Un
at a stage s at which As P Un,s.

Theorem 3.6 (Brodhead, Downey, Ng [11]). A c.e. degree a contains a computably
finite random left-c.e. real iff a is not totally ω-c.a.

Proof. (Sketch) The proof is the canonical one. We will enumerate finite
sets of open sets Wϕepnq and partial computable functions ψe. We ask that

|Wϕepnq| ď ψepnq. The eth requirement asks that if ϕe, ψe are total and the bound
is obeyed, then the real A we construct A leaves rWϕepnqs. We will be given some
function g P a which is not ω-c.a. Each time we see a new σ enumerated into
Wϕepnqrss, we will challenge gpnqrss to change. If it changes, we get permission
to leave the test, and can do so rightwards. The fact that a is not totally ω-c.a.
means that for some argument, g permits at least ψe many times. (This only

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 183

does permitting, coding is easy.) The other direction is symmetric. Each time we
need some g we build to change, we cover the real As. We refer to [11] for more
details. �

There are other relationships with randomness notions: A sequence A is com-
plex (see [24])) if CpA æ nq ě hpnq for all n, for some order function h. There are
several equivalent formalisations, including wtt-computing a diagonally noncom-
putable function. Every ML-random sequence is complex.

Theorem 3.7 (Ambos-Spies, Fang, Losert, Merkle and Monath [3]). A c.e. degree
d is totally ω-c.a. if and only if every left-c.e. real r P d is cL-reducible to a complex
left-c.e. real, where A ďcL B means that there is a wtt-procedure where the use on
argument x is x` c for a fixed c.

Barmpalias, Downey and Greenberg showed that the totally ω-c.a. degrees are
related to strong reducibilities and the Cantor-Bendixson rank of reals as follows.
The reader may recall that a set A is called ranked if A belongs to a countable Π0

1

class. The following result unifies material from Chisholm et al. [12], Afshari et
al. [1], and Barmpalias [8].

Theorem 3.8 (Barmpalias, Downey and Greenberg [9]). The following are equiv-
alent for a c.e. degree a:
(1) Every set in a is wtt-reducible to a ranked set.
(2) Every set in a is wtt-reducible to a hypersimple set.
(3) Every set in a is wtt-reducible to a proper initial segment of a computable,

scattered linear ordering.
(4) a is totally ω-c.a.

Moreover, the equivalence still holds if in any of (1), (2) or (3), “set” is replaced
by “c.e. set”.

Natural definability. Two further characteriations yield natural definability of de-
gree classes in the c.e. degrees, where this means the classes have a definition which,
for instance, a lattice-theorist might come up with (contrasted with definitions via
coding models of arithmetic). At the present time, as articulated in Shore [59],
there are very few such natural definability results.

In [22], and in the prequel [23], we give some new natural definability results for
the c.e. degrees. Moreover, these definability results will be related to the central
topic of lattice embeddings into the c.e. degrees, analysed by, for instance, Lempp
and Lerman [44], Lempp, Lerman and Solomon [45], and Lerman [46].

A central notion for lattice embeddings into the c.e. degrees is the notion of a
weak critical triple. The reader may recall from Downey [30] and Weinstein [65]
that three incomparable elements a0,a1 and b in an upper semilattice form a weak
critical triple if a0 Y b “ a1 Y b and there is no c ď a0,a1 with a0 ď b Y c. We
say that incomparable a0,a1 and b in an upper semilattice form a critical triple if
a0 Yb “ a1 Yb and every c below both a0 and a1 is also below b.3 These notions
capture the need for “continuous tracing” which is used in an embedding of the
lattice M5 (Fig. 1) into the c.e. degrees (first embedded by Lachlan [41]).

3This definition becomes more natural in a lattice, where we can write a0 X a1 ď b. We recall

that a finite lattice is join semidistributive iff it is principally indecomposable iff it contains no

copy of M5 iff it contains no critical triple iff it contains no weak critical triple. See [45].

184 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

s s s

s

s

�
�

�
�
�

��
@
@
@
@
@
@@�

�
�
�
�
��
@
@

@
@
@

@@

a2a1a0

1

0

Figure 1. The 1-3-1 lattice

Indeed the first nonembeddability result was by Lachlan and Soare [43] who
demonstrated that an “infimum into an M5” could not be embedded in the c.e.
degrees by showing that the lattice S8 (Fig. 2) could not be embedded (as suggested
by Lerman).

s s s

s
s

s
s

s

�
�
��
@

@
@@�

�
��
@
@
@@
�
�

�
�
�

��
@
@
@
@
@
@@�

�
�
�
�
��
@
@

@
@
@

@@

0

1

Figure 2. The lattice S8

Downey, Greenberg and Weber proved the following:

Theorem 3.9 ([23]). The following are equivalent for a c.e. degree a:
(1) a bounds a critical triple in the c.e. degrees;
(2) a bounds a weak critical triple in the c.e. degrees;
(3) a is not totally ω-c.a.

Hence the class of totally ω-c.a. degrees is naturally definable in the c.e. degrees.

For embeddings of M5 we need a higher level of permitting:

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 185

Theorem 3.10 ([22]). A c.e. degree a is not totally ă ωω-c.a. iff a bounds a copy
of M5 in the c.e. degrees.

These proofs use constructions which involve high levels of nonuniformity. They
are discussed in detail in [16]. Ambos-Spies and Losert [5] have given an example
of a 7 element lattice (Fig. 3) which is embeddable in the c.e. degrees precisely
below degrees which are not totally ω-c.a.

Figure 3. The lattice L7

The following question remains open:

Question 3.11. Is there an n ą 1 such that the class of totally ωn-c.a. degrees is
(naturally) definable in the c.e. degrees?

Li Ling Ko [38] has a number of results related to this question. She examined
the question for a number of lattices and showed that all fall into either the M5

case or into the L7, case. Cholak and her conjecture that all lattices embeddable
into the c.e. degrees fall into these two classes, so that lattices cannot be used to
answer Question 3.11 above.

3.3. More generally. There have been some attempts to understand the hierar-
chy outside of the c.e. degrees. As with array computability, the natural notion
to consider here is domination rather than approximation. For eample, a Turing
degree d is α-c.a. dominated if every g P d is dominated by some α-c.a. function;
a c.e. degree is α-c.a. dominated if and only if it is totally α-c.a. There are similar
domination properties corresponding to uniform totally α-c.a. degrees and totally
ă α-c.a. degrees.

Michael McInerney [48] has demonstrated other connections between genericity
and our hierarchy. He studied notions of multiple genericity related to pb-genericity
of Downey, Jockusch and Stob [27]. In particular, he defines a notion of ω-change
genericity, a strengthening of pb-genericity. A Turing degree bounds a pb-generic
sequence if and only if it is array noncomputable.

Theorem 3.12 (McInerney [48]). A c.e. degree bounds an ω-change generic se-
quence if and only if it is not totally ω-c.a.

186 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Note though that the characterisation mentioned above of bounding pb-generics
holds for all Turing degrees, not only the c.e. ones.

Theorem 3.13 (McInerney [48]). Let d be a Turing degree.
(1) If d is not uniformly ω2-c.a. dominated then d computes an ω-change generic

sequence.
(2) If d is ω-c.a. dominated then it does not compute an ω-change generic se-

quence.

Whether (1) can be improved to ω-c.a. domination remains open.

Recently, McInerney and Ng extended these studies and introduced a trans-
finite hierarchy of genericity notions stronger than 1-genericity and weaker than
2-genericity. There are many connections with the hierarchy of totally ω-c.a. de-
grees. In [50], McInerney and Ng give several theorems concerning the strength
required to compute multiply generic degrees, and show that some of the levels in
the hierarchy can be separated, and that these separations can be witnessed by a
∆0

2 degree. In that paper, they consider downward density for these classes.
In a later paper, McInerney and Ng investigated the relationship between analogs

of weak genericity and genericity.

Theorem 3.14 (McInerney and Ng [49]). Let α ă ε0. There is a ∆0
2 degree a

which is weakly α-change generic but not α-change generic.

It would be interesting to understand the analog of the hierarchy outside of
the ∆0

2 degrees via domination properties.

4. Sacks Splitting Theorem

Our methods can be used to understand some classical constructions in com-
putability theory. One such construction is Sacks’s Splitting Theorem. This the-
orem asserts that if A is c.e., then there exist disjoint c.e. sets A1 \ A2 “ A
with A1|TA2. Ever since Soare’s classic paper [60], the Sacks Splitting Theorem is
pointed to as a quintessential example of a finite injury argument of “unbounded
type”. By this we mean the following. The standard simple proof of the existence of
a c.e. set of low degree, of the Friedberg-Muchnik Theorem, as per Soare’s book [61]
(or any other standard text), uses a finite injury priority argument where require-
ments are injured at most a computable number of times. In the standard proof of
the Friedberg-Muchnik Theorem each requirement R2e is injured at most 2e many
times. This makes the relevant sets not only low, but superlow (A1 ”wtt H

1), since
each A-computable partial function can be computed with an approximation with
at most a computable number of mind-changes in the sense of the limit lemma.

We would argue that we can measure how “unbounded” the construction is using
the Downey-Greenberg hierarchy. We have the following results:

Theorem 4.1 (Downey and Ng [29]). There is a c.e. degree a such that if
a0 _ a1 “ a in the c.e. degrees, then one of a0 or a1 is not totally ω-c.a.

Downey and Ng also showed that every high c.e. degree is the join of two totally
ω-c.a. c.e. degrees. This extends a classical theorem of Bickford and Mills [10] who
showed that 01 is the join of two superlow c.e. degrees. In [29] it is also shown that
there are (super-)high c.e. degrees that are not the joins of two superlow degrees.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 187

Thus if we use the Downey-Greenberg hierarchy for the classification of the
complexity of the splits, we cannot hope to do better than ω2. The classical Sacks’
construction shows that it gives that a c.e. set A can be split into a pair of low,
totally ωω-c.a. c.e. sets. This can be improved:

Theorem 4.2 (Ambos-Spies, Downey, Monath and Ng [2]). Every c.e. set can be
split into a pair of low c.e. sets which are totally ω2-c.a.

The proof of this recent result is too complex to include here, but to give the
reader some idea of the dynamics of the methodology, we will give a proof of a
weaker result, obtained earlier by Ambos-Spies, Downey and Monath. The ideas
are similar but Theorem 4.2 heavily also uses some priority tree machinery, hence
obscuring some of the main ideas.

Theorem 4.3. Every c.e. set can be split into a pair of low c.e. sets which are
totally ω3-c.a.

Proof. We represent the ordinal c2 ¨ ω
2 ` c1 ¨ ω ` c0 ă ω3 by the triple pc2, c1, c0q.

So the ordering on the ordinals ă ω3 coincides with the lexicographical ordering on
ω ˆ ω ˆ ω.

W.l.o.g. assume that A is infinite, fix a 1-1 computable function a enumerating
A, and let As “ taptq : t ă su. The sets A0 and A1 are enumerated in stages where,
at stage s` 1, apsq is put into either A0 or A1. So Ai,s “ taptq : t ă s & aptq P Aiu
is the finite part of Ai enumerated by the end of stage s; so in the end, A “ A0\A1,
and by effectivity of the construction, both A0 and A1 are c.e. In order to ensure
that the setsA0 andA1 are totally ω3-c.a., it suffices to meet the global requirements

Rglobal
i,e : If ΦAi

e is total then ΦAi
e is ω3-c.a.

for i ď 1 and e ě 0. For this sake we have a list tRnuně0 of requirements, where
the primary goal of requirement R2xe,xy`i is to preserve convergent computations

Φ
Ai,s
e,s pxq by restraining numbers ă ϕ

Ai,s
e pxq from Ai. We say that R2xe,xy`i is an

i-requirement and an i-e-requirement. We let rpn, sq (which will be specified below)
be the restraint imposed by Rn at stage s` 1 and we let

Rpn, sq “ max
n1ďn,tďs

rpn1, tq

be the corresponding accumulated restraint. (Working with R in place of r is
for technical convenience.) Then, at stage s ` 1, apsq is put into A1 if the least
n such that apsq ă Rpn, sq is a 0-requirement (or if no such n exists), and apsq
is put into A0 otherwise. Moreover, we say that an i-requirement Rn is injured
at stage s ` 1 if apsq ă Rpn, sq and apsq is enumerated into Ai. (Note that if
the i-requirement Rn is injured at stage s`1 then all lower priority i-requirements
R2m`i (n ă 2m`i) are injured too and there is a higher priority p1´iq-requirement
R2m1`p1´iq (2m1 ` p1´ iq ă n) such that apsq ă Rp2m1 ` p1´ iq, sq.)

Now, if we would let rp2xe, xy ` i, sq “ rpp2xe, xy ` i, sq for

rpp2xe, xy ` i, sq “

#

ϕ
Ai,s
e pxq if Φ

Ai,s
e,s pxq Ó

0 otherwise.
(1)

188 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

then (modulo the minor technical change that here we work with the accumulated
restraint R in place of the proper restraint r) we would obtain a construction
yielding totally ωω-c.a. sets A0 and A1. In the following we call rppn, sq defined
according to (1) the primary restraint of Rn at stage s, and we tacitly assume that
the restraint function r is chosen so that rpn, sq ě rppn, sq for all n, s ě 0.

Now, the key idea which will enable us to reduce the complexity of the sets A0

and A1 in the Downey-Greenberg hierarchy is as follows. In certain situations we
will link an i-requirement Rn`2 to a higher priority i-requirement Rn1 (n1 ď n).
This will mean that Rn1 (in addition to its primary task) will take over the task of
Rn`2 by imposing (in addition to its own primary restraint rppn

1, sq) the primary
restraint rppn` 2, sq of Rn`2 on Ai. The technical observation which will guide us
when we will build a link is the following.

Assume that we define the restraints by letting rpn, sq “ rppn, sq. Then there are
uniformly computable functions mrn,ss : ω Ñ ω3 (n, s ě 0) such that, for any num-
bers n, s0 and s1, mrn,s0sps0q “ mrn,s1sps1q and the following holds. If s0 ă s1 and,
for any stage s with s0 ď s ă s1, no requirement Rn1 with n1 ď n is injured at stage
s ` 1, then mrn,s0spsq is nonincreasing on rs0, s1q, i.e., mrn,s0sps ` 1q ď mrn,s0spsq
for s with s0 ď s ă s1, and, for any such s such that Rn`2 becomes injured at
stage s ` 1, mrn,s0sps ` 1q ă mrn,s0spsq. (This observation is nontrivial and will
be implicitly proven in the stronger Claim 5 below.) In fact, it is crucial that,
for obtaining such functions, it suffices that the restraint function r satisfies the
restraint condition which requires that there is a computable bound fpnq on the
number Rpn, sq may change (i.e., grow) on any interval of stages at which neither
Rn nor a higher priority requirement is injured, i.e., for any index n and any stages
s ă s1 such that there is no stage t and no index n1 ď n such that s ď t ă s1 and
requirement Rn1 is injured at stage t` 1,

fpnq ě |tt : s ď t ă s1 & Rpn, t` 1q ą Rpn, tqu|. (2)

The above leads to the following (rough) idea. Fix e and i such that ΦAi
e

is total and consider the canonical approximation ψ of ΦAi
e . Then any change

ψpx, s ` 1q ­“ ψpx, sq implies that the (primary restraint of the) requirement
R2xe,xy`i is injured at stage s ` 1. So, if we let n ` 2 “ 2xe, xy ` i (w.l.o.g. we
may may assume that 2xe, xy ` i ą 2) then, on any interval rs0, s1q of stages
such that no requirement Rn1 with n1 ď n is injured at any stage t ` 1 with
s0 ď t ă s1, the function mrn,s0s locally witnesses that ΦAi

e is ω3-c.a. via ψ. Now,
the idea is to get a global witness by piecing together such local witnesses as
follows. If an i-requirement Rn1 with n1 ď n or a higher priority requirement Rn2

(n2 ă n1) becomes injured at stage s ` 1 then requirement Rn`2 becomes linked
to Rn1 . This will give the desired ω3-approximation as follows. Fix the numbers
n0 ą n1 ą ¨ ¨ ¨ ą nk such that, for some stage s, nj is minimal such that Rn`2 is
linked to Rnj at stage s, and let sj be the stage at which Rn`2 becomes linked to
Rnj for the first time (where we assume that Rn`2 is linked to itself at stage 0,
i.e., n0 “ n ` 2 and s0 “ 0; moreover, w.l.o.g. we may assume that the first two
requirements are never injured whence nk ě 2). Then s0 ą s1 ą ¨ ¨ ¨ ą sk and, for
s P rsj , sj`1q (where j ď k and sk`1 “ ω), mrnj´2,sjs locally witnesses that ΦAi

e is

ω3-c.a. via ψ. So the computable function m : ω ˆ ω Ñ ω3 where, for any j ď k

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 189

and any s P rsj , sj`1q,

mpx, sq “

ˆ

ÿ

n1ănj´2

pmrn1,0sp0q ` 1q

˙

`mrnj´2,sjspsq

globally witnesses that ΦAi
e is ω3-c.a. via ψ (for moving from

mrnj´2,sjs to mrnj`1´2,sj`1s at stage sj`1, note that mrnj`1´2,sj`1spsj`1q “

mrnj`1´2,0sp0q hence mpx, sj`1q ă mpx, sj`1 ´ 1q; see the proof of Claim 6
below for details).

If we link requirements and define the restraints rpn, sq as described above, how-
ever, the restraint function will not satisfy the restraint condition whence we cannot
argue that the required functions mrn,ss will exist. To overcome this problem we
will take some precautions when building links.

First, at any stage s` 1 at which requirement Rn is injured, only finitely many
requirements may become linked to Rn (e.g. only requirements with index ď s).
This will allow us to argue that only finitely many requirements will ever be linked
to Rn, that the restraint of Rn will be bounded, and that Rn will be injured only
finitely often (see Claim 2 below). Next, we link a requirement Rn1 (n1 ą n) to the
i-requirement Rn only if Rn1 is an i-e-requirement where e ă n. (Note that this
restriction is not serious since, for fixed i and e, it may happen only finitely often
that a requirement Rn with n ď e is injured. So we may use the least stage after
which this does not happen anymore in the definition of the ω3-approximation
of ΦAi

e .) This ensures that the requirements linked to Rn work on ď n global

requirements Rglobal
i,e . Finally, since a global requirement Rglobal

i,e is trivially met if

the corresponding function ΦAi
e is not total, we can combine the restraints of the

local requirements R2xe,xy`i linked to Rn which work on Rglobal
i,e in one restraint

by delaying the definition of this restraint to the first stage s at which Φ
Ai,s
e,s pxq

is defined for all x such that the requirement R2xe,xy`i was linked to Rn at the
greatest stage ă s at which Rn was injured. (This delay in imposing the restraint
requires that the approximation ψ of ΦAi

e has to be adjusted correspondingly.)
Then, besides the proper restraint of Rn, there are at most n additional restraints
for the sake of the requirements linked to Rn, and each of these restraints may grow
at most once unless Rn becomes injured. Obviously, this guarantees the restraint
condition.

Having explained the key ideas, we now formally describe the construction. Links
and restraints at stage s are defined by a simultaneous induction on s. We first
give the linking procedure and then specify the restraint function.

Given m ě 0 and i ď 1 fix e ě 0 such that R2m`i is an i-e-requirement. R2m`i

becomes linked to itself at stage 0 (we call this an unproper link). Moreover, if
there is a stage s ě 2m ` i and an i-requirement R2m1`i such that e ă m1 ă m
and R2m1`i or a higher priority requirement is injured at stage s ` 1 then R2m`i

becomes (properly) linked to R2m1`i at stage s ` 1. Finally, once R2m`i becomes
linked to a requirement R2m1`i it remains linked to it forever.

Note that a requirement may be linked to more than one requirement. Let lpn, sq
be the index of the highest priority requirement to which Rn becomes linked by

190 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

the end of stage s,

lpn, sq “ µ n1 rRn is linked to Rn1 at stage ss.

Note that lpn, 0q “ n, lpn, s ` 1q ď lpn, sq ď n and 2 ď lpn, sq unless lpn, sq “ n.
Conversely, for an i-requirement R2m`i and e1 ă m, let

Linkp2m` i, e1, sq “ tx1 : R2xe1,x1y`i is linked to R2m`i at stage su.

Note that
ď

e1ăm

t2xe1, x1y ` i : x1 P Linkp2m` i, e1, squ Ď ω æ s

is the set of the indices of the requirements that are properly linked to R2m`i at
the end of stage s.

Let Rn “ R2m`i “ R2xe,xy`i be an i-e-requirement. The restraint rpn, sq im-
posed by Rn on Ai at stage s` 1 is inductively defined as follows. rpn, 0q “ 0. For
s ą 0,

rpn, sq “ max
e1ďm

re1pn, sq

where the e1th subrestraint re1pn, sq is defined as follows (e1 ď m). If e1 “ m then
re1pn, sq “ rppn, sq where rppn, sq is the primary restraint of Rn defined according
to (1). If e1 ă m distinguish the following two cases. If Rn is injured at stage
s then re1pn, sq “ 0. Otherwise, for e1 ă m, re1pn, sq is the maximum restraint
which the i-e1-requirements linked to Rn at stage s would like to impose in order to
protect their corresponding computations - provided that all of these computations
are defined. To be more precise,

re1pn, sq “ max
yPLinkpn,e1,sq

ϕ
Ai,s

e1 pyq

if Linkpn, e1, sq is nonempty and Φ
Ai,s

e1,s pyq Ó for all y P Linkpn, e1, sq, and

re1pn, sq “ 0

otherwise.

(Note that at stage 0 just the unproper links exist. The links defined at stage
s ` 1 depend only on the restraints rpn, sq defined by the end of stage s (namely,
whether a requirement Rn is injured at stage s ` 1 or not depends only on the
restraint Rpn, sq defined at stage s). Finally, the restraints rpn, sq defined at stage
s depend only on the links defined by this stage. So the above definitions are
sound.)

This completes the construction. In the remainder of the proof we show that the
sets A0 and A1 have the desired properties. Obviously, A “ A0 Y A1, A0 and A1

are disjoint, and, by effectivity of the construction, A0 and A1 are c.e. So it suffices
to show that the global requirements are met and that the sets A0 and A1 are low.
For this sake we prove a series of claims.

Claim 1. Let n “ 2m` i ě 0 (where i ď 1) and let s0 and s1 be stages such that
s0 ă s1 and such that there is no stage s such that s0 ď s ă s1 and Rn is injured
at stage s` 1. Then there is no requirement newly linked to Rn at any stage s` 1
such that s0 ď s ă s1, hence

@ e1 ă m @ s ps0 ď s ă s1 ñ Linkpn, e1, s` 1q “ Linkpn, e1, s0qq. (3)

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 191

Moreover, the restraint rpn, sq changes at most n`1 times after stage s0 and before
s1, i.e.,

|ts : s0 ď s ă s1 & rpn, s` 1q ­“ rpn, squ| ď n` 1. (4)

Proof. By assumption,

@ s ps0 ď s ă s1 ñ pAi,s`1 æ Rpn, sq “ Ai,s æ Rpn, sqq. (5)

Since a new requirement becomes linked to Rn only at a stage where Rn is injured,
(3) is immediate. For a proof of (4) note that rpn, s ` 1q ­“ rpn, sq implies that
re1pn, s ` 1q ­“ re1pn, sq for at least one of the m ` 1 numbers e1 ď m. So, by
m ď n, given e1 ď m and a stage s such that s0 ď s ă s1 and re1pn, sq ą 0, it
suffices to show that re1pn, s ` 1q “ re1pn, sq. This is done as follows. If e1 ă m
then, by re1pn, sq ą 0, for any y P Linkpn, e1, sq, the corresponding computation

Φ
Ai,s

e1,s pyq converges and its use is bounded by re1pn, sq. Since re1pn, sq ď Rpn, sq,

it follows by (5) that none of these computations is injured at stage s ` 1. So
re1pn, s ` 1q “ re1pn, sq by (3). Finally, if e1 “ m then, for the unique e and x

such that m “ xe, xy, Φ
Ai,s
e,s pxq Ó and ϕ

Ai,s
e pxq “ rmpn, sq ď Rpn, sq. So, by (5), the

computation is preserved at stage s` 1 hence rmpn, s` 1q “ rmpn, sq.

This completes the proof of Claim 1.

Claim 2. Let n “ 2m` i ě 0 (where i ď 1). Requirement Rn is injured at most
finitely often, for any e1 ă m,

lim
sÑ8

Linkpn, e1, sq

exists and is finite, and

lim
sÑ8

rpn, sq ă ω

exists.

Proof. The proof is by induction. Fix n and, by inductive hypothesis, as-
sume the claim for n1 ă n. Then there is a stage s0 and a number u, such that
A æ u “ As0 æ u, and, for all s ě s0 and n1 ă n, Rn1 is not injured at stage s and
Rpn1, sq “ Rpn1, s0q ď u. So, for any s ě s0 and any n2 such that apsq ă Rpn2, sq,
it holds that n2 ě n. It follows by construction that Rn is not injured after stage
s0. The other parts of the claim follow by Claim 1.

The next claim shows that the restraint condition is satisfied via the computable
bound fpnq “ pn` 1q2.

Claim 3. Let n ě 0 and let s0 and s1 be stages such that s0 ă s1 and such that,
for any stage s with s0 ď s ă s1, no requirement Rn1 with n1 ď n is injured at stage
s` 1. Then

|ts : s0 ď s ă s1 & Rpn, s` 1q ­“ Rpn, squ| ď pn` 1q2. (6)

Proof. Note that Rpn, s ` 1q ­“ Rpn, sq implies that rpn1, s ` 1q ­“ rpn1, sq for
some n1 ď n. So Claim 3 is immediate by Claim 1.

192 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Claim 4. Let n ě 0 and let s0 and s1 be stages such that s0 ă s1 and such
that Rpn, sq “ Rpn, s0q for all stages s with s0 ď s ď s1. Then there are at most
Rpn, s0q stages s with s0 ď s ă s1 such that Rn`1 is injured at stage s` 1 and

|ts : s0 ď s ă s1 & Rpn` 1, s` 1q ­“ Rpn` 1, squ| ď pn` 2q ¨Rpn, s0q. (7)

Proof. Note that if Rn`1 is injured at a stage s ` 1 ą s0 such that
Rpn, sq “ Rpn, s0q then apsq ă Rpn, s0q. So this can happen at most Rpn, s0q times.
Correctness of (7) follows by Claim 1 since, for s as in (7), Rpn, s ` 1q “ Rpn, sq
hence rpn` 1, s` 1q ­“ rpn` 1, sq.

Claim 5. Let n ě 0, let s0 and s1 be stages such that s0 ă s1 and such that, for
any stage s with s0 ď s ă s1, no requirement Rn1 with n1 ď n is injured at stage
s` 1, let

pm2ps0q,m1ps0q,m0ps0qq “ ppn` 1q2 ` 1, 0, 0q, (8)

and, for s such that s0 ď s, let

m2ps` 1q “ pn` 1q2 ´ |ts1 : s0 ď s1 ď s & Rpn, s1 ` 1q ­“ Rpn, s1qu|, (9)

m1ps` 1q “ pn` 2q ¨Rpn, ps` 1q´q
´|ts1 : ps` 1q´ ď s1 ď s & Rpn` 1, s1 ` 1q ­“ Rpn` 1, s1qu|

(10)
where ps` 1q´ “ µ t ě s0 rRpn, tq “ Rpn, s` 1qs, and

m0ps` 1q “ Rpn` 1, s` 1q ´ |As`1 æ Rpn` 1, s` 1q| (11)

Then the following hold.

(i) For j ď 2 and s0 ď s ď s1, mjpsq ě 0.

(ii) For s0 ď s ă s1,

pm2ps` 1q,m1ps` 1q,m0ps` 1qq ď pm2psq,m1psq,m0psqq

(with respect to the lexicographical ordering on ω ˆ ω ˆ ω).

(iii) If s0 ď s ă s1 and requirement Rn`2 is injured at stage s` 1 then

pm2ps` 1q,m1ps` 1q,m0ps` 1qq ă pm2psq,m1psq,m0psqq. (12)

Proof. piq. For s “ s0 the claim is immediate by (8). So, given j ď 2 and s with
s0 ď s ă s1, it suffices to show that mjps` 1q ě 0. For j “ 0, this is obvious. For
j “ 1 and j “ 2 this follows by Claim 4 and Claim 3, respectively.

piiq. Fix s such that s0 ď s ă s` 1 ď s1. It suffices to show the following.
(a) m2ps` 1q ď m2psq
(b) m2ps` 1q “ m2psq ñ m1ps` 1q ď m1psq
(c) m2ps` 1q “ m2psq & m1ps` 1q “ m1psq ñ m0ps` 1q ď m0psq

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 193

Claim (a) is obvious. For a proof of (b) assume that m2ps ` 1q “ m2psq. Then
s0 ă s and Rpn, s ` 1q “ Rpn, sq. By the former, m1psq and m1ps ` 1q are de-
fined according to (10) while, by the latter, ps` 1q´ “ s´. Obviously, this implies
m1ps ` 1q ď m1psq. Finally, for a proof of (c) assume that m2ps ` 1q “ m2psq
and m1ps ` 1q “ m1psq. Then, by the former, s0 ă s, Rpn, s ` 1q “ Rpn, sq
and ps ` 1q´ “ s´. By m1ps ` 1q “ m1psq and by (10), this implies that
Rpn` 1, s` 1q “ Rpn` 1, sq. Since m0psq and m0ps` 1q are defined according to
(11) and since As is contained in As`1, this shows that m0ps` 1q ď m0psq.

piiiq. Assume that s0 ď s ă s1 and requirement Rn`2 is injured at stage s` 1.
Then apsq ă Rpn`1, sq. Moreover, by (ii) it suffices to show that mjps`1q ­“ mjpsq
for some j ď 2. If s “ s0 then, obviously, m2ps ` 1q ă m2psq. So w.l.o.g. we may
assume that s ą s0 whence m2psq, m1psq and m0psq are defined according to (9),
(10) and (11), respectively. The claim follows, by distinguishing the following three
cases. If Rpn, s`1q ­“ Rpn, sq then m2ps`1q ă m2psq by (9); if Rpn, s`1q “ Rpn, sq
(hence ps ` 1q´ “ s´) and Rpn ` 1, s ` 1q ­“ Rpn ` 1, sq then m1ps ` 1q ă m1psq
by (10); and if Rpn, s ` 1q “ Rpn, sq and Rpn ` 1, s ` 1q “ Rpn ` 1, sq then
m0ps` 1q ă m0psq by (11) and by apsq ă Rpn` 1, sq.

This completes the proof of Claim 5.

The next claim shows that A0 and A1 are totally ω3-c.a.

Claim 6. For any e ě 0 and i ď 1, the global requirement Rglobal
i,e is met.

Proof. Fix e and i such that w.l.o.g. ΦAi
e is total. It suffices to define total

computable functions ψ : ω ˆ ω Ñ ω and mj : ω ˆ ω Ñ ω (j ď 2) such that, for all
x ě 0,

lim
sÑ8

ψpx, sq “ ΦAi
e pxq (13)

and, for all x, s ě 0,

pm2px, s` 1q,m1px, s` 1q,m0px, s` 1qq ď pm2px, sq,m1px, sq,m0px, sqq (14)

and

ψpx, s` 1q ­“ ψpx, sq
ñ

pm2px, s` 1q,m1px, s` 1q,m0px, s` 1qq ă pm2px, sq,m1px, sq,m0px, sqq
(15)

hold.

By Claim 2 fix s˚ minimal such that, for all n1 ă maxt2, e`1u, A æ Rpn1, s˚q “ As˚ æ Rpn
1, s˚q

and, for s ě s˚, Rn1 is not injured at stage s and rpn1, sq “ rpn1, s˚q (hence
Rpn1, sq “ Rpn1, s˚q). Moreover, for x ď 1 and s ě 0, let ψpx, sq “ ΦAi

e pxq and
m2px, sq “ m1px, sq “ m0px, sq “ 0. For x ě 2 and s ě 0, let nxs “ lp2xe, xy ` i, sq
be the index of the highest priority (i-)requirement to which R2xe,xy`i is linked to
at stage s. Note that (by x ě 2 and by construction)

2xe, xy ` i “ nx0 ě nxs ě nxs`1 ě 2

for all s ě 0. So, in particular, there is a number nx such that nxs “ nx for all
sufficiently large stages s. It follows, by totality of ΦAi

e and by (the second part of)

194 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Claim 2, that, for almost all stages s,

ΦAi,s
e,s pxq Ó & rpnxs , sq ě ϕAi,s

e pxq (16)

holds. Now, for x ě 2 and s ě 0, let

ψpx, sq “ Φ
Ai,s1

e,s1 pxq for s1 minimal such that s1 ě maxts, 2xe, xy ` i` 1, s˚u

and (16) holds (for s1 in place of s).

Obviously, ψ is total and computable and (13) holds.
Fo the definition of mjpx, sq (j ď 2) for x ě 2 distinguish the following two cases.

For s ě s˚ fix s0 ď s minimal such that s˚ ď s0 and nxs0 “ nxs , let n “ nxs ´ 2, and
set

m2px, sq “
ř

n1ănx
s´2ppn

1 ` 1q2 ` 2q `m2psq

m1px, sq “ m1psq
m0px, sq “ m0psq

where m2psq,m1psq and m0psq are defined as in Claim 5 for the given parameters
n and s0. Finally, for s ă s˚, let mjpx, sq “ mjpx, s

˚q.

Note that, for s ě s˚ and for n and s0 as above, there is no stage s1 ` 1 such
that s0 ă s1 ` 1 ď s and such that a requirement Rn1 with n1 ď n becomes injured
at stage s1 ` 1 since otherwise, by choice of s˚, the requirement R2xe,xy`i would
be linked to Rnx

s´2 at stage s1 ` 1 hence nxs1`1 ă nxs contrary to s1 ` 1 ď s. So,
by Claim 5 (i), the definition of mjpx, sq is sound for s ě s˚ (and so for s ě 0 in
general), and, obviously, the functions mjpx, sq are computable. So it only remains
to verify (14) and (15). Fix x where w.l.o.g. x ě 2 and s ě 0. If s ă s˚ then
mjpx, sq “ mjpx, s ` 1q for j ď 2 and ψpx, sq “ ψpx, s ` 1q. So w.l.o.g. we may
assume that s ě s˚. Let n “ nxs and s0 “ µ s1 ď s rs1 ě s˚ & nxs1 “ nxs s.

Now, for a proof of (14), note that (14) holds by Claim 5 (ii) if nxs “ nxs`1. So
it suffices to show

nxs`1 ă nxs ñ
pm2px, s` 1q,m1px, s` 1q,m0px, s` 1qq ă pm2px, sq,m1px, sq,m0px, sqq.

(17)

(Actually, for the proof of (14) it suffices to have ď in the conclusion; but we will
need this stronger fact for the proof of (15) below.) So assume nxs`1 ă nxs . Then

m2px, sq ě
ř

n1ănx
s´2ppn

1 ` 1q2 ` 2q

(by definition of m2px, sq)

ą

ˆ

ř

n1ănx`1
s ´2ppn

1 ` 1q2 ` 2q

˙

` pnxs`1 ´ 2` 1q2 ` 1

(by nxs`1 ă nxs)

while, by definition of m2px, s` 1q,

m2px, s` 1q “

ˆ

ÿ

n1ănx`1
s ´2

ppn1 ` 1q2 ` 2q

˙

`m2ps` 1q

where m2ps ` 1q ď pnxs`1 ´ 2 ` 1q2 ` 1. Hence m2px, sq ą m2px, s ` 1q which
completes the proof of (17).

Finally, for a proof of (15), w.l.o.g. we may assume that ψpx, s ` 1q ­“ ψpx, sq.
It suffices to show

pm2px, s` 1q,m1px, s` 1q,m0px, s` 1qq ă pm2px, sq,m1px, sq,m0px, sqq. (18)

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 195

holds.

Since x ě 2 and ψpx, s ` 1q ­“ ψpx, sq it follows by definition of ψ that

ψpx, sq “ Φ
Ai,s
e,s pxq Ó, s ě maxt2xe, xy ` i ` 1, s˚u and (16) holds whereas

Φ
Ai,s`1

e,s`1 pxq ­“ Φ
Ai,s
e,s pxq or (16) fails for s` 1 in place of s. Since, by (17), w.l.o.g. we

may assume that nxs`1 “ nxs , it follows that a number ă ϕ
Ai,s
e,s pxq ď rpnxs , sq entered

Ai at stage s ` 1 or rpnxs , s ` 1q ă repn
x
s , sq. But either implies that requirement

Rnx
s

is injured at stage s ` 1. So, by Claim 5 (iii), (12) holds. By definition of
mjpx, sq, this implies (18).

This completes the proof of Claim 6.

Claim 7. A0 and A1 are low.

Proof. Given i ď 1, in order to show that Ai is low it suffices to show that the
lowness requirements

Q2e`i : D8spΦAi,s
e,s peq Óq ñ ΦAi

e peq Ó

are met (for e ě 0). So fix e such that ΦAi,s
e,s peq is defined for infinitely many s. By

Claim 2 choose a stage s0 such that the requirement R2xe,ey`i is not injured after

stage s0, and by choice of e fix s ą s0 such that Φ
Ai,s
e,s peq is defined. Then

ϕAi,s
e peq “ rxe,eyp2xe, ey ` i, sq ď rp2xe, ey ` i, sq ď Rp2xe, ey ` i, sq.

Moreover, since R2xe,ey`i is not injured after stage s0,

Ai æ Rp2xe, ey ` i, sq “ Ai,s æ Rp2xe, ey ` i, sq.

So the computation Φ
Ai,s
e,s peq is preserved, i.e., ΦAi

e peq “ Φ
Ai,s
e,s peq Ó.

This completes the proof of Claim 7 and the proof of Theorem 4.3. �

We remark that Sacks splitting theorem has a stronger form: Given noncom-
putable c.e. C (even ∆0

2), then there exist a c.e. splitting A1 \ A2 “ A such that
C ­ďT Ai, for i P t1, 2u.

Theorem 4.4 (Ambos-Spies, Downey, Monath, Ng [2]). For any α ă ε0, there are
noncomputable c.e. C and A such that if A1 \ A2 “ A is a c.e. splitting of A and
both A1 and A2 are α-c.a. then C ďT A1 or C ďT A2.

That is, Sacks splitting with cone avoidance really is finite injury of unbounded
type. In fact the theorem applies to degree splits.

5. Maximal α-c.a. Degrees

A remarkable phenomenom is that the new hierarchy gives new definable an-
tichians based on maximality.

Definition 5.1. We say that a has maximal totally α-c.a. degree if
‚ a is totally α-c.a., and
‚ For all b ą a, b is not totally α-c.a.

Cholak, Downey and Walk [15] constructed maximal contiguous degrees. With
easier constructions, Downey and Greenberg established the following.

Theorem 5.2 ([22]).

196 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

(1) If α ă ε0 is a power of ω, then there exists a maximal totally α-c.a. degree.
(2) In fact, if α ă ε0 is a power of ω, then there exists a maximal totally α-c.a.

degree, which is also uniformly totally α-c.a. degree.
(3) On the other hand, maximality has its limits. For example, if β ă ε0, then

every totally ωβ-c.a. degree lies (strictly) below a totally ωβ`1-c.a. degree. Thus
no totally ωβ-c.a. degree can be maximal totally ωβ`1-c.a.

(4) If α ă ε0 is a limit of powers of ω then no c.e. degree is maximal totally
ă α-c.a. In particular, there are no maximal ă ωω-c.a. degrees.

Corollary 5.3 ([22]).
(1) There is a definable antichain in the c.e. degrees given by the maximal totally

ω-c.a. degreees; namely those that do not bound critical triples but every degree
above them does.

(2) There is no maximal degree which does not bound M5.

Recent work of the first two authors together with Katherine Arthur [7, 6] has
explored the relationship of maximal α-c.a. degrees and the rest of the hierarchy.

Theorem 5.4 (Arthur, Downey and Greenberg [6, 7]).
(1) Let α ă ε0 be a power of ω, and let a be a totally α-c.a. degree. Suppose that

β ą αω also a power of ω. Then there is a b ą a which is maximal β-c.a.
(2) Suppose that a is totally ω-c.a. Then there is a b ą a which is totally ω4-c.a.

and not totally ω-c.a.
(3) Suppose that a is superlow. Then there exists b ą a which is maximal totally

ω-c.a.
(4) There is a totally ω-c.a. degree a which is not bounded by any maximal totally

ω-c.a. degree.

Theorem 5.4 (2) was improved by Li Ling Ko, who gave a nonuniform proof
based on work from [22, 7] that b could be taken as ω2. We also have a kind of
minimal cover.

Theorem 5.5 (Arthur, Downey and Greenberg [6, 7]). There are c.e. degrees
a ă b such that b is totally ω-c.a. and such that if c ą a is totally ω-c.a., then
c ď b.

One of the primary open questions here is whether every totally ω-c.a. degree
is bounded by a totally ω2-c.a. degree, or a totally ωn-c.a. degree for some n ą 2;
in the other extreme, perhaps there is a single totally ω-c.a. degree a which is not
bounded by a maximal totally ωn-c.a. degree for any n. Currently we conjecture
that the answer is no. The authors proved the following.

Theorem 5.6. There is no uniform way to find a maximal totally ω2-c.a. degree
above a given totally ω-c.a. degree.

We put the very complex proof from Hammatt’s MSc Thesis in the last section
of this paper for the sake of narrative flow. The proof is a 03-priority argument,
and shows the depth of the material.

6. A New Hierarchy

The ideas of the Downey-Greenberg hierarchy have been used to construct a new
hierarchy based on the wtt-jump.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 197

We know that Post suggested “thinness” properties of complements of sets might
solve his problem of finding a Turing incomplete c.e. set. We know that in its original
form this proposal fails, since
(1) As we have seen, Martin [47] proved there are complete maximal c.e. sets

(recall M is maximal if it is a co-atom in L˚), and indeed every high c.e.
degree has a maximal set.

(2) Soare [62] showed that all maximal sets are automorphic so no “extra” prop-
erty will suffice to guarantee incompleteness.

(3) Furthermore, Cholak, Downey, Stob [14] extablished that no property of the
complement of a c.e. set alone can guarantee incompleteness.

As we mentioned earlier, however, Harrington and Soare [37] showed that there
is a definable property Q such that if QpAq then A is incomplete.

On the other hand, there are fascinating interactions with strong reducibilities:
‚ Simple sets solve Post’s problem for m-degrees (Post [57]);
‚ (η-) Maximal sets have minimal m-degrees (Ershov [31], Lachlan [42]);
‚ Simple sets are not btt-cuppable (Downey, [18]);
‚ Dense simple sets are not tt-cuppable (Kummer and Schaefer, [39]);
‚ Hypersimple sets are wtt-incomplete and indeed not wtt-cuppable (Downey

and Jockusch, [20]).
In Theorem 3.8, we saw that Barmpalias, Downey and Greenberg proved that a

c.e. a is is totally ω-c.a. iff every (c.e.) set in a is wtt-reducible to a h-simple c.e.
set.

Inspired by this result, Ambos-Spies, Downey and Monath attacked the question
of trying to characterize c.e. sets wtt-reducible to maximal sets. The answer turned
out to yield a fascinating new hierarchy. The preliminary result was the following:
Recall that A is superlow if A1 ”tt H

1. Equivalently, for c.e. A, there is a com-
putable h such that JApeq is h-c.a. Here JA is the universal partial A-computable
function.

Theorem 6.1 (Ambos-Spies, Downey, and Monath). If A is c.e. and superlow,
then there is a maximal set M with A ďwtt M . Indeed A ďibT M .

Proof. (sketch) We build A ďwtt M meeting.

Re : We XM infinite implies We Ě
˚ M.

Ne : lim
s
me,s “ me exists where m0,s ă m1,s . . . lists Ms.

A standard maximal set construction maximizes e-states. The e-state of z PMs

is tj ď e | z PWj,su, a string. The construction tries to put almost all of M into the
same e-state. If ΓM “ A is the wtt-reduction, then if some x P As`1´As, we need
to change Mæγ pxq. This can only be done if there is some element in Ms which is
below γpxq which can be put into M ´Ms. We refer to this as coding. The e-state
machinery puts lots of elements from Mt into Mt`1, so we must be careful to leave
enough elements to cope with this coding. For example, even for the 0-state, i.e.
for a single requirement, all of the elements in W0,sXMs might be bigger than γp0q
so we could not code 0 entering A.

We only do this e-state action when we can use the jump computation to tell us
that we are safe, and few elements will enter A.

198 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

For One requirement R0 We have some part of the jump we control using the
recursion theorem say JApxgp0q, jy | j P Nu. Jump computations on this have an
approximation (known in advance) JApxgp0q, jyqrss changing at most hpxgp0q, jyq
many times. Anticipating things somewhat we write that as fA0 pjqrss and the mind
change number np0, jq.

For a single requirement, set aside a block of elements B1 with at least np0, 0q`1
many elements which we don’t raise the 0-state of. When we see at least np0, 1q`1
many elements (ą maxB1) in the high state, the plan is to use these for B2 and we
define fA0 p0qrss Ó, with huge use s, and wait for the approximation to be confirmed.
We define the interval I1 “ rmaxB1, ss, and . We no longer code below maxB1.

Now we declare that B1 will code I1, and dump all elements not in B1\B2 below
s0 “ s into Ms`1 ´Ms.

Each time some element enters A between maxB1 and max I1 we redefine the
jump on argument 0 with use s0 and on recovery we code all such this using an
element in B1.

We repeat the process planning to use B2 to code some interval rmax I1, s1s “ I2.
Now the coding is in the high state That is, we’s wait for at least np0, 2q ` 1

many elements in the high state (and these must be ą max I1) for block B3, etc.
So block Bn looks after In.

For more than one states, this is done inductively. First note that B1 might
never be used as maybe the 0-state is not well-resided in M . So there would need
to be a version of “B1 for R1 guessing R0 is inactive” and working in the same way
as above for R0, and getting re-stated each time the 0 state acts up.

There would be a version of R1 guessing R0 is infinitely often active. This
demands that B2 above would have a part of its block devoted to B881 . It is only
used when we see enough elements in state 88 and these are verified by a part of
the jump we build for this guess fA88p1q. �

The key insight is that all of the definitions above are wtt-jump computations, in
that the use never changes once defined. That is, the proof only needs the following
new concept:

Definition 6.2. We say that A is wtt-sl (wtt-superlow) iff ĴA is ω-c.a., where Ĵ is
the partial wtt-jump.

Here to define the wtt-jump, we can list all wtt-precedures via pairs pΦe, ϕeq.
And then allow ΦXe peq Ó if the use is bounded by ϕe. Note that saying something
is wtt-sl is to say that the value of the the wtt-jump relative to A is ďwtt H

1. The
proof above gives the followling.

Theorem 6.3 (Ambos-Spies, Downey and Monath). A ďibT M for M maximal if
A is c.e. and wtt-sl.

The wtt-jump is quite different from the Turing one. For example we have the
following:

Theorem 6.4 (Ambos-Spies, Downey and Monath). There are wtt-sl Turing com-
plete c.e. sets.

In fact, Ambos-Spies, Downey and Monath (in preparation) have shown that if
we define A to be wtt strongly superlow to mean that the wtt jump is wtt-reducible

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 199

to H1 with arbitarily slow growing use, then the Turing degree of H1 contains
wtt-strongly superlow c.e. sets.

6.1. The characterization. A modified version works for the following.

Definition 6.5. A is eventually uniformly wtt-array computable iff there are com-
putable functions k, g and h, with kpn, sq ď kpn, s ` 1q ď 1, lims kpn, sq exists for
all n such that
(1) lims gpx, sq “ ĴApxq for all x.
(2) kpn, sq ď kpn, s` 1q ď 1, lims kpn, sq exists for all n
(3) If kpx, sq “ 1 then gpx, tq has at most hpxq further mind changes for t ą s

(hence wlog kpx, tq “ 1 for all t ą s).

(4) If ĴApxe, yyq Ó for all y, then for almost all s, lims kpxe, yy, sq “ 1.

More or less the same proof gives one direction of:

Theorem 6.6 (Ambos-Spies, Downey and Monath). For a c.e. A, A ďibT M iff
A ďwtt M for M maximal iff A is eventually uniformly wtt-array computable.

Proof. We also sketch a proof of the other direction.
‚ Suppose that ΓM “ A, and A not eventually uniformly wtt-ac. Choose
hpnq “ 2n for simplicity.

‚ Let `psq “ maxtz |ď yΓMæz“ Aæz rssu.
Our assumptions about the enumerations of A, M and the jump are that once
`psq ą n, if As`1pnq ‰ Aspnq, Ms`1æγ pnq ‰ Msæγ pnq. We know that for any

approximation for the wtt-jump gpxe, xy, sq there will be total Φ̂Ae pxq changing more
than hpxe, xyqmany times on infinitely many x. Initially we can have kpxe, xy, sq “ 0
for all e, x and keep it like this unless told otherwise for t ą s. The approximation
gpxe, xy, sq is the natural one observing halting computations.

For each e carry out the following construction. When we see Φ̂Ae p0q Ó rss let

Ie0 “ r0, γpφep0qqq. Without loss of generality, the Φ̂Ae ’s are monotone, and we
can continue Ie1 “ rγpφep0qq, γpφep1qqq, defining a sequence of disjoint e-intervals
tIen | n P Nu. If ever we see |Ms X r0,max Ienq| ă 2xe,ny, define kpxe, ny, sq “ 1.
(Note that this ensures kpxe, ny, tq “ 1 for all t ą s, also).

The assumption is that ΓM “ A, and M is maximal. Notice that if we define
kpxe, ny, sq “ 1, Aæφepnq can change only ă 2xe,ny “ hpxe, nyq many times, since
each change induces a change in Mæγ pφepnqq and hence Mæmax I

e
n. There are not

enough elements to enter M ´Ms for this to happen more than 2xe,ny ´ 1 many
times. So 3 of Definition 6.5 holds.

Now suppose that Φ̂Ae is total. Then for each n, we define Ien. Moreover, since
M is maximal, we know that for almost all n, |M X Ine | ď 1. Thus, for almost all

n, there is an s with |MsX r0,max Ienq| ă 2n ď 2xe,ny, and hence for all e with Φ̂e
A

total, and for almost all n, s, kpxe, ny, sq “ 1.
Therefore A is eventually uniformly wtt-ac, a contradiction. �

We remark that the same argument works for other classes of c.e. sets in place
of maximal sets including dense simple, and hh-simple sets.

This result says that we should further work towards understanding approxima-
tions to wtt-functionals.

Ambos-Spies, Downey and Monath have some modest progress in this area.

200 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Theorem 6.7 (Ambos-Spies, Downey and Monath). Let A ďwtt B be any sets.
Then if B is eventually uniformly wtt-array computable, so is A.

Interestingly, for c.e. sets, the class is closed under join:

Theorem 6.8 (Ambos-Spies, Downey and Monath). If A and B are eventually
uniformly wtt-array computable c.e. sets then so is A‘B.

Hence, the wtt-degrees of eventually uniformly wtt-array computable c.e. sets
form an ideal in the wtt degrees.

We can also explore connections between wtt-jump traceability and wtt-
superlowness, depending on the growth rate of orders, in the same was as we
have seen for the jump tracinng hierarchy. That is, classically we would say that A
is h-jump traceable iff there is a computable collection of c.e. sets tWfpnq | n P ωu

and |Wfpnq| ď hpnq such that if JApnq Ó, then JApnq P Wfpnq. Then A is strongly
jump traceable if A is jump traceable for all orders h. This is a fascinating class
of reals associated with algorithmic randomness (see [24, 36]). We can pursue the

same for Ĵ in place of J . Some preliminary results and other results about analogs
of strong jump traceability can be found in Monath’s Thesis [51].

7. Proof of Theorem 5.6

Now we detail the construction to prove Theorem 5.6. The result will follow
from an application of the Recursion Theorem to the argument below.

We build a set A for a given W such that degT pAq is totally ω-c.a. and
degT pA‘W q is not maximal totally ω2-c.a. To ensure A has the desired properties
we meet the following set of requirements:
‚ NΦ: If ΦpAq is total then ΦpAq is ω-c.a.
‚ PΨ: If ΨpA,W,Qq is total then either it is ω2-c.a. or ΓΨpA,W q is total and

not ω2-c.a. Subrequirements:
– PΨ,k: ΓΨpA,W q ‰ fk where fk is the kth ω2 c.a. function, along with

its approximation xfks , o
k
sy

‚ RΘ: ΘpA,W q ‰ Q or ∆ΘpA,W q is not ω2-c.a. Subrequirements:
– RΘ,k: ∆ΘpA,W q ‰ fk where fk is the kth ω2 c.a. function, along with

its approximation xfks , o
k
sy

7.1. Glossary. Here we give a glossary of terms that will be used in this chapter
as well as the following chapter. These terms will be introduced during the technical
discussion.
‚ π is a node working for an NΦ requirement.
‚ τ is a node working for a PΨ requirement. A daughter of τ works for require-

ment PΨ,k for some k ă ω. A son of τ is a ζk node for some k ă ω.
‚ ρ is a node working for a PΨ,k requirement. τ is the parent of ρ is τ works for

requirement PΨ.
‚ η is a node working for an RΘ requirement. A daughter of η works for require-

ment RΘ,k for some k ă ω. A son of η is an ξk node for some k ă ω.
‚ µ is a node working for an RΘ,k requirement. η is the parent of µ is η works

for requirement RΘ.
‚ trspρ, xq is the tracker for pρ, xq at stage s. We sometimes use the notation
trspxq when it is clear which ρ this refers to.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 201

‚ acspµq is the anchor for µ at stage s and flspµq is the follower for µ at stage
s.

‚ prospµq is a set of pρ, xq that µ protects.
‚ prospρ̂, x̂q is a set of pρ, xq that pρ̂, x̂q protects.
‚ xfαs , o

α
s ysăω is the ordinal approximation given by an α node, where α is either

a µ or ρ node. oρspzq has the form oρspzq “ ω ¨ dρspzq ` b
ρ
spzq.

‚ ΓΨpA,W q “ Γτ pA,W q “ ΓρpA,W q and Ψτ pA,W,Qq “ ΨρpA,W,Qq if τ works
for requirement PΨ and ρ is a daughter of τ . Similarly ∆ΘpA,W q “ ∆ηpA,W q “ ∆µpA,W q
and ΘηpA,W q “ ΘµpA,W q if η works for requirement RΘ and µ is a daughter
of η.

‚ Ispρ, xq is a set of elements from ω such that x is the least element in the set
and every other x1 P Ispρ, xq has been declared taken over by x at some stage
t ă s.

‚ Cspρq is the set of inputs x that have been established and not taken over
for ρ. C0pρq “ H and then at each stage ρ̂ 8 is accessible, a new input x is
established. As inputs are taken over we remove them from Cspρq so this set
contains the least input from every interval for ρ.

‚ When pρ, xq is invented means the first tracker for x has been appointed, we
call this tracker the original tracker for x, denoted origpxq.

‚ pρ, xq is established once there has been a ρ-expansionary stage since the in-
vention of x.

‚ We call pρ, xq corrupted while the tracker of x is not the original tracker of x.
This happens when a µ node enumerates a number into Q.

‚ pρ, xq fully corrupted means there has been a ρ-expansionary stage after the
corruption of x, this means the ordinal for the new tracker has been revealed.

‚ If pρ, xq is uncorrupted then the new tracker, that was appointed after corrup-
tion, has been replaced by the original tracker. Then happens when there is a
relatively small A or W change that allows us to use the orginal tracker after
corruption.

‚ Suppose x is corrupted. Then the corrupting µ is the µ node that enumerated
a number into Q at the stage x is declared corrupted. The corrupting q is the
number that the corrupting µ enumerated into Q.

‚ We declare pρ, xq to start an attack at the start of the stage. We say pρ, xq
is fully in an attack once there has been a τ -expansionary stage during the
attack. Note that Γτ pA,W, trpρ, xqq Ò while pρ, xq is in an attack but not yet
fully in an attack.

‚ ψρs pIspρ, xqq “ maxtψρs pxq : x P Ispρ, xqu
‚ Define #t to be the largest number used by the construction at stage t.
‚ precpαq is the set of τ such that there is ζk Òĺ α where ζk is a son of τ .
‚ A node µ believes Ψτ pA,W,Qq is total if µ ą ρ̂ 8 where ρ is a daughter of τ .
‚ A node µ believes dom Ψτ pA,W,Qq “ k if µ ą ζk Ò where ζk is a son of τ .
‚ When τ carries out a request or passes a request on to some τ̂ we say that it

acts on the request.
‚ pρ, xq requires protection from µ at stage s if x P Cspρq, pρ, xq is not currently

in an attack and one of the following holds:
– ρ̂ 8 ĺ µ
– ρ is to the left of µ and µ believes ΨρpA,W,Qq is total

202 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

– ρ is to the left of µ and µ believes dom ΨρpA,W,Qq “ k and Ispρ, xq Ď k

7.2. Technical discussion. First consider the requirement RΘ. If ΘpA,W q is not
total then we have met the requirement, otherwise we build a functional ∆ΘpA,W q.
If ΘpA,W q is total and ∆ΘpA,W q is ω2-c.a. then we need to enumerate a set Q
such that ΘpA,W q ‰ Q. A node on the tree of strategies working for requirement
RΘ is denoted η. η guesses whether ΘpA,W q is total by looking at the length of
dom ΘpA,W q. η nodes have two outcomes, one that believes dom ΘpA,W q goes to
infinity and the other believes dom ΘpA,W q is finite. Below the finite outcome we
do not need to act for this requirement as if this is the correct outcome then we
have met the requirement. At stages that we believe the infinite outcome we need
to build an initial segment of the functional ∆ΘpA,W q. Below the infinite outcome
we need to guess if ∆ΘpA,W q is ω2-c.a. This gives subrequirements RΘ,k which
guess whether ∆ΘpA,W q “ fk or not, where fk is the kth ω2 c.a. function. The
nodes working for subrequirements are called children of η and are denoted µ. µ
nodes have two outcomes, one that believes ∆ΘpA,W q “ fk and the other believes
∆ΘpA,W q ‰ fk. Now notice that children of η are only on the tree below the infi-
nite outcome of η. Also notice that below the outcome of child node that believes
∆ΘpA,W q “ fk we do not need to place any more children of η. Now at stages
where we believe that ∆ΘpA,W q is ω2-c.a., which is indicated by the infinite out-
come of a µ node, we need to ensure that ΘpA,W q ‰ Q. To diagonalise we appoint
a follower q and then at stages s where we see ΘpA,W, qqrss “ 0, we enumerate q
into Q. Now suppose we enumerated q into Q at stage s because ΘpA,W, qqrss “ 0.
Notice that if there is an A or W change below the use θspqq after stage s, the
computation ΘpA,W, qqrss is injured, so it is possible that ΘpA,W, qq “ 1; hence
our diagonalisation has failed. If this happens we appoint a new follower and make
another attempt to diagonalise. Now to guarantee that diagonalisation is successful
we need to ensure that only finitely many followers are appointed. To do this we ap-
point an anchor p which will serve many followers and use the fact that ∆ΘpA,W q
is ω2-c.a. So when we define the computation ∆ΘpA,W, pq we define it with use
at least θpqq, where q is the current follower. Now when we enumerate q into Q
because we have seen ΘpA,W, qqrss “ 0, if here is an A or W change below the use
of this computation then it is also below the use of the computation ∆ΘpA,W, pq.
Now since ∆ΘpA,W q is ω2-c.a., the ordinal of the ω2-computable approximation
must decrease. This can only happen finitely many times; hence only finitely many
followers are appointed and the last follower must be successful.

Now consider the requirement PΨ. Similar to the R requirements, if ΨpA,W,Qq
is not total then we have met the requirement, otherwise we build a functional
ΓΨpA,W q. Then if ΨpA,W,Qq is total and ΓΨpA,W q is ω2-c.a. then we need to
show that ΨpA,W,Qq is also ω2-c.a. A node on the tree of strategies working
for requirement PΨ is denoted τ . A τ node guesses whether ΨpA,W,Qq is total
or not by looking at the length of dom ΨpA,W,Qq. These τ nodes work in the
same way as the η nodes. At stages that we believe the infinite outcome we need
to build an initial segment of the functional ΓΨpA,W q. Then below the infinite
outcome we need to guess if ΓΨpA,W q is ω2-c.a. So similar to the R requirements,
we get subrequirements guessing whether ΓΨpA,W q “ fk or not. Nodes working
for these subrequirements are called children of τ and are denoted ρ. ρ nodes
have two outcomes similar to µ nodes. If ΓΨpA,W q is ω2-c.a. then there is a ρ

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 203

node which guesses ΓΨpA,W q “ fk. Then this ρ node gives us an ω2-computable
approximation xfρs , o

ρ
sy. So for each z ă ω there is an ordinal oρspzq with the form

ω ¨ dρspzq ` bρspzq. Now to show ΨpA,W,Qq is ω2-c.a. we need to define an ω2-
computable approximation for ΨpA,W,Qq. For each x ă ω we need to define a
non-increasing sequence of ordinals oΨ

s pxq of the form ω ¨mΨ
s pxq ` k

Ψ
s pxq such that

if ΨpA,W,Q, xqrs ` 1s ‰ ΨpA,W,Q, xqrss then oΨ
s`1pxq ă oΨ

s pxq. To do this we
appoint a tracker for each x ă ω, trpxq, once we have appointed a tracker for x
we say x has been invented. When we first issue an ordinal to x we say x has
been established. Fix x and let z be the tracker of x. First assume Q is empty.
When we define the computation ΓΨpA,W, zq at stage s we define it with use at
least ψspxq. Now if ΨpA,W,Q, xqrs ` 1s ‰ ΨpA,W,Q, xqrss, then there has been
some change below the use ψspxq. Since γspzq ě ψspxq and Q is empty, it follows
that ΓΨpA,W, zqrs` 1s ‰ ΓΨpA,W, zqrss; hence oρs`1pzq ă oρspzq. Then we see that

we can just follow the ordinal of the tracker. So if we define mΨ
s pxq “ dρspzq and

kΨ
s pxq “ bρspzq then this gives us an ω2-computable approximation for ΨpA,W,Qq.

So now we need to consider how R requirements enumerating numbers into
Q affect the P requirements. Fix x and let z be the tracker of x. Suppose at
stage s an R requirement enumerates its follower q into Q and q ă ψspxq. Now
ΨpA,W,Q, xqrs`1s ‰ ΨpA,W,Q, xqrss but it could be that ΓΨpA,W, zqrs`1s “ ΓΨpA,W, zqrss
and ψs`1pxq ą γs`1pzq. Then the current tracker is useless, so we need to appoint
a new tracker z1 and we declare that x is corrupted. Now this new tracker has an
ordinal oρspz

1q “ ω ¨ dρspz
1q ` bρspz

1q. But it is quite possible the dρspz
1q ą dρspzq,

so we cannot just follow the ordinal of the new tracker like our previous strategy.
Instead, when x gets corrupted we decrease mΨpxq by one and this allows us to
define a new large value for kΨpxq, so we define kΨpxq “ dρpz1q. Now consider
what happens if there is a W change below ψpxq. Now oρpz1q must have decreased
since this change was also below γpz1q but it could be that dρspz

1q has not changed.
But now kΨpxq “ dρpz1q and we need to see a decrease in kΨpxq. So we begin an
attack where we lift the use γpz1q to be large and enumerate this into A. Each time
we do this we will see the ordinal oρpz1q decrease, so eventually we will see dρpz1q
decrease and this gives us the decrease in kΨpxq that we needed.

Now suppose x has been corrupted and let origpxq be the original tracker for x.
If there is a stage t such that ΓΨpA,W, origpxqqrts Ò then we are able to once again
define the use of this computation to be at least the use ψpxq; hence we can use
origpxq as the tracker for x once again. If this happens then we call x uncorrupted.
Once x is uncorrupted then we decrease mΨpxq by one and define kΨpxq to be
bρporigpxqq and go back to following the ordinal of the original tracker as discussed
while Q was empty. We can continue to do this until there is another stage where
a number enters Q below ψpxq.

To meet the N requirements we first need to guess whether ΦpAq is total or
not, we do this in the same way as the P and R requirements. If ΦpAq is not
total then we are done with the requirement, otherwise we need to show that
ΦpAq is ω-c.a. First consider the interaction of only one P requirement with an
N requirement. Now when y is established, at stage s, we can see the ordinal,
osptrpxqq “ ω ¨dsptrpxqq`bsptrpxqq, for established inputs x. Now if x has already
been corrupted then if there is a W change an attack could start and this attack
puts at most bsptrpxqq numbers into A. Since this number has been seen by y when

204 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

it was established we can allow injury from this attack. Notice that if we did let
an attack beat the ordinal all the way down y has no idea how many injuries this
could cause because at stage s all it can incorporate into its ordinal is bsptrpxqq;
hence we can see that is important that we stop attacking once dpzq has decreased
by one. Once this attack finishes we cannot let any future pρ, xq attack injure
ΦpA, yq because we had not seen the bound for any future pρ, xq attacks when y
was established.

Consider the interaction between two P requirements. We only start an attack
when there is a W change; hence we need to be able to control how one P require-
ment could cause an A enumeration that could injure the computation of another P
requirement. Now recall that since we are done if A‘W is not totally ω2-c.a. which
allows us to be able avoid having another parent node on the tree between a parent
and its child. Hence if ρ̂ ľ ρ̂ 8 then τ̂ ľ ρ̂ 8. This is very useful because this way
τ̂ can see that ΓpA,W q is totally ω2-c.a. So during an attack it can define a set of
inputs that it must protect, denote this set by propρ̂, x̂q. Now if there is an A or W
change below ψpxq then we get to lift γρ̂pẑq to be large at the next τ̂ -expansionary
stage. Since τ̂ ľ τˆ8 then we have seen ΨpA,W,Q, xq recover; hence we can ensure
γρ̂pẑq ą ψpxq. We can lift γρ̂pẑq to be large when this happens because τ̂ can see
that ΓpA,W q is totally ω2-c.a.; hence we know this happens finitely often and so
this cannot send the use to infinity.

A τ node guesses whether ΨpA,W,Qq is total by measuring the length of the
domain. But notice that it could be that dom ΨpA,W,Qq goes to infinity but there
could be an input with unbounded use. If this happens then ΨpA,W,Qq is not total.
In this situation it is clear that ΓpA,W q will not be ω2-c.a. Above we discussed
that along the path containing the finite outcome of all the children of a P or R
requirement shows that A‘W is not totally ω2-c.a. but this is not entirely true since
it could be that ΨpA,W,Qq is actually not total due to the reason above. Therefore
we see we also need nodes that check whether there is an input with unbounded
use; this is a 03 feature of the construction. We cannot measure this using a single
node (unless we allow nodes with ω ` 2 outcomes so we spread nodes, denoted ζk,
down the tree each measuring whether the computation ΨpA,W,Q, kq converges or
not for a fixed k. We call these nodes sons and the children discussed previously
are referred to as daughters. We place son nodes down with k increasing as we go
down the tree; hence we are also able to determine the least point where ΨpA,W,Qq
diverges. Notice that R requirements will also need to have sons nodes on the tree.
Similarly they will measure whether the computation ΘpA,W, kq converges or not
for a fixed k.

Now back to considering the interaction between the R and P requirements. We
need to decrease mpxq by one each time a number enters Q below ψpxq. Then
we need to know how many times this can happen when we established x. Let
η be a node working for an R requirement and let τ be a node working for a P
requirement. Let µ and ρ be children of η and τ respectively. When x is established
it can look to see which µ ą ρ̂ 8 currently have followers appointed and then this
could tell us how many times we need to decrease mpxq by one. For this to work
we need to make sure that these are the only enumerations into Q that can injure
ΨpA,W,Q, xq. First consider the case where η ľ ρ̂ 8. Suppose µ is not allowed
to injure ΨpA,W,Q, xq, then µ needs to protect pρ, xq. Now η ľ ρ̂ 8 so η knows

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 205

ΓpA,W q is ω2-c.a. Then we are able to define δppq ě γpzq because we know that
this cannot drive the use to infinity. Now whenever ∆pA,W, pq Ò we are able to
appoint a new large follower. So now whenever there is a change below γpzq, we
are able to appoint a new large follower; hence we can ensure q ą ψpxq. Now
consider µ to the right of ρ̂ 8. Now due to the way we arrange the tree, η must
extend a child of τ . If η extends a daughter of τ , then η believes ΓpA,W q is total
so we are able to protect pρ, xq. But if η extends a son of τ , then η believes that
dom ΨpA,W,Qq “ k. In this case we are able to protect pρ, xq if x ă k. If x ě k
then we are not able to protect because we cannot define δppq ě γpzq as this would
drive δppq to infinity.

So consider the case where η believes that dom ΨpA,W,Qq “ k and x ě k. If η
is correct then the computation ΨpA,W,Q, xq changes infinitely often. We want to
set things up so that the enumeration by µ does not corrupt ΨpA,W,Q, xq. Now
notice that µ is only accessible at a stage where there has been a change in this
computation and µ is initialised at every ρ-expansionary stage (this is because µ
is to the right of ρ). Then an enumeration by µ is invisible to ρ because this will
only happen along with some other change since the last ρ-expansionary stage. So
when it comes to the ordinal counting the Q change is invisible. But notice that
ΓpA,W, zq Ó at the stage µ enumerates q into Q. Then although the Q change
did not cause a problem with the counting, the Q change still renders the current
tracker useless; hence this enumeration still corrupts x. Now since the computation
ΨpA,W,Q, xq changes infinitely often there are also infinitely many stages such that
ΓpA,W, zqrss Ò. So the strategy is to wait for a stage where ΓpA,W, zqrss Ò and
then at this stage we can enumerate q into Q. This ensures that we do not need
to replace the tracker because we are able to define ΓpA,W, zq after the Q change.
To do this µ sends a request token to τ at the stage µ sees ΘpA,W, qqrss “ 0.
Then at the next τ -expansionary stage such that there has been a change in the
computation ΨpA,W,Q, xq since the last τ -expansionary stage then τ enumerates
q into Q for µ and we leave ΓpA,W, zqrss Ò. Notice that if µ is correct then we must
eventually see a change in the computation ΨpA,W,Q, xq, so we will eventually
successfully enumerate q into Q. So when a new follower for µ is appointed after
an enumeration into Q or after initialisation, we define a set propµq containing all
pρ, xq such that x has already been established and either µ extends some daughter
of τ or µ extends a son of τ and x ă k. Notice that when we have multiple P
requirements τ may need to pass the request on to another τ̂ node if τ believes

dom Ψτ̂ pA,W,Qq “ k̂.
When we first appoint the anchor for µ, p, we define the set of protected pρ, xq,

prospµq. We redefine the set of protected pρ, xq at any stage we appoint a new
follower due to a failed diagonalisation attempt (this is a stage where we see an
A or W change below δppq and the current follower is in Q). At stages where
we redefine prospµq we include all established pρ, xq such that ρ̂ 8 ĺ µ. Now we
also halt and initialise weaker nodes when we do this. So notice that every time a
protected set for any µ is defined, there is a different least element for every pρ, xq
such that ρ̂ 8 ĺ µ. Now when µ enumerates a number into Q at stage s, for each
ρ such that ρ̂ 8 ĺ µ, we can declare the least x such that pρ, xq R prospµq to
be corrupted and x can take over all established x1 ą x. Then because this least
x is unique to this enumeration, every x is only corrupted once. We choose to

206 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

declare the least unprotected x to be corrupted even when q ą ψpxq, to ensure x
is only declared corrupted once. Also notice that if x is the least corrupted by an
enumeration by µ at stage s then x was invented at the stage prospµq was defined.

Consider two P subrequirements such that pρ, xq is currently in an attack,
ρ̂ ľ ρ̂ 8, x̂ is corrupted and pρ̂, x̂q R prospρ, xq. Suppose pρ, xq enumerates a
number into A at stage s. pρ̂, x̂q R prospρ, xq so x̂ was established after prospρ, xq
was defined. Note that nodes to the right of ρ are initialised at every stage γpzq
is lifted large. Now x̂ is corrupted at stage s so the µ that corrupts x̂ must be
accessible during the pρ, xq attack; hence µ is to the right of ρ. This means that
µ is initialised at every stage γpzq is lifted large. Since protpµq was defined at the
stage x̂ was invented, it follows that γpzq was last lifted large before x̂ was estab-
lished. Notice that this means the number that pρ, xq enumerates into A at stage
s is relatively small to pρ̂, x̂q. So if we define the use of γρ̂ptrpx̂qq to be large at
the first τ̂ -expansionary stage after x̂ was invented, then the enumeration at stage
s uncorrupts x̂. Now notice that by doing this if there is ever an A change below
ψpxq while corrupted, this A change must be small enough to uncorrupt x.
z acts as a tracker for x when γspzq ě ψspxq. So notice that z could act as a

tracker for many x. We just need to ensure that ΓΨpA,W q is total, so we need to
ensure z is the tracker for finitely many x. So now we consider z as a tracker for
an interval rather than for a single input. Corruption and attacks are actions that
can only happen finitely often for each x so we choose these stages to allow use to
increase the size of the interval z acts as a tracker for. Each interval has a least
element, we call all other inputs in the interval taken over by the least element.

7.3. Tree of strategies. Consider a parent node (τ or η), below the finite outcome
the parent does not have any children and below the infinite outcome we will start
assigning nodes to be children of this parent node, alternating between daughters
and sons. We call a parent node closed below the finite outcome of the parent as
well as below the infinite outcome of a daughter and the divergent outcome of a
son. Once the parent is closed, we stop assigning nodes to be children of this parent
and we move to the next parent, alternating between τ and η. We need to ensure
there is a node working for every NΦ on every path, so to do this we assign every
node of even length to work for an N requirement.

7.4. Assigning requirements. List all functionals in order type ω. Then we
assign requirements by induction. Let λ be the root of the tree. Assign λ to
working for requirement PΨ where Ψ is the first functional on the list. Now let β
be the longest node such that β ă α and β is not a node working for NΦ. Then we
assign a requirement to α as follows:

Let α be a node of length l, then if l is odd then let γ be the longest node such
that γ ă α and γ is a node working for NΦ̂. Now assign α to work for requirement

NΦ, where Φ is the next functional on the list after Φ̂. Otherwise find which of the
following cases apply:

Case 1. β is a node working for PΨ.
‚ If βˆ8 ĺ α, then let α be a node working for requirement PΨ,0.
‚ If β f̂in ĺ α, then let α be a node working for requirement RΘ where Θ “ Ψ.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 207

Case 2. β is a node working for PΨ,k.
‚ If βˆ8 ĺ α, then let α be a node working for requirement RΘ where Θ “ Ψ.
‚ If β f̂in ĺ α, then let α be a ζk node, son of PΨ.

Case 3. β is a ζk node, son of PΨ.
‚ If βˆ Òĺ α, then let α be a node working for requirement RΘ where Θ “ Ψ.
‚ If βˆ Óĺ α, then let α be a node working for PΨ,k`1.

Case 4. β is a node working for RΘ.
‚ If βˆ8 ĺ α, then let α be a node working for requirement RΨ,0.
‚ If β f̂in ĺ α, then let α be a node working for requirement PΨ where Ψ is the

next functional on the list after Θ.

Case 5. β is a node working for RΘ,k.
‚ If βˆ8 ĺ α, then let α be a node working for requirement PΨ where Ψ is the

next functional on the list after Θ.
‚ If β f̂in ĺ α, then let α be a ξk node, son of RΘ.

Case 6. β is an ξk node, son of RΘ.
‚ If βˆ Òĺ α, then let α be a node working for requirement PΨ where Ψ is the

next functional on the list after Θ.
‚ If βˆ Óĺ α, then let α be a node working for RΘ,k`1.

7.5. Types of nodes. There are seven types of nodes. These have been discussed
in the technical discussion; here we give a summary of the action each node takes.

Nodes working for requirement NΦ are denoted π and have outcomes 8 ă fin.
π nodes measure the length of the domain of ΦpAq. At πˆ8 stages we establish a
new input y. When y is established we define the first ordinal for the ω-computable
approximation for ΦπpA, yq.

Nodes working for requirement RΘ are denoted η. η nodes have outcomes
8 ă fin. η nodes measure the length of the domain of ΘpA,W q and at stages
where η believes ΘpA,W q is total it will define an initial segment of ∆ηpA,W q. η
also checks whether any of its children need their current follower replaced by a
new one. Note that we need to do this at η because we need to define δppq ě θpqq,
where p is the anchor and q is the follower.

Nodes working for requirement RΘ,k, denoted µ, are called daughter nodes,
placed on the tree below its parent η. µ nodes have outcomes 8 ă fin. µ nodes
have an anchor p “ acspµq and a follower q “ flspµq and enumerate numbers into
Q to diagonalise. If µ extends the divergent outcome of a son of τ , µ will send a
request for the enumeration of a follower into Q instead of doing the enumeration
itself. When we appoint the first follower for µ we define the set of pρ, xq that µ
must protect, propµq. Then at stages we appoint a new follower after a previous
enumeration we redefine this set. When we enumerate a number into Q we declare
pρ, xq that are not protected by µ to be corrupted.

ξk nodes are called sons of η. A ξk node measures whether ΘηpA,W, kq converges
or diverges. ξk nodes have outcomes ÒăÓ.

Nodes working for requirement PΨ are denoted τ and have outcomes 8 ă fin.
A τ node measures the length of the domain of ΨpA,W,Qq. At stages where τ
believes ΨpA,W,Qq is total it will define an initial segment of Γτ pA,W q. τ also

208 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

has the job of dealing with requests from µ nodes below the divergent outcome of
a son of τ .

Nodes working for requirement PΨ,k, denoted ρ, are called daughter nodes, placed
on the tree below the infinite outcome of its parent τ . ρ nodes have outcomes
8 ă fin. At ρ-expansionary stages a new input, x, is invented, this means we give
x a tracker trspxq, this is the first tracker for x which we also denote origpxq. At the
next ρ-expansionary stage x is established, at this stage we define the first ordinal for
the ω2-computable approximation for ΨpA,W,Q, xq, oΨ

t pxq. So z “ trspxq means
z is the tracker for x at stage s, but also the tracker for all inputs that have been
taken over by x. When an input is taken over by x, it is added to the interval Ipxq.
So at stage s, z is the tracker for all inputs in Ispxq. For action on the interval Ipxq
we refer to action on the least input in that interval. Cspρq denotes the collection of
these inputs that have been established but not taken over. While x is corrupted
pρ, xq will start an attack if there is a W change below ψpIpxqq. While pρ, xq is in an
attack it will define the set of pρ̂, x̂q that pρ, xq must protect, propρ, xq; this will be
updated after each enumeration into A. Now notice we only update the ordinal for
x, oΨ

s pxq, at ρ-expansionary stages. This means that when x is declared corrupted,
we do not decrease the ordinal until the next ρ-expansionary stage. So if there is a
W change below ψspIpxqq between the stage x is declared corrupted and the next
ρ-expansionary stage we do not need to start an attack. At the first ρ-expansionary
stage after x is declared corrupted we declare x to be fully corrupted. Note that
we do not see the ordinal for the new tracker until x has been declared to be fully
corrupted. Similarly, we do not see the new ordinal after finishing an attack until
the next ρ-expansionary stage after the attack was declared finished. We declare a
pρ, xq attack to be finished at a τ node, so we will not see the new ordinal until the
next ρ-expansionary stage; hence we do not want to start another attack between
the stage the attack is declared finished and the next ρ-expansionary stage.

ζk nodes are called sons of τ . A ζk node measures whether Ψτ pA,W,Q, kq
converges or diverges. ζk nodes have outcomes tÒ, Óu with ÒăÓ.

Note that we may assume that all computations we define have non-decreasing
use.

7.6. Construction. At the beginning of each stage s we check if any pρ, xq needs
declaring uncorrupted or needs to start an attack. Let ρ be a node working
for requirement PΨ,k and let x be such that x P Cspρq and x is corrupted. If
ΓρpA,W, origpxqqrss Ò, then define trs`1pρ, xq “ origpρ, xq and declare x to be
uncorrupted.

If pρ, xq has not been uncorrupted then let u “ ψρs´1pIs´1pρ, xqq. pρ, xq wants to
attack if all of the following hold:
‚ Ws´1 æ u ‰Ws æ u
‚ pρ, xq is not currently in an attack
‚ pρ, xq is fully corrupted
‚ pρ, xq was not in an attack at the last ρ-expansionary stage

If pρ, xq wants to attack and there is no pρ̂, x̂q to its left that wants to attack, then
declare pρ, xq to begin an attack.

If an attack has been started or an x has been declared uncorrupted then halt
the stage and initialise all nodes to the right of ρ̂ 8. For each such pρ, xq declare all

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 209

established x1 ą x taken over by x. Formally, define Cs`1pρq “ ty ď x : y P Cspρqu
and for established z ě x, Is`1pzq “ ty P Ispwq : w P Cspρq and w ď xu, and for
z ă x Is`1pzq “ Ispzq.

If the stage has not been halted then let the collection of accessible nodes δs be
an initial segment of the tree of strategies. δs is defined by recursion; the root of
the tree is in δs, then the action of each node defines the next accessible node.

If a π node is accessible at stage s. Let t ă s be the last stage πˆ8 was
accessible, t “ 0 if there was no such stage. If dom ΦπpAsq ă #t then π f̂in is
accessible; otherwise πˆ8 is accessible. If πˆ8 is accessible, then declare the least
y that has not already been established to be established.

If a τ node is accessible at stage s. Let t ă s be the last τ -expansionary
stage, t “ 0 if there was no such stage. If dom Ψτ pA,W,Qqrss ă #t then τ f̂in is
accessible; otherwise s is a τ -expansionary stage.

If s is a τ -expansionary stage and there is a request token on τ from a µ node,
then µ ą ζk Ò for some son, ζk, of τ . If ∆µpA,W, pqrss Ò then cancel the request.
If the request has not been cancelled and the computation Ψτ pA,W,Q, kqrts does
not hold at stage s, then:
‚ If precpτq “ H then carry out the request by enumerating q “ flspµq into
Qs`1. Declare pρ, xq corrupted if ρ̂ 8 ă µ, x P Cspρq and pρ, xq R prospµq. For
each ρ let x be the least declared corrupted, then declare all established x1 ą x
taken over by x. If pρ, xq has been declared corrupted and has not been taken
over, then define a new large tracker trs`1pρ, xq for x, halt and initialise all
nodes weaker than µˆ8.

‚ Otherwise move the request token to the longest τ̂ P precpτq, halt and initialise
all nodes weaker than µˆ8.

If the stage has not been halted, then let ρ be a daughter of τ and z “ trspρ, xq
for x P Cspρq. If Γτ pA,W, zqrss Ò then do the first of the following that applies:
‚ If pρ, xq is not in an attack then:

– If x was invented at stage t, define Γτ,s`1pAs,Ws, zq “ s with large use.
– Otherwise define Γτ,s`1pAs,Ws, zq “ s with use ψρs pIspρ, xqq.

‚ Let r be the stage pρ, xq began its attack. If dρrpzq ą dρspzq then define
pros`1pρ, xq to be the empty set, declare the pρ, xq attack to be finished and
define Γτ,s`1pAs,Ws, zq “ s with use ψρs pIspρ, xqq.

‚ If pρ, xq was not in an attack at stage t (the last τ -expansionary stage), then
declare pρ, xq to be fully in an attack and define Γτ,s`1pAs,Ws, zq “ s with
large use and define pros`1pρ, xq to be the set of pρ̂, x̂q such that x̂ P Cspρ̂q and
ρ̂̂ 8 ă τ , halt and initialise all nodes to the right of ρ̂ 8.

‚ If pρ, xq enumerated a number into A at stage t, then define pros`1pρ, xq
to be the set of pρ̂, x̂q such that x̂ P Cspρ̂q and ρ̂̂ 8 ă τ , and define
Γτ,s`1pAs,Ws, zq “ s with large use, halt and initialise all nodes to the
right of ρ̂ 8

‚ if there is some pρ̂, x̂q P prospρ, xq with tracker trtpρ̂, x̂q “ ẑ such that the
computation Γρ̂pA,W, ẑqqrts no longer holds at stage s, or x̂ has been uncor-
rupted between stages t and s, then define Γτ,s`1pAs,Ws, zq “ s with large
use, halt and initialise all nodes to the right of ρ̂ 8.

210 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

‚ Otherwise define Γτ,s`1pAs,Ws, zq “ s with use γt`1pzq.
For z ă t if Γτ pA,W, zqrss Ò and z is not a tracker for any daughter of τ , then
define Γτ,s`1pAs,Ws, zq “ 0 with use 0. If the stage has not been halted then let
τˆ8 be accessible.

If a ρ node working for requirement PΨ,k is accessible at stage s. Let
t ă s be the last ρ-expansionary stage, t “ 0 if there is no such stage. If @z ă #t,
Γτ pA,W, zqrss “ fρs pzq and oρspzq ă ω2, then s is a ρ-expansionary stage; otherwise
ρ̂ fin is accessible.

Suppose s is a ρ-expansionary stage. Let x P Cspρq and let z “ trspxq. Then do
the following:
‚ If pρ, xq was either corrupted at stage t then declare x to be fully corrupted.
‚ If pρ, xq is in an attack then enumerate γspzq into As`1, halt the stage and

initialise all nodes to the right of ρ̂ 8.
If the stage has not been halted then invent a new input by letting x ` 1 be
least such that trspx ` 1q Ò then define a new large tracker for x ` 1. Define
origpρ, x ` 1q “ trs`1px ` 1q. If x ` 1 ą 0 then declare x established and define
Cs`1pρq “ Cspρq Y txu and Ispxq “ txu. Let ρ̂ 8 be accessible.

If a ζk node, son of τ , is accessible at stage s. Let t ă s be the last ζk Ò
stage, t “ 0 if there is no such stage. If the computation Ψτ pA,W,Q, kqrts does not
hold at stage s then let ζk Ò be accessible; otherwise let ζk Ó be accessible.

If an η node is accessible at stage s. Let t ă s be the last η-expansionary
stage, t “ 0 if there is no such stage. If dom ΘpA,W qrss ă #t then η f̂in is
accessible; otherwise s is an η-expansionary stage.

Suppose s is an η-expansionary stage. If ∆ηpA,W, pqrss Ò and p ă s is not
the anchor of any daughter of η, then define ∆η,s`1pAs,Ws, pq “ 0 with use 0.
Otherwise, if ∆ηpA,W, pqrss Ò and p “ acspµq for µ a daughter of η, then let
q “ flspµq and do the first of the following that applies:
‚ If q P Qs then cancel the follower q, appoint a new large follower, and leave

∆ηpA,W, pq Ò. Define pros`1pµq to be the set of pρ, xq such that pρ, xq needs
protection from µ at stage s. Halt and initialise all nodes weaker than µˆ8.

‚ If q ă ψρs pIspρ, xqq for some pρ, xq P prospµq then cancel the follower q and
appoint a new large follower and leave ∆ηpA,W, pq Ò. Halt and initialise all
nodes weaker than µˆ8.

‚ Otherwise define ∆η,s`1pAs,Ws, pq “ s with use θspqq. Note that we do not
halt the stage.

If the stage has not been halted then let ηˆ8 be accessible.

If a µ node working for requirement RΘ,k is accessible at stage s. Let
t ă s be the last µ-expansionary stage, t “ 0 if there is no such stage. If @p ă #t,
∆ηpA,W, pqrss “ fµs ppq and oµs ppq ă ω2, then s is a µ-expansionary stage, otherwise
µ f̂in is accessible. If s is a µ-expansionary stage then:
‚ If acspµq Ò then define a new large anchor and a new large follower. Define
pros`1pµq to be the set of pρ, xq such that pρ, xq needs protection from µ at
stage s. Halt and initialise all nodes weaker than µˆ8.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 211

‚ Let q “ flspµq. If q R Qs, ΘpA,W, qqrss “ 0 and precpµq “ H, then enu-
merate q into Qs`1. Declare pρ, xq corrupted if ρ̂ 8 ă µ, x P Cspρq and
pρ, xq R prospµq. For each ρ let x be the least declared corrupted, then declare
all established x1 ą x taken over by x. If pρ, xq has been declared corrupted
and has not been taken over, then define a new large tracker, halt and initialise
all nodes weaker than µˆ8.

‚ If q R Qs, ΘpA,W, qqrss “ 0 and precpµq ‰ H, then send a request token for
µ to the longest τ P precpµq, halt and initialise all nodes weaker than µˆ8.

If the stage has not been halted then let µˆ8 be accessible.

If a ξk node, son of η, is accessible at stage s. Let t ă s be the last ξˆ Ò
stage, t “ 0 if there is no such stage. If the computation ΘηpA,W, kqrts does not
hold at stage s, then let ξkˆ Ò be accessible; otherwise let ξkˆ Ó be accessible.

7.7. Verification. First note that if pρ, xq P prospαq then τˆ8 ĺ α, so
ψρs pIspρ, xqq Ó; hence the uses defined in the construction exist.

Lemma 7.1. Let µ be a node working for requirement RΘ,k with parent η. For
all stages s, if q “ flspµq is defined then p “ acspµq is also defined, and if
∆ηpA,W, pqrss Ó then ΘηpA,W, qqrss Ó and θspqq ď δsppq.

Proof. The anchor only becomes undefined at initialisation. Note that at the
first µ-expansionary stage after initialisation an anchor and a follower is appointed.
Then at any stage at which a new follower is appointed either a new anchor is also
appointed or the anchor is already defined.

Suppose ∆ηpA,W, pqrss Ó and let t ă s be the stage at which this computation
was defined, and u be the use of this computation. Then stage t is an η-expansionary
stage, so ΘηpA,W, qqrts Ó. The computation ∆ηpA,W, pq has not changed between
stages t and s so As æ u “ At æ u and Ws æ u “ Wt æ u. At stage t, u was defined
so that u ě θtpqq; hence As æ θtpqq “ At æ θtpqq and Ws æ θtpqq “Wt æ θtpqq. Then
it follows that the use of ΘηpA,W, qqrts has not changed, so ΘηpA,W, qqrss Ó and
θspqq ď δsppq. �

Lemma 7.2. Let τ be a node working for requirement PΨ. Let s be the stage a
request is carried out and t ď s be the stage τ acts on the request, then there are
no τ -expansionary stages between stage t and stage s.

Proof. If precpτq “ H then τ carries out the request; hence s “ t and we are done.
So we suppose precpτq ‰ H, then at stage t, τ passes the request to a node τ̂ which

has a son, ζ̂k̂, with ζ̂k̂ Òĺ τ . Then τ is only accessible at ζ̂k̂ Ò stages, so there has

been a change in the computation Ψρ̂pA,W,Q, k̂q between two τ stages. Then while
τ̂ has the request any such changes would cause the request to be acted on, and
when this happens the stage is halted. Let t0 be the stage τ̂ acts on the request,
then there are no τ -expansionary stages between stage t and t0. If t0 “ s we are
done; otherwise it is passed to some τ 1. Let t1 be the stage τ 1 acts on the request;
then we repeat the same argument to find there are no τ̂ stages between stage t0
and t1. If t1 “ s then since every τ stage is a τ̂ stage we are done. Continue this
argument, since precpτq is finite and the request is carried out at stage s, tn “ s
for some n; hence there are no τ -expansionary stages between stage t and stage
s. �

212 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Lemma 7.3. For all stages s, (1), (2), and (3) hold.
(1): Let ρ be a node working for requirement PΨ,k with parent τ . Let z “ trspρ, xq

for x P Cspρq. Suppose pρ, xq is not in an attack at stage s and Γτ pA,W, zqrss Ó.
Let t be the stage the computation Γτ pA,W, zqrss was defined.
Then Qt æ ψtpItpxqq “ Qs æ ψtpItpxqq and for all x̂ P Ispρ, xq, ΨpA,W,Q, x̂qrss Ó
and ψspIspρ, xqq ď γspzq.

(2): Let µ be a node working for requirement RΘ,k and let q “ flspµq. Suppose ρ
is a node such that ρ̂ 8 to the left of µ such that x P Cspρq and pρ, xq R prospµq.
If q is enumerated into Qs`1 at stage s and q ă ψρs pIspρ, xqq, then either pρ, xq
is in an attack at stage s or Γτ pA,W, trpxqqrss Ò.

(3): Let µ be a node working for requirement RΘ,k, and let p “ acspµq and
q “ flspµq. If q R Qs and there is a pρ, xq P prospµq such that q ă ψρs pIspρ, xqq,
then ∆ηpA,W, pqrss Ò and q is not enumerated into Qs`1 at stage s.

Proof. We prove the lemma by simultaneous induction on the stage s. Clearly at
s “ 0, (1), (2) and (3) hold. So let s ą 0 and suppose (1), (2) and (3) hold for
all stages t ă s.

Consider (1) at stage s. Suppose Qt æ ψtpItpxqq ‰ Qs æ ψtpItpxqq. Then at
stage r P rt, sq some µ enumerated its follower q into Qr`1 and q ă ψtpxq. Note
that ΓρpA,W, trpxqqrrs Ò at a stage r where a new tracker is appointed. Therefore
z “ trspxq “ trtpxq and so x has not been corrupted between stages t and s. Then
since x P Cspρq it is also the case that x has not been taken over between stages
t and s. Recall that by the construction, if µ ľ ρ̂ 8 and pρ, xq R prorpµq then
x is either corrupted or taken over; hence either pρ, xq P prorpµq or µ is to the
right of ρ̂ 8. Now note that an attack is only declared finished at a stage where
ΓρpA,W, zq Ò. Then it follows that since pρ, xq is not in an attack at stage s, it is
also the case that pρ, xq is not in an attack at any stage r such that r P rt, ss.
(3) holds at stage r; hence pρ, xq R prorpµq. (2) holds at stage r; hence ei-
ther ΓρpA,W, trpxqqrrs Ò or pρ, xq is in an attack at stage r. But pρ, xq is not
in an attack at any stage r such that r P rt, ss and ΓρpA,W, trpxqqrrs Ó, a con-
tradiction. Hence Qt æ ψtpItpxqq “ Qs æ ψtpItpxqq. Let u be the use of the
computation Γτ pA,W, zqrss. At stage t, the use u was defined to be ψtpItpxqq
so pA,W,Qqt æ ψtpItpxqq “ pA,W,Qqs æ ψtpItpxqq. Then it follows that for all
x̂ P Ispxq, ΨpA,W,Q, x̂qrss Ó and ψspIspxqq ď γspzq. Thus (1) holds at stage s.

Consider (2) at stage s. First, if pρ, xq is in an attack at stage s then we are
done. So suppose pρ, xq is not in an attack at stage s. Let τ be the parent of ρ
and let r0 be the stage prospµq was defined. Notice that µ is initialised at every
ρ-expansionary stage; hence x was established before stage r0. pρ, xq R prospµq;
therefore either µ believes dom ΨρpA,W,Qq “ k1 and Ir0pxq Ę k1, or µ lies to the
right of τˆ8.

Case 1. µ lies to the right of τˆ8. Then µ is initialised at every τ -expansionary
stage; hence we do not see any Ψτ pA,W,Qq computations recover while q is the
follower of µ. Let r1 be the stage q is appointed. At stage r1, q is appointed to be
large; therefore for all x1 such that Ψτ pA,W,Q, x

1qrr1s Ó, q ą ψr1px
1q. If there are

any changes below the use of any of these computations while q is the follower for
µ then they do not recover until after stage s. So it follows that for all x1 such that

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 213

Ψτ pA,W,Q, x
1qrss Ó, q ą ψspx

1q. So it is not possible to have q ă ψρs pIspρ, xqq at
stage s.

Case 2. µ believes dom ΨρpA,W,Qq “ k1 and Ir1pxq Ę k1. Now τ P precpµq so
precpµq ‰ H. Therefore enumeration of q into Qs`1 at stage s is carried out by a
request token at some τ̂ (note that it could be that τ̂ “ τ). Let t ď s be the stage
τ acts on the request and r ă t be the stage τ receives the request. Then stage t is
the first τ -expansionary stage after a change in the computation ΨρpA,W,Q, k

1qrrs.
Notice that if there is a stage t ą r1 such that Ir1pxq ‰ Itpxq then µ is initialised;
hence Ispxq Ę k1. Now let x1 be the least element in the interval Itpk

1q. Suppose
pρ, x1q is in an attack at stage t. Note that µ is not initialised between stages
r0 and s, so this attack started before stage r0. Then at the last ρ-expansionary
stage a number is enumerated into A and all established inputs greater than x1

are taken over by x1. Then x “ x1, but an attack can only be declared finished
at τ -expansionary stages, and by Lemma 7.2 there are no τ -expansionary stages
between stage t and s; hence if pρ, x1q is in an attack at stage t then pρ, xq is in an
attack at stage s, a contradiction. Then pρ, x1q is not in an attack at stage t, and (1)
holds at stage t, so it follows that ψtpk

1q ď γt`1ptrt`1px
1qq ď γt`1ptrt`1pxqq. Then

the change in the computation ΨρpA,W,Q, k
1qrrs between stages r and t causes

ΓρpA,W, trpxqqrts Ò. t is the first τ -expansionary stage after stage r; at this stage
the request is acted on and we do not define ΓρpA,W, trpxqqrts. ΓρpA,W, trpxqqrss
is only defined at τ -expansionary stages, and by Lemma 7.2 there are no such stages
between stage t and stage s; hence ΓρpA,W, trpxqqrss Ò.

Consider (3) at stage s. Suppose at stage s there is a node µ with follower
q and anchor p, and there is a pρ, xq P prospµq such that q ă ψρs pIspρ, xqq. If
∆µpA,W, pqrss Ò and precpµq ‰ H then the enumeration is carried out by a τ node
acting on a request, but since ∆µpA,W, pqrss Ò the request will be cancelled; hence
q is not enumerated into Qs`1. If ∆µpA,W, pqrss Ò and precpµq “ H then q is
enumerated into Qs`1 at an η-expansionary stage, but ∆µpA,W, pqrss Ò and there
is a pρ, xq P prospµq such that q ă ψρs pIspρ, xqq, so q will be cancelled before it can
be enumerated into Qs`1. Therefore it suffices to show that ∆µpA,W, pqrss Ò.

So suppose ∆µpA,W, pqrss Ó and let t be the stage this computation was defined.
Let r0 be the stage prospµq was defined, and let r1 be the stage q was appointed
(note that r0 ď r1). x was established before stage r1 and τˆ8 ĺ η, so it follows
that q ą ψρr1pIr1pxqq. Notice that at stage t, ∆µpA,W, pqrts Ò. If q ă ψρt pItpxqq we
would not define ∆µpA,W, pqrt ` 1s, instead we would cancel q, but q “ flspµq;
hence q ą ψρt pItpxqq. Then at stage t we define ∆µpA,W, pqrss with use θpqq, and
since θpqq ě q it follows that δsppq ą ψρt pItpxqq. Now at stage s, q ă ψρs pIspxqq so
Qt æ ψ

ρ
t pItpxqq ‰ Qs æ ψ

ρ
t pItpxqq. Let µ̂ be the node that enumerates its follower q̂

into Qr`1 at stage r P rt, sq. Notice q R Qs and q “ flspµq “ fltpµq, so µ̂ ‰ µ.
Now µ has not been initialised between stages t and s; hence µ̂ is weaker than µ.

Let r2 be the stage that prorpµ̂q was defined. Notice r2 ą r1 because µ̂ is initialised
when q is appointed. Now this means x was already established at stage r2. If
pρ, xq P prorpµ̂q, r ă s so (3) holds at stage r; hence q̂ is not enumerated into Qr`1.
But q̂ is enumerated into Qr`1; therefore pρ, xq R prorpµ̂q. But x was established
before stage r2, so µ̂ lies to the right of ρ̂ 8, µ̂ believes dom ΨρpA,W,Qq “ k1 and

214 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Ir2pρ, xq Ę k1. Now (2) holds at stage r, so either pρ, xq is in an attack at stage r
or ΓρpA,W, zqrrs Ò.

Suppose pρ, xq is in an attack at stage r. Since pρ, xq P prospµq, pρ, xq was
not in an attack at stage r0; hence this pρ, xq attack starts at stage r3 P pr0, rq.
Notice that this attack is prompted by a W change below ψpIpxqq, as discussed
above δsppq ą ψρt pItpxqq and the computation ∆µpA,W, pqrss was defined at stage
t; hence this attack was started before stage t. Now if µ was to the right of ρ̂ 8 then
it would be initialised at stage r3 but r3 P pr0, rq so µ ą ρ̂ 8 and hence η ľ ρ̂ 8.
Then there are no η-expansionary stage until the attack is finished. pρ, xq is still
in an attack at stage r; hence t ą r, but this is a contradiction because r P rt, sq.
Therefore Qt æ ψ

ρ
t pItpxqq “ Qs æ ψ

ρ
t pItpxqq and so q ą ψρs pIspxqq.

Therefore if q ă ψρs pIspxqq then ∆µpA,W, pqrss Ò and q is not enumerated into
Qs`1 at stage s. �

Lemma 7.4. Let ρ be a node working for requirement PΨ,k and let x P Cspρq.
Let µ be a node working for requirement RΘ,k, and let q “ flspµq. Suppose q is
enumerated into Qs`1 at stage s. If pρ, xq is not in an attack, q ă ψspIspρ, xqq and
Γτ pA,W, trpxqqrss Ó, then µ ą ρ̂ 8 and pρ, xq R prospµq.

Proof. If pρ, xq P prospµq then by Lemma 7.3 (3), q is not enumerated into Qs`1,
a contradiction.

If pρ, xq R prospµq and µ is to the right of ρ̂ 8, then µ is initialised at ev-
ery ρ-expansionary stage; hence x was established before q was appointed. But
Γτ pA,W, trpxqqrss Ó and pρ, xq is not in an attack; this is a contradiction to Lemma
7.3 (2). �

Lemma 7.5. Let ρ be a node working for requirement PΨ,k and let x P Cspρq.
Suppose x is declared corrupted at stage s. If at stage t ą s, pρ, xq is not in an
attack, and some µ enumerates a follower q into Qt`1 such that q ă ψtpItpρ, xqq
and Γτ pA,W, trpxqqrts Ó, then x is taken over at stage t.

Proof. pρ, xq was declared corrupted at stage s. Then at stage s some µ̂ enumer-
ated its follower q̂ into Qs`1, such that µ̂ ą ρ̂ 8 and x was the least input for ρ
such that pρ, xq R prospµ̂q. At stage t ą s, µ enumerates q into Qt`1 such that
q ă ψtpItpρ, xqq and Γτ pA,W, trpxqqrts Ó. It follows from Lemma 7.4 that µ ą ρ̂ 8.
The stage is halted when a protected set is defined; hence prospµ̂q and protpµq were
defined at different stages; call these stages r̂ and r respectively. x was the least
input that was not yet established at stage r̂. If r ą r̂ then since µ ą ρ̂ 8, a new
input has been established since stage r̂; hence x has already been established at
stage when we define protpµq at stage r; hence pρ, xq P protpµq, but this contradicts
Lemma 7.3 (3). Now suppose r ă r̂. Let x1 be the least input for ρ that was not
yet established at stage r. µ̂ ą ρ̂ 8, so r̂ is a ρ-expansionary stage; hence at stage
r̂ a new input is established. So x1 ‰ x. Then x is not the least input that is not
in prospµq; hence at stage t, x is taken over. �

Lemma 7.6. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂ respec-

tively. Let x P Cspρq and x̂ P Cspρ̂q, with trackers z and ẑ respectively. Let pρ̂, x̂q
be in an attack at stage s, and let t be the stage the pρ̂, x̂q attack is finished. If
pρ, xq P prospρ̂, x̂q then x is not corrupted at stage r P rs, tq.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 215

Proof. pρ, xq P prospρ̂, x̂q so ρ̂ 8 ă ρ̂. x is corrupted by the enumeration of a
follower of µ, q, into Qr`1 at stage r such that µ ą ρ̂ 8. Then consider the
following cases:

Case 1. µ ą ρ̂̂ 8. Then µ is not accessible during the pρ̂, x̂q attack; hence x is
not corrupted at stage r P rs, tq.

Case 2. µˆ8 ă ρ̂ or µ is to the left of ρ̂. Then when x is corrupted at stage r,
ρ̂ is initialised causing the attack to stop; hence t “ r.

Case 3. µ is to the right of τ̂ . pρ, xq P prospρ̂, x̂q, so x was already established
at the stage prospρ̂, x̂q was defined and at this stage µ is initialised. Now if x
was corrupted after stage s then the corrupting q was appointed after stage s, but
x P Cspρq so pρ, xq P prorpµq and so x is not corrupted after stage s.

Case 4. µ ą τ̂ˆ8 and µ is to the right of ρ. Then q was appointed at a τ̂ -
expansionary stage. Consider the stage prospρ̂, x̂q was defined. Then at the last
τ̂ -expansionary stage before we define prospρ̂, x̂q either pρ̂, x̂q was not in an attack
or pρ̂, x̂q enumerated a number into A. Then µ was initialised at this stage. µ ą τ̂ˆ8
so prorpµq was defined after (or at) the stage prospρ̂, x̂q was defined, but x was
already established at this stage; hence pρ, xq P prorpµq and so x is not corrupted
after stage s.

Therefore x is not corrupted at stage r P rs, tq. �

Lemma 7.7. Let ρ be a node working for requirement PΨ,k with parent τ . Let
z “ trspρ, xq for x P Cspρq. For all stages s such that pρ, xq is in an attack,
if Γτ pA,W, zqrss Ó then for all pρ̂, x̂q P prospρ, xq, Γρ̂pA,W, trpρ̂, x̂qqrss Ó and
γspzq ě γρ̂s ptrspρ̂, x̂qq.

Proof. Let s be the least counterexample. At stage s, Γτ pA,W, zqrss Ó and there is
some pρ̂, x̂q P prospρ, xq with tracker ẑ, such that Γρ̂pA,W, ẑqrss Ò or γspzq ă γρ̂s pẑq.
Let t be the stage at which the computation Γτ pA,W, zqrss was defined, and let
u be the use of this computation. prospρ, xq is only redefined when Γτ pA,W, zq is
defined, so prospρ, xq “ protpρ, xq. pρ̂, x̂q P prospρ, xq, so τ̂ˆ8 ă τ ; hence t is a
τ̂ -expansionary stage. Then at stage t, Γρ̂pA,W, trtpx̂qqrts Ó.

If u was defined to be large at stage t, then γtpzq ě γρ̂t ptrtpx̂qq. If u was
not defined to be large, then it was defined to be γrpzq where r ă t is the last τ -
expansionary stage. s is the least counterexample, so at stage r γrpzq ě γρ̂r ptrrpx̂qq.
Note that by Lemma 7.6, x̂ has not been corrupted between stages r and t. Since
u was not defined to be large, it is also the case that x̂ has not been uncorrupted

between stages r and t; hence trrpx̂q “ trtpx̂q. If γρ̂r ptrtpx̂qq ‰ γρ̂t ptrtpx̂qq then
the computation Γρ̂pA,W, trpρ̂, x̂qqrrs no longer holds at stage t; hence we would

define the use to be large, a contradiction. So at stage r, γρ̂r ptrtpx̂qq “ γρ̂t ptrtpx̂qq,

then it follows that γtpzq ě γρ̂t ptrtpρ̂, x̂qq.
Now the computation Γτ pA,W, zqrss was defined at stage t, so At æ u “ As æ u

and Wt æ u “ Ws æ u. u “ γtpzq ě γρ̂t ptrtpx̂qq, so it follows that the computation
Γρ̂pA,W, trtpρ̂, x̂qqrts has not changed between stage t and stage s. By Lemma

7.6, x̂ has not been corrupted between stages t and s. u ě γρ̂t ptrtpx̂qq ą γρ̂t porigpx̂qq
therefore x̂ has not been uncorrupted between stages t and s; hence trtpρ̂, x̂q “ trspρ̂, x̂q “ ẑ.
Then Γρ̂pA,W, ẑqrss Ó and γspzq ě γρ̂s pẑq. �

216 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

Lemma 7.8. Let µ be a node working for requirement RΘ,k. Let s and t ą s
be successive µ-expansionary stages with p “ acspµq “ actpµq. Let u “ δsppq. If
At æ u ‰ As æ u or Wt æ u ‰Ws æ u, then oµt ppq ă oµs ppq.

Proof. At stage r P ps, tq, ∆ηpA,W, pqrrs Ò, then at the next η-expansionary stage
r1 P pr, ts, ∆ηpA,W, pqrr

1s “ r1.

∆ηpA,W, pqrss ď s ă r1 “ ∆ηpA,W, pqrr
1s ď ∆ηpA,W, pqrts

so ∆ηpA,W, pqrss ‰ ∆ηpA,W, pqrts. s and t are µ-expansionary stages, so
∆ηpA,W, pqrss “ fµs ppq and ∆ηpA,W, pqrts “ fµt ppq, then fµs ppq ‰ fµt ppq; hence
oµt ppq ă oµs ppq since xfµs , o

µ
s y is an ω2-computable approximation. �

Lemma 7.9. Let µ be a node working for requirement RΘ,k. µ sends finitely many
requests and enumerates finitely many followers into Q while a particular p is the
anchor.

Proof. Suppose there are finitely many µ-expansionary stages. A request is sent at
a µ expansionary stage; hence only finitely many requests are sent. If precpµq “ H
then a follower is enumerated into Q at a µ-expansionary stage; hence only finitely
many followers are enumerated into Q. If precpµq ‰ H then a follower is enumer-
ated into Q when a request is carried out. There are only finitely many requests
sent and only one follower can be enumerated into Q per request; thus finitely many
followers are enumerated into Q.

Now suppose there are infinitely many µ-expansionary stages. Now if p is eventu-
ally cancelled, clearly only finitely many request are sent and finitely many followers
are enumerated into Q while p is the anchor. So suppose p is never cancelled. Then
µ is not initialised while p is the anchor. Once a follower has been enumerated into
Q, a new follower is appointed only if there is a stage t where ∆µpA,W, pqrts Ò. Note
that when a new follower is appointed, the stage is halted. A follower is enumerated
at a µ-expansionary; this stage is also an η-expansionary stage, so ∆µpA,W, pqrss Ó
at the stage a follower is enumerated into Q. But infinitely many followers are
enumerated into Q, so after each stage s where a follower is enumerated into Q,
there is a stage t where ∆µpA,W, pqrts Ò. Let r be the first µ-expansionary stage
after stage t and let u “ δsppq. Then At æ u ‰ Ar æ u or Wt æ u ‰ Wr æ u, and by
Lemma 7.8, oµt ppq ă oµs ppq. There are infinitely many of these stages; then it follows
that the ordinal oµppq decreases infinitely often, but xfµs , o

µ
s y is an ω2-computable

approximation, so this is a contradiction. Therefore finitely many numbers are enu-
merated into Q. Suppose µ sends infinitely many requests. Then only finitely many
of these requests are carried out by the previous argument. µ is not initialised while
p is the anchor, so these requests are cancelled due to ∆µpA,W, pq Ò. Then we can
follow the same argument as above to show that this cannot happen as xfµs , o

µ
s y is

an ω2-computable approximation. �

Lemma 7.10. Let µ be a node working for requirement RΘ,k. Then while
a particular p is the anchor for µ, there are finitely many stages such that
prospµq ‰ pros`1pµq.

Proof. If p is eventually cancelled, then clearly propµq can only be redefined finitely
many times while p is the anchor. So let p be the anchor of µ that is never cancelled.
While p is the anchor for µ, propµq gets redefined at a stage s where ∆ηpA,W, pqrss Ò

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 217

and flspµq P Qs. Notice that this means that a new follower is appointed at every
stage that propµq gets redefined while p is the anchor. Then by Lemma 7.9, finitely
many followers are enumerated into Q while p is the anchor; hence ∆ηpA,W, pqrss Ò
and flspµq P Qs, finitely often. Therefore we redefine propµq at finitely many
stages. �

Lemma 7.11. Let ρ be a node working for requirement PΨ,k with parent τ , such
that ρ̂ 8 is initialised finitely often. Then for all x there exists a stage t such that
for all s ą t, Ispρ, xq “ Itpρ, xq.

Proof. First note that the interval Ipρ, xq can only be redefined to be larger than
it previously was. Suppose there are finitely many ρ-expansionary stages. Notice
that finitely many inputs are ever established. Then there are only finitely many x1

that could be added to the interval Ipρ, xq; hence it cannot change infinitely often.
Now suppose there are infinitely many ρ-expansionary stages. Then Γτ pA,W q

is ω2-c.a. Suppose there is some x such that the interval Ipρ, xq changes infinitely
often. ρ is initialised finitely often, so let r be the last stage that ρ is initialised.
Then after stage r, x will change trackers at most three times (one when x is
established, one when it is corrupted, and then back to the original tracker if x
is ever uncorrupted). So let z be the last tracker for x. Now the interval Ipρ, xq
increases infinitely often, so the use ψspIspρ, xqq will go to infinity. By Lemma
7.3 (1), for all stages s such that z “ trspxq, γspzq ě ψspIspρ, xqq. z is the last
tracker of x (and is never cancelled), so the use γspzq must go to infinity. But this
contradicts that Γτ pA,W q is ω2-c.a. Therefore there cannot be an x such that its
interval Ipρ, xq changes infinitely often. �

Lemma 7.12. Let µ be a node working for requirement RΘ,k with parent η. At all
stages s at which p “ acspµq, there are finitely many followers appointed.

Proof. If p is eventually cancelled then certainly only finitely many followers are
appointed while p is the anchor. So let p be an anchor that is never cancelled. While
a particular p is the anchor, a new follower is appointed at an η-expansionary stage
s, where ∆ηpA,W, pqrss Ò and either flspµq P Qs or q ă ψρs pIspρ, xqq for some
pρ, xq P prospµq. Notice that if there are finitely many η-expansionary stages,
then clearly only finitely many followers are appointed. So suppose there are
infinitely many η-expansionary stages. At each η-expansionary stage such that
∆ηpA,W, pqrss Ò and flspµq P Qs, we appoint a new follower. Then it follows that
if this happens infinitely often, µ could enumerate infinitely many followers into Q
while p is the anchor, a contradiction to Lemma 7.9. By Lemma 7.10, since p is
never cancelled, prospµq eventually stabilises. Let propµq be the last protected set
defined for µ while p is the anchor. Note pρ, xq P propµq, ρ̂ 8 is either to the left of µ
or ρ̂ 8 ă µ. µ is initialised finitely often since p is never cancelled, so it follows that
ρ is also initialised finitely often. Then by Lemma 7.11, for each pρ, xq P propµq the
interval Ispρ, xq eventually stabilises. Let Ipxq be the last interval defined for pρ, xq
while p is the anchor. Now if pρ, xq P propµq then either µ believes Ψτ pA,W,Qq is
total or µ believes dom ΨρpA,W,Qq “ k1 for some k1, and Irpρ, xq Ď k1 where r is
the stage propµq was defined. We consider each case separately.

Case 1. pρ, xq P propµq and µ believes Ψτ pA,W,Qq is total, where τ is the
parent of ρ. Then there is a daughter of τ , ρ̂, such that ρ̂̂ 8 ĺ µ. Note that it

218 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

could be that ρ “ ρ̂. There are infinitely many η-expansionary stages, so ρ̂̂ 8 is
accessible infinitely often; hence Ψτ pA,W,Qq is total. Therefore the use ψρpIpxqq
eventually stabilises; hence for pρ, xq P propµq such that µ believes Ψτ pA,W,Qq is
total, we see q ă ψspIspρ, xqq finitely often.

Case 2. pρ, xq P propµq, µ believes dom ΨρpA,W,Qq “ k1 for some k1, and
Irpρ, xq Ď k1 where r is the stage propµq was defined. Notice that if there is a stage
t ą r such that Irpxq ‰ Itpxq, then µ would be initialised. But the assumption
is that p is not cancelled after stage r; hence Irpxq “ Ipxq. Now suppose we
see flspµq ă ψρs pIspρ, xqq at infinitely many η-expansionary stages. Let x1 be the
least input in the interval Ipxq such that the use ψspx

1q increases infinitely often.
Irpxq Ď k1 so x1 ă k. Then by the assignment of requirements, there is a brother
of ρ, ζx1 such that ζx1 Óĺ µ. If the use ψpIpxqq increases infinitely often then
there must be infinitely many ζx1 stages where the computation ΨρpA,W,Q, x

1q

has changed; hence there are infinitely many ζx1 Ò stages. µ is initialised at every
ζx1 Ò stage, but µ is only initialised finitely often, a contradiction.

Therefore only finitely many followers are appointed while p is the anchor of
µ. �

Lemma 7.13. Suppose η is accessible infinitely often and initialised finitely often,
then either ηˆ8 or η f̂in is accessible infinitely often and initialised finitely often.

Proof. Suppose there are finitely many η-expansionary stages, then since η can
only halt the stage at η-expansionary stages, η f̂in is accessible infinitely often.
Nodes extending ηˆ8 are accessible finitely often and η is initialised finitely often,
so η f̂in is initialised finitely often.

Now suppose there are infinitely many η-expansionary stages, but finitely many
ηˆ8 stages, so let s be the stage such that for all t ą s, t is not an ηˆ8 stage.
Anchors are only appointed at µ-expansionary stages, so after stage s no daughter
of η is accessible. Then after stage s there are no new anchors appointed for any
daughter of η. η must halt the stage infinitely often (in particular infinitely often
after stage s). When η halts the stage, a new follower for some daughter of µ is
appointed. Then since no new anchors are appointed and there are finitely many
daughters of η with anchors, there is some µ such that a new follower is appointed
infinitely often. But this is a contradiction to Lemma 7.12. Hence η halts the stage
finitely often, so there are infinitely many ηˆ8 stages. Since η is initialised finitely
often and halts the stage finitely often, ηˆ8 is initialised finitely often. �

Lemma 7.14. Suppose µ is accessible infinitely often and initialised finitely often,
then either µˆ8 or µ f̂in is accessible infinitely often and initialised finitely often.

Proof. Suppose there are finitely many µ-expansionary stages. Then since µ can
only halt the stage at a µ-expansionary stage, µ f̂in is accessible infinitely often.
Since nodes extending µˆ8 are accessible finitely often and µ is initialised finitely
often, µ f̂in is initialised finitely often.

Now suppose there are infinitely many µ-expansionary stages. µ is initialised
finitely often, so there is an anchor that is never cancelled; let p be this anchor.
µ halts the stage if µ enumerates its follower into Q or sends a request token. By
Lemma 7.9, this happens finitely often; hence µ halts the stage finitely often. So

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 219

µˆ8 is accessible infinitely often and since µ is initialised finitely often, µˆ8 is
initialised finitely often. �

Lemma 7.15. Let ρ be a node working for requirement PΨ,k. Let s and t ą s be suc-
cessive ρ-expansionary stages, and let x P Cspρq. Suppose z “ trspρ, xq “ trtpρ, xq
and let u “ γspzq. If At æ u ‰ As æ u or Wt æ u ‰Ws æ u, then oρt pzq ă oρspzq.

Proof. At stage r P ps, tq, ΓpA,W, zqrrs Ò, then at the next τ -expansionary stage
r1 P pr, ts ΓpA,W, zqrr1s “ r1. ΓpA,W, zqrts ě ΓpA,W, zqrr1s and r1 ą ΓpA,W, zqrss,
so ΓpA,W, zqrts ‰ ΓpA,W, zqrss. s is a ρ-expansionary stage so ΓpA,W, zqrss “ fρs pzq,
and t is also a ρ-expansionary stage so ΓpA,W, zqrts “ fρs ptq, then fρs pzq ‰ fρt pzq,
hence oρt pzq ă oρspzq. �

Lemma 7.16. Let ρ be a node working for requirement PΨ,k, then for all x only
finitely many attacks are started for pρ, xq while a particular z is the tracker for x.

Proof. Fix x; if z is the tracker of x for finitely many stages, then clearly only
finitely many attacks are started for pρ, xq while z is the tracker. So let z be the
tracker for x for infinitely many stages. For an attack started at stage r, it is
declared finished at stage s when we see dρspzq ă dρrpzq, so oρspzq ă oρrpzq. Note
that pρ, xq does not start another attack until there has been a ρ-expansionary
stage after the previous attack was declared finished. Now if pρ, xq starts infinitely
many attacks while z is the tracker, then every one of these attacks started must be
declared finished. Then we must see oρspzq decrease infinitely often, but this ordinal
is from the ω2-computable approximation of fρ so this cannot happen. Hence for
all x only finitely many attacks are started for pρ, xq while a particular z is the
tracker for x. �

Lemma 7.17. Let ρ be a node working for requirement PΨ,k, and x P Cspρq, then
ρ enumerates finitely many numbers into A during each pρ, xq attack.

Proof. Suppose not. Then there is a pρ, xq attack such that ρ enumerates infin-
itely many numbers into A. Enumerations happen at ρ-expansionary stages, so
by Lemma 7.15 we see the ordinal oρpzq decrease after each enumeration. Then if
pρ, xq enumerates infinitely many numbers into A we must see this ordinal decrease
infinitely often, but this ordinal is from the ω2-computable approximation of fk so
this cannot happen. Hence ρ enumerates finitely many numbers into A during each
pρ, xq attack. �

Lemma 7.18. Suppose τ is accessible infinitely often and initialised finitely often,
then either τˆ8 or τ f̂in is accessible infinitely often and initialised finitely often.

Proof. Suppose there are finitely many τ -expansionary stages. τ halts the stage
only at τ -expansionary stages; hence τ halts the stage finitely often, so τ f̂in is
accessible infinitely often. τ is initialised finitely often and τˆ8 is accessible finitely
often, so τ f̂in is initialised finitely often.

Now suppose there are infinitely many τ -expansionary stages but finitely many
τˆ8 stages. τ halts the stage if it acts on a request or defines γρpzq large during a
pρ, xq attack, where z “ trpxq and ρ is a daughter of τ .

Let t be the last stage τˆ8 was accessible. Since there are finitely many τˆ8
stages, finitely many sons ζk are visited, and there are finitely many ζk Ò stages

220 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

for each son ever visited. A request is sent to τ only at ζk Ò stages, but there are
finitely many of these so τ deals with finitely many requests; hence τ acts on a
request finitely often.

Then since τ halts the stage infinitely often, γρpzq large infinitely often during a
pρ, xq attack. Now since there are only finitely many τˆ8 stages, only finitely many
daughters are ever visited; hence only finitely x are ever established. By Lemma
7.16, each of these only start finitely many attacks. Then there is a particular pρ, xq
attack where γρpzq is defined large infinitely often. Now there are no ρ-expansionary
stages after stage t, so after stage t, γρpzq is defined large because there is some
pρ̂, x̂q P propρ, xq such that the computation Γρ̂pA,W, ẑq has changed since the
last τ -expansionary stage. Now propρ, xq is only redefined after an enumeration
into A; hence propρ, xq does not change after stage t. Then there is a particular
pρ̂, x̂q P propρ, xq such that the computation Γρ̂pA,W, trpρ̂, xqq has changed since
the last τ -expansionary stage infinitely often. Now the tracker for x̂ can only change
finitely often so there is some tracker ẑ such that there are infinitely many A or W
changes below γρ̂pẑq. By Lemma 7.15, every time there is an A or W change below
γpẑq the ordinal oρ̂pẑq must decrease. Now ρ̂̂ 8 ĺ τ , so Γρ̂pA,W q is ω2-c.a. But
oρ̂pẑq decreases infinitely often, so this is a contradiction.

Therefore τ halts the stage finitely often, so there are infinitely many τˆ8 stages.
�

Lemma 7.19. Suppose ρ is accessible infinitely often and initialised finitely often,
then either ρ̂ 8 or ρ̂ fin is accessible infinitely often and initialised finitely often.

Proof. Suppose there are finitely many ρ-expansionary stages. Then ρ only halts
the stage at ρ-expansionary stages, so ρ halts the stage finitely often; hence ρ̂ fin

is accessible infinitely often. Since ρ is initialised finitely often and ρ̂ 8 is accessible
finitely often, then ρ̂ fin is initialised finitely often.

Now suppose there are infinitely many ρ-expansionary stages but there are only
finitely many ρ̂ 8 stages. New x are established only at ρ̂ 8 stages, so only finitely
many pρ, xq are established. Let t be the last ρ̂ 8 stage. Only µ such that µ ą ρ̂ 8
can corrupt x; hence no x is corrupted after stage s. So a new tracker is only
appointed if an x is uncorrupted; hence the tracker for each x changes at most once
after stage t. By Lemma 7.16, each established x starts finitely many attacks. It
follows from Lemma 7.17 that each pρ, xq attack puts finitely many numbers into
A. There are only finitely many established x and finitely many attacks for each
x; hence ρ enumerates finitely many numbers into A. Therefore ρ halts the stage
finitely often; thus there are infinitely many ρ̂ 8 stages. �

Lemma 7.20. The true path is infinite.

Proof. Suppose there are only finitely many stages at which we define the collection
of accessible nodes. Then since nodes are accessible finitely often, only finitely many
pρ, xq are ever established. After the last stage nodes are accessible no attack can
be declared finished, so after this stage an attack can start for each pρ, xq at most
once. There are finitely many pρ, xq so only finitely many attacks are ever started,
but then the stage halts without defining the accessible nodes finitely often, a
contradiction. So there are infinitely many stages at which we define the collection

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 221

of accessible nodes. Then by Lemma 7.13, 7.14, 7.18 and 7.19, the true path is
infinite. �

Lemma 7.21. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂ re-

spectively. Let x P Cspρq and x̂ P Cspρ̂q with trackers z and ẑ respectively. Suppose
pρ, xq is in an attack at stage s. If pρ̂, x̂q is in an attack at stage s and ρ̂ is to the
right of ρ̂ 8, then γρ̂s pẑq ą γρs pzq.

Proof. Notice that every stage such that γρpzq is defined large, ρ̂ is intialised. Let
t be the stage γρpzq was last defined large. Then γρt`1pzq “ γρs pzq. Now let r be the
stage pρ̂, x̂q was declared fully in an attack. ρ̂ was initialised at stage t, so r ą t;
hence γρ̂r pẑq ą γρr pzq “ γρt`1pzq. Now γρ̂s pẑq ě γρ̂r pẑq and γρt`1pzq “ γρs pzq; hence

γρ̂s pẑq ą γρs pzq. �

Lemma 7.22. Suppose y is established for π at stage s. Suppose a pρ, xq attack
causes a number to enter A below ϕtpyq at stage t ą s. If π is not initialised then
ρ ľ πˆ8.

Proof. Clearly if ρ is to the left of π then π gets initialised at stage t. Suppose
ρ̂ 8 ĺ π or ρ is to the right of π. Let r be the stage pρ, xq is declared fully in
an attack. Notice that π is not accessible between stages r and t. If y was not
established at stage r then it will not be established until after stage t; hence r ą s.
ϕtpyq Ó so it follows that ϕrpyq Ó and ϕtpyq “ ϕrpyq. At stage r, γr`1pzq is defined
with large use, so γrpzq ą ϕrpyq. Since the use is non-decreasing it follows that
γtpzq ą ϕtpyq, a contradiction. Therefore if a pρ, xq attack causes a number to enter
A below ϕtpyq at stage t ą s then ρ ľ πˆ8. �

Lemma 7.23. Let π be a node working for requirement NΦ and let ρ be a node
working for requirement PΨ,k with parent τ . Let z be the tracker for x. Suppose
ρ ľ πˆ8. Let r be a stage γρr`1pzq is defined to be large. If ΦpA, yqrrs Ó then for all
stages s ą r during this attack As æ ϕrpyq “ Ar æ ϕrpyq.

Proof. Let s ` 1 be the least counterexample. Then at stage s some pρ̂, x̂q enu-
merated γρ̂s pẑq into A and γρ̂s pẑq ă ϕrpyq. Notice that pρ̂, x̂q ‰ pρ, xq because s` 1
is the least counterexample so ϕrpyq “ ϕspyq and γρr`1pzq ą ϕrpyq. Now at stage
s, pρ, xq is still in its attack; hence either ρ̂ is to the right of ρ̂ 8 or ρ̂̂ 8 ĺ ρ. If
ρ̂̂ 8 ĺ ρ then by the assignment of requirements ρ̂̂ 8 ĺ τ . Thus the pρ̂, x̂q attack
started after stage r. If ρ̂ is to the right of ρ̂ 8 then ρ̂ was initialised at stage r;
thus the pρ̂, x̂q attack started after stage r.

Let r1 be the stage pρ̂, x̂q was declared fully in an attack. At stage r1 we define

γρ̂r1`1pẑq to be large. Since r1 ą r, γρ̂r1`1pẑq ą ϕrpyq. Since γρ̂pẑq is non-decreasing,

so it follows that γρ̂s ą ϕrpyq, a contradiction. �

Lemma 7.24. Let π be a node working for requirement NΦ and let ρ be a node
working for requirement PΨ,k with parent τ . Let z be the tracker for x and let s be
the stage y was established. Suppose τ ľ πˆ8. Suppose pρ, xq started an attack or
enumerated a number into A at stage r ą s. Then for all stages t ą r during this
attack, if ΓρpA,W, zqrts Ó then γtpzq ą ϕtpyq.

Proof. Let r1 be the next τ -expansionary stage after stage r. Then at stage r1

we define γρr1`1pzq is defined to be large. Now τ ľ πˆ8 and y is established;

222 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

hence ΦpA, yqrr1s Ó. Then by Lemma 7.23, for all stages t ą r1 during this attack
At æ ϕr1pyq “ Ar1 æ ϕr1pyq. Then ϕr1pyq “ ϕtpyq. Now γρr1`1pzq ą ϕr1pyq; hence

γρr1`1pzq ą ϕtpyq. γρpzq is non-decreasing so it follows that γρt pzq ą ϕtpyq. Now
between stages r and r1, ΓρpA,W, zqrts Ò. Therefore we are done. �

Lemma 7.25. Suppose pρ, xq is in an attack at stage s. Let z “ trspxq and
oρspzq “ ω ¨ dρspzq ` b

ρ
spzq. Then during this attack, pρ, xq enumerates at most bρspzq

numbers into A after stage s.

Proof. Enumeration into A happens at ρ-expansionary stages so by Lemma 7.15,
each time we enumerate a number into A during this attack we will see the ordinal
oρt pzq decrease. Let t be the first ρ-expansionary stage after pρ, xq has enumerated
bρspzq numbers into A since stage s. Then we have seen the ordinal oρspzq decrease
bρspzqmany times. So oρt pzq ď oρspzq´b

ρ
spzq “ ω¨dρspzq`b

ρ
spzq´b

ρ
spzq “ ω¨pdρspzq´nq`b

ρ
t pzq

for some n ą 0. Hence dρt pzq ă dρspzq, so the attack is declared finished and pρ, xq
will not enumerate any more numbers into A for this attack. �

Lemma 7.26. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂ re-

spectively. Let x P Cspρq and x̂ P Cspρ̂q with trackers z and ẑ respectively. Suppose
x is corrupted, pρ̂, x̂q is in an attack at stage s, and ρ̂ is to the right of ρ̂ 8. Let
r be the last ρ-expansionary stage. If γρ̂s pẑq ă γρs pzq then either x was corrupted at
stage r or pρ, xq was in an attack at stage r.

Proof. Let s be the least counterexample. Note that the last ρ-expansionary stage
r is before the stage that the pρ̂, x̂q attack started, and x is neither corrupted nor un-
corrupted during the pρ̂, x̂q attack as these actions would initialise ρ̂. γρ̂s pẑq ă γρs pzq,
so by Lemma 7.21, pρ, xq is not in an attack at stage s.

As in the argument for Lemma 7.21, if ρ̂ was to the right of τˆ8 then
γρ̂s pẑq ą γρs pzq; hence ρ̂ ą τˆ8. Let t be the stage the computation Γρ̂pA,W, ẑqrss
was defined. Note that this means pA,W qt æ γ

ρ̂
s pẑq “ pA,W qs æ γ

ρ̂
s pẑq. Now if

γρ̂s pẑq was defined to be large then γρ̂t pẑq ą γρt pzq because τ̂ ą τˆ8, but then it
would follow that γρ̂s pẑq ą γρs pzq; hence we did not define γρ̂s pẑq to be large at stage
t. Then it was defined to be γρ̂r0pẑq where r0 is the last τ̂ -expansionary stage before
stage t.

Suppose pA,W qr0 æ γ
ρ
r0pzq ‰ pA,W qs æ γ

ρ
r0pzq. Let r1 P rr0, sq be the least stage

such that pA,W qr0 æ γ
ρ
r0pzq ‰ pA,W qr1`1 æ γ

ρ
r0pzq.

Suppose Wr0 æ γ
ρ
r0pzq ‰ Wr1`1 æ γ

ρ
r0pzq. Now pρ, xq does not start an attack

at this stage because it would initialise ρ̂. If there is a W change while pρ, xq is
corrupted but we do not start an attack, then either x was corrupted at the last
ρ-expansionary stage or pρ, xq was in an attack at the last ρ-expansionary stage.
Stage r was the last ρ-expansionary stage so the Lemma holds.

Now suppose Wr0 æ γρr0pzq “ Wr1`1 æ γρr0pzq. Then it must be that
Ar0 æ γρr0pzq ‰ Ar1`1 æ γρr0pzq. Then this was cause by a pρ1, x1q attack enu-
merating a number into A at stage r1. Now this ρ1 cannot be to the left of ρ̂ as
then ρ̂ would be initialised at stage r1. But then ρ1 is to the right of ρ̂ 8 and
r1 ă s; hence the Lemma holds at stage r1 and so either x was corrupted at stage
r or pρ, xq was in an attack at stage r, so we are done.

Now suppose pA,W qr0 æ γ
ρ
r0pzq “ pA,W qs æ γ

ρ
r0pzq. If γρ̂s pẑq ă γρs pzq then

γρ̂r0pẑq ă γρr0pzq. s is the least counterexample so the Lemma holds at stage r0;

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 223

hence either x was corrupted at stage r or pρ, xq was in an attack at stage r, so we
are done. �

Lemma 7.27. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂ re-

spectively. Let x P Cspρq and x̂ P Cspρ̂q with trackers z and ẑ respectively. Suppose
x is corrupted and ρ̂ 8 ĺ ρ̂. If pρ, xq R prospρ̂, x̂q and pρ̂, x̂q enumerates γρ̂s pẑq into
A at stage s then x is uncorrupted.

Proof. ρ̂ 8 ĺ ρ̂ and pρ, xq R prospρ̂, x̂q so x was established after the stage
prospρ̂, x̂q was defined. x is corrupted so µ is to the right of ρ̂̂ 8. Then
µ is initialised at every stage γρ̂pẑq is defined large. Let t be the last stage

γρ̂t`1pẑq is defined large. Now µ is initialised at stage t; hence q is appointed
after stage t. µ ą ρ̂ 8 so x is invented after stage t. Let r be the first
τ -expansionary stage after x is invented, γρr porigpxqq is defined large; hence

γρr porigpxqq ą γρ̂t`1pẑq. Now γρr porigpxqq ď γρs porigpxqq and γρ̂t`1pẑq “ γρ̂s pẑq so it

follows that γρ̂s pẑq ă γρs porigpxqq. Therefore x is uncorrupted. �

Lemma 7.28. Let π be a node working for requirement NΦ. Let r be the stage y is
established. Let ρ be a node working for requirement PΨ,k. Suppose τˆ8 ĺ πˆ8 ĺ ρ.
Suppose either x was declared fully corrupted at stage t ą r or pρ, xq was declared
to have fully finished an attack at stage t ą r. If pρ, xq wants to attack at stage
s ą t then ΦπpA, yqrss Ó.

Proof. Let s be the least counterexample. Let s0 ă s be the last πˆ8 stage. Then
since ΦπpA, yqrss Ò, some pρ̂, x̂q enumerated a number into A at stage t1 P rs0, sq

such that γρ̂t1pẑq ă ϕt1pyq. Notice that by Lemma 7.22, ρ̂ ľ πˆ8; hence t1 “ s0.
τˆ8 ĺ πˆ8 ĺ ρ so by the assignment of requirements, τ̂ ľ ρ̂ 8 or ρ̂ is to the right
of ρ̂ 8.

In the latter case, stage t is a ρ-expansionary stage so ρ̂ is initialised at stage
t. Let t0 be the stage that pρ̂, x̂q attack starts. Now x̂ was established after stage
t; hence x̂ was declared fully corrupted at stage t1 P pr, t0q. By s is the least
counterexample and s ą t0 so it follows that ΦπpA, yqrt0s Ó. Then by Lemma 7.23,

γρ̂t1pẑq ą ϕt1pyq, a contradiction.
Then τ̂ ľ ρ̂ 8. By Lemma 7.24, y was established after pρ̂, x̂q was declared

fully in an attack. Then the pρ̂, x̂q was declared fully in an attack before stage t.
Now suppose we are in the case where x was declared fully corrupted at stage x at
stage t. Note that the stage pρ̂, x̂q is declared fully in an attack is a ρ-expansionary
stage; hence x was corrupted during the pρ̂, x̂q attack. Then it follows that µ is to
the right of ρ̂. Therefore x was established after the last stage γρ̂pẑq was defined
large; hence pρ, xq R prot1pρ̂, x̂q. Then by Lemma 7.27, x is uncorrupted at stage
t1. Therefore pρ, xq does not want to attack at stage s, a contradiction.

Now consider the case that pρ, xq was declared to have fully finished an attack
at stage t. Now notice that τ̂ is not accessible during the pρ, xq attack; hence γρ̂pẑq
was last defined large before the pρ, xq attack starts. Let t2 ` 1 be the stage the
pρ, xq attack starts. Now consider the following cases:

Case 1. pρ, xq P prot2pρ̂, x̂q. Then by Lemma 7.7, γρ̂t2pẑq ą γρt2pzq. But at stage

t2 ` 1 there is a W below γρt pzq prompting the start of an attack. But this change

is also below γρ̂t2pẑq and causes the use to be lifted large at the next τ̂ -expansionary

224 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

stage. But then the use γρ̂pẑq is lifted large after the pρ, xq attack and hence also

after y is established. Therefore γρ̂t1pẑq ą ϕt1pyq, a contradiction.
Case 2. pρ, xq R prot1pρ̂, x̂q. Then by Lemma 7.27, x is uncorrupted at stage

t1. Therefore pρ, xq does not want to attack at stage s, a contradiction. �

Lemma 7.29. Every NΦ requirement is met.

Proof. Fix Φ. The true path is infinite and every infinite path on the tree of
strategies has a node working for requirement NΦ; let π be the node on the true
path working for NΦ. If ΦpAq is not total then we are done, so suppose ΦpAq
is total. Then we need to show ΦpAq that is ω-c.a. by defining an ω-computable
approximation. At each πˆ8 stage we establish a new input y by giving it an
ordinal as follows. Let s first πˆ8 stage after y is established, then define

oΦ
s pyq “ n`

ÿ

pρ,xqPBpyq

bρspxq

where: Bpyq is the set of pρ, xq such that x P Cspρq is fully corrupted and
τˆ8 ĺ πˆ8 ĺ ρ; n is the number of ρ such that pρ, xq is in an attack at stage s,
ΓρpA,W, trpxqqrss Ó and the parent of ρ, τ , is such that τ ą πˆ8.

By Lemma 7.24, the only pρ, xq with τ ą πˆ8 that can injure ΦpA, yq are in an
attack at stage s and ΓρpA,W, trpxqqrss Ó. Also by Lemma 7.24, such ρ can only
injure ΦpA, yq at most once. At stage s there are n such pρ, xq in an attack and
each of these can only injure ΦpA, yq at most once; hence ΦpA, yq can be injured
by such enumerations at most n many times.

By Lemma 7.22, the only pρ, xq that can injure ΦpA, yq extend πˆ8. We have
just dealt with the case where τ ą πˆ8, so all that is left is the case where τˆ8 ĺ π.
Now suppose at stage t ą s, x is declared fully corrupted or pρ, xq is declared to
have fully finished an attack. By Lemma 7.28, if pρ, xq wants to attack at a stage
t1 ą t, then ΦpA, yqrt1s Ó; then by Lemma 7.23, it follows that for all stages r during
this attack γρr ptrrpxqq ą ϕrpyq.

Then the only pρ, xq with τˆ8 ĺ πˆ8 ĺ ρ̂ 8 that can injure ΦpA, yq at stage t
are such that x was declared fully corrupted at a stage r ă s; hence they are in
the set Bpyq. After this attack is declared finished, by Lemma 7.28, for all stages
r during any attack started after this stage γρr ptrrpxqq ą ϕrpyq. Therefore, by
Lemma 7.25, each pρ, xq P Bpyq can injure ΦpA, yq at most bρspzq times.

So the ordinal defined above is the maximum possible number of enumerations
into A below φpyq. Therefore this is the maximum number of changes to the
computation ΦpA, yq. Hence we have an ω-computable approximation for ΦpAq as
desired. �

Lemma 7.30. Let η be a node working for requirement RΘ. If ΘpA,W q is total
and η is on the true path then ∆ηpA,W q is total.

Proof. ΘpA,W q is total so there are infinitely many η-expansionary stages. At an
η-expansionary we leave ∆ΘpA,W, pq undefined only if p is an anchor for some µ
and we appoint a new follower, but by Lemma 7.12 for each p this happens finitely
often. So lim sups ∆ΘpA,W qrss goes to infinity. Now we need to check that the
use is bounded for all p. Suppose p is eventually not an anchor for any daughter
of η. Then ∆ΘpA,W, pq is eventually defined with use 0; hence the use of such p is

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 225

bounded. So now suppose p is an anchor for µ, a daughter of η, and p “ acspµq for
infinitely many stages. Now by Lemma 7.12, there are only finitely many followers
appointed while p is the anchor. Let q be the last follower appointed and let t be
the stage q is appointed. Then if ∆ΘpA,W, pqrss is defined at stage s ą t, its use
is defined to be θspqq. θspqq has bounded use because ΘpA,W q is total. Therefore
∆ΘpA,W, pq has bounded use for all p; hence ∆ΘpA,W q is total. �

Lemma 7.31. Let τ be a node working for requirement PΨ. If ΨpA,W,Qq is total
and τ is on the true path then ΓΨpA,W q is total.

Proof. Since ΨpA,W,Qq is total, there are infinitely many τ -expansionary stages.
At each τ -expansionary stage we defined a longer initial segment of ΓΨpA,W q,
so lim sups dom ΓΨpA,W, qrss goes to infinity. If z is eventually not a tracker of
any x for any daughter of τ then ΓΨpA,W, zq is defined with use 0, so the use
of such z is bounded. Now consider z which is the tracker for some x for some
daughter of τ , ρ, for infinitely many stages. Suppose there is a stage t such that
for all s ą t, pρ, xq is not in an attack at stage s. A computation ΓΨpA,W, zq
defined at stage s ą t is defined with use ψρs pIspρ, xqq. Since z is never cancelled,
ρ is initialised finitely often, so by Lemma 7.11 the interval Ipxq must stabilise.
ΨpA,W,Qq is total so the use ψspx

1q for every x1 P Ipxq is bounded; hence the
use of ΓΨpA,W, zq is bounded for such z. So now consider that there is no such
stage t, then by Lemma 7.16 it must be that there is some attack that is never
finished. During an attack a number is enumerated into A at every ρ-expansionary
stage, then by Lemma 7.17 there are finitely many ρ-expansionary stages. So let
t be the last ρ-expansionary stage. Now prospρ, xq is only redefined after an A
enumeration by pρ, xq, but there are no ρ-expansionary stages after stage t; hence
for all s, r ą t, prospρ, xq “ prorpρ, xq. Now for pρ̂, x̂q P prospρ, xq, ρ̂̂ 8 ă τ , so ρ̂̂ 8
is also initialised finitely often. Then the tracker for pρ̂, x̂q is only change finitely
often; let ẑ be the last tracker. ρ̂̂ 8 is also accessible infinitely often; hence for
all pρ̂, x̂q P prospρ, xq, Γρ̂pA,W q is ω2-c.a., so the computation Γρ̂pA,W, trspρ̂, x̂qq
changes finitely often. For each pρ̂, x̂q P prospρ, xq, ẑ is the last tracker so x̂ is never
uncorrupted while ẑ is the tracker. Then the use is defined to be large due to the
uncorruption of some protected x̂ finitely often. Then it follows that there is a stage
r such that at every stage s ą r where we define the computation ΓΨpA,W, zqrss,
we define it with use γrpzq. Hence the use of ΓΨpA,W, zq is bounded for all z, and
therefore ΓΨpA,W q is total. �

Remark 7.32. If there is no node on the true path that works for requirement PΨ̂,
then there is some node α working for requirement PΨ or RΘ on the true path such
that every son and daughter of α has been assigned a node on the true path. Recall
that we say a parent is been closed below the infinite outcome of a daughter or the
divergent outcome of a son. Also recall that we stop placing children on the tree
once the parent has been closed. Then if α has infinitely many sons and daugters
on the true path then the finite outcome of every daughter of α and the convergent
outcome of every son of α is on the true path. Without loss of generality, let α be
a node working for requirement PΨ. Then it follows that ΨpA,W,Qq is total. Then
by Lemma 7.31, ΓΨpA,W q is total. Since the finite outcome of every daughter of
α is on the true path, ΓΨpA,W q is not ω2-c.a.; then A ‘W is not totally ω2-c.a.

226 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

This means that for all functionals Ψ and Θ, requirements RΘ and PΨ are met
immediately, so we are done.

So suppose A‘W is totally ω2-c.a. Then every parent node is eventually closed;
hence there is a node on the true path working for every PΨ and RΘ requirement.
The following lemmas will use this assumption.

Lemma 7.33. Every RΘ requirement is met.

Proof. Fix Θ. A‘W is totally ω2-c.a. and the true path is infinite, so there is a
node η on the true path working for RΘ. If ΘpA,W q is not total then we are done.
So suppose ΘpA,W q is total. Then ηˆ8 is on the true path, and by Lemma 7.30
∆ΘpA,W q is total. Since A‘W is totally ω2-c.a. and ∆ΘpA,W q is total, ∆ΘpA,W q
is ω2-c.a. Then since the true path is infinite there must be a daughter of η, µ,
such that µˆ8 is on the true path. Then µ is initialised finitely often; hence it has
finitely many anchors, so let p be the last anchor. By Lemma 7.12 only finitely
many followers are appointed, so let q be the last follower appointed.

If ΘpA,W, qq “ 0, then there is a µ-expansionary stage s such that ΘpA,W, qqrss “ 0
after q is appointed. q is the last follower, so there is a stage where µ will either
enumerate q into Qs`1 or send a request. If this request was cancelled at stage
r then it is cancelled because ∆ηpA,W, pqrrs Ò. Let t be the next η-expansionary
stage after the request was cancelled. If there was some pρ, xq P protpµq such
that q ă ψρt pItpxqq then a new follower is appointed, but q is the last follower so
this does not happen. Then another request to enumerate q into Q will be sent.
∆ΘpA,W q is total so we will only cancel the request finitely many times. So there
is a request sent that is never cancelled. Then µ is not accessible until the request
is carried out. There are infinitely many µ-expansionary stages; hence the request
is eventually carried out, so q P Q.

ΘpA,W, qqrss “ 0 prompting the enumeration of q into Q. Then since
ΘpA,W, qq “ 1, there is some stage t ą s such that either As æ θspqq ‰ At æ θspqq
or Ws æ θspqq ‰ Wt æ θspqq. By Lemma 7.1, δsppq ě θspqq, so it is also the case
that either As æ δsppq ‰ At æ δsppq or Ws æ δsppq ‰ Wt æ δsppq. So there is an
η-expansionary stage after stage r ą s where ∆ΘpA,W, pqrrs Ò and q P Qr; this
prompts the appointment of a new follower, but this contradicts that q is the last
follower appointed. Therefore if ΘpA,W, qq “ 1 then q R Q.

So we have shown that diagonalisation is successful, ΘpA,W q ‰ Q; hence re-
quirement RΘ is met. �

Lemma 7.34. Every PΨ requirement is met.

Proof. Fix Ψ. A ‘W is totally ω2-c.a. and the true path is infinite, so there is
a node τ on the true path working for RΨ. If ΨpA,W,Qq is not total then we are
done, so suppose ΨpA,W,Qq is total. Then by Lemma 7.31, ΓΨpA,W q is total.
A‘W is totally ω2-c.a. so there is a daughter of τ , ρ, such that ρ̂ 8 is on the true
path. Since ρ̂ 8 is on the true path, every x is eventually established, so now we
show that there is an ω2-computable approximation for ΨpA,W,Qq.

Now we define αtpxq “ ω ¨mtpxq ` ktpxq. ρ is initialised finitely often so con-
sider the stages after the last initialisation. Now let s be the first ρ-expansionary
stage after x is established, and let z0 “ trspρ, xq “ origpρ, xq. Then define
mspxq “ dρspz0q ` 2 and kspxq “ bρspz0q. For stages r where x is not corrupted
define mr`1pxq “ mrpxq and kr`1pxq “ bρrpz0q.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 227

Suppose x is corrupted. Let t be the first ρ-expansionary stage after cor-
ruption and let z1 be the new tracker. Then define mt`1pxq “ mtpxq ´ 1 and
kt`1pxq “ dρt pz1q.

If x is uncorrupted. Let t be the first ρ-expansionary stage after uncorruption,
and define mtpxq “ mt´1pxq ´ 1 and ktpxq “ bρt pz0q.

For stages r while x is corrupted define mr`1pxq “ mrpxq and kr`1pxq “ dρrpz1q.
Now define

oΨ
s pxq “

ÿ

yďx

αspyq

Suppose x has not been taken over. While x uses its original tracker it just
follows the ordinal of its tracker. By Lemma 7.4, if a number enters Q below the
use ψpIpxqq then x is either taken over or declared corrupted and by Lemma 7.5 x
is taken over if another number enters Q below ψpIpxqq. Therefore while x uses its
original tracker there are no numbers entering Q; hence this ordinal works while x
is not corrupted. Now if x gets corrupted or uncorrupted then we need to decrease
mpxq by one. By Lemma 7.5 we will only need to do this a maximum of two times
hence mspxq “ dρspz0q ` 2 gives us enough room to count for these changes.

Now suppose x is corrupted. Note that we declare a new ordinal at the next ρ-
expansionary stage, so if there are multiple changes between ρ-expansionary stages
we only need to account for one of these changes. Also note that we do not need
to worry about any changes during a pρ, xq attack because wait until the first ρ-
expansionary stage after the attack is finished before declaring a new ordinal.

If there is an A change below ψpIpxqq at some stage t while pρ, xq is not in an
attack then by Lemma 7.3 (4) and Lemma 7.7 this must come from the attack of
some pρ̂, x̂q such that pρ, xq R protpρ̂, x̂q. Now it is the case that either ρ̂ ą ρ̂ 8 or
ρ̂ is to the right of ρ̂ 8. In the latter case, it follows from Lemma 7.26 that either
x was corrupted at stage r or pρ, xq was in an attack at stage r, where r is the last
ρ-expansionary stage before the computation ΓρpA,W, trpxqqrss was defined. Then
we do not need to declare a new ordinal until the next ρ-expansionary stage; hence
we can charge the decrease to the case that holds. In the case that ρ̂ ą ρ̂ 8 then
since pρ, xq R protpρ̂, x̂q, by Lemma 7.27, when pρ̂, x̂q enumerates a number into A
at stage t, x is uncorrupted.

By Lemma 7.5, if there is a Q change below ψpIpxqq while x is corrupted then x
is taken over by some x1 ă x.

If there is a W change below ψpIpxqq, then we start an attack for pρ, xq at some
stage t. Since there are infinitely many ρ-expansionary stages this attack eventually
finishes. Then there is a stage r such that dρrpz1q ă dρt pz1q, and since ktpxq “ dρt pz1q,
we have krpxq ă ktpxq; hence we see a decrease in αpxq.

Suppose x has been taken over by some x1. Now if there is a change below ψpxq
then there is a change below ψpIpx1qq. Therefore by the above argument, we see a
decrease in αpx1q. x can only be taken over by x1 ă x and αpx1q has been included
in oψpxq for x1 ă x; hence if x is taken over and there is a change below ψpxq then
there is a decrease in oψpxq as required.

Therefore this definition of oψ gives us an ω2-computable approximation for
ΨpA,W,Qq. �

228 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

References

[1] Bahareh Afshari, George Barmpalias, S. Barry Cooper, and Frank Stephan.
Post’s programme for the Ershov hierarchy. J. Logic Comput., 17(6):1025–1040,
2007.

[2] Klaus Ambos-Spies, Rodney G. Downey, and Martin Monath. On the sacks
splitting theorem and approximating computations. In Preparation.

[3] Klaus Ambos-Spies, Nan Fang, Nadine Losert, Wolfgang Merkle, and Martin
Monath. Array noncomputability: a modular approach. In Preparation.

[4] Klaus Ambos-Spies, Carl G. Jockusch, Jr., Richard A. Shore, and Robert I.
Soare. An algebraic decomposition of the recursively enumerable degrees and
the coincidence of several degree classes with the promptly simple degrees.
Trans. Amer. Math. Soc., 281(1):109–128, 1984.

[5] Klaus Ambos-Spies and Nadine Losert. Universally array noncomputable sets.
In Preparation.

[6] Katherine Arthur. Maximality in the α-c.a. degrees. Master’s thesis, Victoria
University of Wellington, 2016.

[7] Katherine Arthur, Rodney G. Downey, Noam Greenberg, and Daniel Turetsky.
The distribution of maximality in the totally α-c.a. degrees. Submitted.

[8] George Barmpalias. Hypersimplicity and semicomputability in the weak truth
table degrees. Arch. Math. Logic, 44(8):1045–1065, 2005.

[9] George Barmpalias, Rodney G. Downey, and Noam Greenberg. Working with
strong reducibilities above totally ω-c.e. and array computable degrees. Trans.
Amer. Math. Soc., 362(2):777–813, 2010.

[10] Mark Bickford and Chris F. Mills. Lowness properties of r.e. sets. Manuscript,
UW Madison, 1982.

[11] Paul Brodhead, Rod Downey, and Keng Meng Ng. Bounded randomness. In
Computation, physics and beyond, volume 7160 of Lecture Notes in Comput.
Sci., pages 59–70. Springer, Heidelberg, 2012.

[12] John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt,
Carl G. Jockusch, Jr., Timothy McNicholl, and Sarah Pingrey. Π0

1 classes and
strong degree spectra of relations. J. Symbolic Logic, 72(3):1003–1018, 2007.

[13] P. Cholak, R. Downey, L. Fortnow, E. Gasarch, W. Kinber, M. Kummer,
S. Kurtz, and T. Slaman. Degrees of inferability. In Conference on Computa-
tional Learning Theory, pages 180–192, 1992.

[14] Peter Cholak, Rodney Downey, and Michael Stob. Automorphisms of the lat-
tice of recursively enumerable sets : Promptly simple sets. Trans. Amer. Math.
Soc., 332:555–570, 1992.

[15] Peter Cholak, Rodney G. Downey, and Stephen Walk. Maximal contiguous
degrees. J. Symbolic Logic, 67(1):409–437, 2002.

[16] G. Downey, Rodgey and Noam Greenberg. A hierarchy of computably enu-
merable turing degrees. Bull. Symb. Log., 24:53–89, 2018.

[17] Rodney Downey and Richard Shore. Degree theoretical definitions of the low2

recursively enumerable sets. Journal of Symbolic Logic, 60:727–756, 1995.
[18] Rodney G. Downey. A note on btt-degrees. Rendiconti Seminario Matematico

Dell’Universita e Del Politecnico di Torino, 58:449–456, 2000.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 229

[19] Rodney G. Downey. Some computability-theoretical aspects of reals and ran-
domness. In The Notre Dame Lectures, Lecture Notes in Logic, pages 97–146.
Association for Symbolic Logic, 2005.

[20] Rodney G. Downey and Jr. Carl Jockusch. t-degrees, jump classes and strong
reducibilities. Trans. Amer. Math. Soc., 301:103–136, 1987.

[21] Rodney G. Downey and Noam Greenberg. Totally ă ωω computably enumer-
able and m-topped degrees. In Theory and applications of models of compu-
tation, volume 3959 of Lecture Notes in Comput. Sci., pages 46–60. Springer,
Berlin, 2006.

[22] Rodney G. Downey and Noam Greenberg. A Hierarchy of Turing Degrees.
Annals of Mathematics Studies. Princeton University Press, 2020.

[23] Rodney G. Downey, Noam Greenberg, and Rebecca Weber. Totally ω-
computably enumerable degrees and bounding critical triples. J. Math. Log.,
7(2):145–171, 2007.

[24] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and
complexity. Theory and Applications of Computability. Springer, New York,
2010.

[25] Rodney G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan.
Trivial reals. In Proceedings of the 7th and 8th Asian Logic Conferences, pages
103–131, Singapore, 2003. Singapore Univ. Press.

[26] Rodney G. Downey, Carl G. Jockusch, Jr., and Michael Stob. Array non-
recursive sets and multiple permitting arguments. In Recursion theory week
(Oberwolfach, 1989), volume 1432 of Lecture Notes in Math., pages 141–173.
Springer, Berlin, 1990.

[27] Rodney G. Downey, Carl G. Jockusch, Jr., and Michael Stob. Array nonre-
cursive degrees and genericity. In Computability, enumerability, unsolvability,
volume 224 of London Math. Soc. Lecture Note Ser., pages 93–104. Cambridge
Univ. Press, Cambridge, 1996.

[28] Rodney G. Downey and Steffen Lempp. Contiguity and distributivity in the
enumerable Turing degrees. J. Symb. Logic, 62(4):1215–1240, 1997.

[29] Rodney G. Downey and Keng Meng Ng. Splitting into degrees with low com-
putational strength. Annals of Pure and Applied Logic, 169:803–834, 2018.

[30] Rogney G. Downey. Lattice nonembeddings and initial segments of the recur-
sively enumerable. Ann. Pure and Appl. Logic, 49:97–119, 1990.

[31] Y Ershov. Positive equivalences. Algebra i Logika, 10:620–650, 1971.
[32] Yuri L. Ershov. A certain hierarchy of sets. I. Algebra i Logika, 7(1):47–74,

1968.
[33] Yuri L. Ershov. A certain hierarchy of sets. II. Algebra i Logika, 7(4):15–47,

1968.
[34] Yuri L. Ershov. A certain hierarchy of sets. III. Algebra i Logika, 9:34–51, 1970.
[35] Richard Friedberg. Two recursively enumerable sets of incomparible degrees

of unsolvability. Proc. Natl. Acad. Sci. USA, 43:236–238, 1957.
[36] Noam Greenberg and Dan Turetsky. Bulletin of Symbolic Logic, 24:147–164,

2018.
[37] Leo Harrington and Robert I. Soare. Post’s program and incomplete recursively

enumerable sets. Proc. Nat. Acad. Sci. U.S.A., 88(22):10242–10246, 1991.
[38] Li Ling Ko. PhD thesis.

230 ROD DOWNEY, NOAM GREENBERG, and ELLEN HAMMATT

[39] Martin Kummer and Marcus Schaeffer. Cuppability of simple and hypersimple
sets. Notre Dame Journal of Formal Logic, 48:349–369, 2007.

[40] Stuart A. Kurtz. Notions of weak genericity. Journal of Symbolic Logic, 48:764–
770, September 1983.

[41] A. H. Lachlan. Embedding nondistributive lattices into the recursively enumer-
able degrees. In Wilfred Hodges, editor, Conference in Mathematical Logic, vol-
ume Lecture Notes in Mathematics No. 255, pages 149–177. Springer-Verlag,
1972.

[42] A. H. Lachlan. Two theorems on the many one degrees of recursively enumer-
able sets. Algebra i Logika, 11:216–229, 1972.

[43] Alistair H. Lachlan and Robert I. Soare. Not every finite lattice is embeddable
in the recursively enumerable degrees. Adv. in Math., 37(1):74–82, 1980.

[44] Steffen Lempp and Manuel Lerman. A finite lattice without critical triple that
cannot be embedded into the enumerable Turing degrees. Ann. Pure Appl.
Logic, 87(2):167–185, 1997. Logic Colloquium ’95 Haifa.

[45] Steffen Lempp, Manuel Lerman, and D. Reed Solomon. Embedding finite lat-
tices into the computably enumerable degrees—a status survey. In Logic Col-
loquium ’02, volume 27 of Lect. Notes Log., pages 206–229. Assoc. Symbol.
Logic, La Jolla, CA, 2006.

[46] M. Lerman. Degrees of Unsolvability. Perspectives in Mathematical Logic.
Springer-Verlag, Heidelberg, 1983. 307 pages.

[47] Donald A. Martin. Classes of recursively enumerable sets and degrees of un-
solvability. Z. Math. Logik Grundlagen Math., 12:295–310, 1966.

[48] Michael McInerney. Topics in Algorithmic Randomness and Computability
Theory. PhD thesis, Victoria University of Wellington, 2016.

[49] Michael McInerney and Keng Meng Ng. Separating weak α-change generic and
α-change generic. Submitted.

[50] McInerney Michael and Keng Meng Ng. Multiple genericity i: Bounding the-
orems and downward density. Israel J. Math., page accepted.

[51] Martin Monath. On Array Noncomputable Degrees, Maximal Pairs and Sim-
plicity Properties. PhD thesis, University of Heidelberg, 2020.

[52] A. A. Muchnik. On the unsolvability of the problem of reducibility in the
theory of algorithms. N. S. 108:194–197, 1956.

[53] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305,
2005.

[54] André Nies. Reals which compute little. In Logic Colloquium ’02, volume 27
of Lect. Notes Log., pages 261–275. Assoc. Symbol. Logic, La Jolla, CA, 2006.

[55] André Nies, Richard A. Shore, and Theodore A. Slaman. Interpretability and
definability in the recursively enumerable degrees. Proc. London Math. Soc.
(3), 77(2):241–291, 1998.

[56] André Nies, Frank Stephan, and Sebastiaan A. Terwijn. Randomness, rela-
tivization and Turing degrees. J. Symbolic Logic, 70(2):515–535, 2005.

[57] Emil L. Post. Recursively enumerable sets of positive integers and their decision
problems. Bull. Amer. Math. Soc., 50:284–316, 1944.

[58] Joseph R. Shoenfield. Mathematical logic. Association for Symbolic Logic, Ur-
bana, IL, 2001. Reprint of the 1973 second printing.

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES, II 231

[59] Richard A. Shore. Natural definability in degree structures. In Computabil-
ity theory and its applications (Boulder, CO, 1999), volume 257 of Contemp.
Math., pages 255–271. Amer. Math. Soc., Providence, RI, 2000.

[60] R. I. Soare. The infinite injury priority method. Journal of Symbolic Logic,
41:513–530, 1976.

[61] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer, New York,
1985.

[62] Robert I. Soare. Automorphisms of the lattice of recursively enumerable sets
I: maximal sets. Annals of Math., 100:80–120, 1974.

[63] Alan Mathison Turing. On computable numbers with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc. (2), 42:230–265, 1936. A cor-
rection, 43:544–546.

[64] Yongge Wang. Randomness and Complexity. PhD thesis, University of Heidel-
berg, 1996.

[65] Barry Weinstein. On Embedding of the Lattice 1-3-1 into the Recursively Enu-
merable Degrees. PhD thesis, University of California, Berkeley, 1988.

School of Mathematics and Statistics
Victoria University

P.O. Box 600

Wellington
New Zealand

Rod.Downey@vuw.ac.nz

School of Mathematics and Statistics

Victoria University
P.O. Box 600

Wellington

New Zealand
greenberg@msor.vuw.ac.nz

School of Mathematics and Statistics

Victoria University

P.O. Box 600
Wellington

New Zealand

ellen.hammatt@vuw.ac.nz

	1. Vaughan Jones
	2. Introduction
	2.1. Background
	2.2. The present paper

	3. The New Hierarchy
	3.1. -c.a. functions
	3.2. Degree hierarchies
	3.3. More generally

	4. Sacks Splitting Theorem
	5. Maximal -c.a. Degrees
	6. A New Hierarchy
	6.1. The characterization

	7. Proof of Theorem 5.6
	7.1. Glossary
	7.2. Technical discussion
	7.3. Tree of strategies
	7.4. Assigning requirements
	7.5. Types of nodes
	7.6. Construction
	7.7. Verification

	toReferences
	References

