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Abstract. By studying the commuting graphs of conjugacy classes of the se-
quence of Heisenberg groups H2n+1(p) and their limit H∞(p) we find pseudo-
random behavior (and the random graph in the limiting case). This makes a
nice case study for transfer of information between finite and infinite objects.
Some of this behavior transfers to the problem of understanding what makes
understanding the character theory of the uni-upper-triangular group (mod p)
“wild.” Our investigations in this paper may be seen as a meditation on the
question: is randomness simple or is it complicated?

In memoriam Vaughan Jones.

This paper is dedicated to Vaughan Jones. Both of the authors knew Vaughan,
both from Berkeley and through being invited speakers to the seminars he organized
in New Zealand, in Kaikoura and Hanmer Springs, and in Napier, respectively. He
was a wonderful, lively human being. Always trying to communicate and get you
involved with whatever current project he had in focus – from wind surfing to the
the mathematics of tangles. He was happy to explain anything he knew about ‘in
English’.

He also liked to keep things lively. For example, during visits to Kaikoura,
Diaconis and Vaughan’s great friend Hugh Woodin fell in love with a New Zealand
chocolate bar ‘Peanut Slabs’. After the neighborhood supply was exhausted, they
made forays to nearby towns surprised to find “somebody came in and bought
out our stock yesterday”. Vaughan had spotted their weakness and cornered local
supplies. He walked through the conference the next day preening (and munching
on a peanut slab (sigh)). He shared later, but the story went on. Diaconis routinely
gives five or so talks a year at Berkeley. For the NEXT SEVERAL YEARS, walking
into the conference room, there was a peanut slab on the lecturers table. Whether
it was Vaughan or Hugh, it was a wonderful inducement.
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1. Introduction

Let n ∈ N and p be a prime. Define the Heisenberg group H2n+1(p) as {[x, y, z] :
x, y ∈ Fnp , z ∈ Fp} with [x, y, z][x′, y′, z′] = [x + x′, y + y′, z + z′ + xy′] where
xy′ = x1y

′
1 + · · · + xny

′
n. Thus id = [0, 0, 0], [x, y, z]−1 = [−x,−y,−z + xy],

[x, y, z]−1[a, b, c][x, y, z] = [a, b, c + ay − xb], [x, y, z]−1[a, b, c]−1[x, y, z][a, b, c] =
[0, 0, xb − ay]. Thus [x, y, z] and [x′, y′, z′] commute if and only if xy′ − yx′ =
0 (mod p). As discussed below, H2n+1(p) are the “extraspecial p-groups of expo-
nent p”. Thus |H2n+1(p)| = p2n+1, Z(H2n+1(p)) = H ′2n+1(p) = Φ(H2n+1(p)) =
{[0, 0, z] : z ∈ Fp} ∼= Fp, and (for p > 2) [x, y, z]p = id. Here Φ is the Frattini
subgroup, H ′ is the commutator subgroup, and Z(H) is the center. These defi-
nitions and facts hold as well for H∞(p) with Fnp replaced by countably infinite
vectors with at most finitely many nonzero elements. H2n+1(p) can also be seen as
the (n + 2) × (n + 2) matrices with ones on the main diagonal, zeroes below the
diagonal, x in the top row (i.e., second through (n + 1)-st entries of the top row),
y in the last column (second through (n + 1)-st entries) and z in the upper right
hand corner.

The conjugacy classes of H2n+1(p) and H∞(p) are the center and the cosets of
the center. Let [x, y, ∗] = Cxy denote these non central classes. Form a graph
Γ(H2n+1) (respectively Γ(H∞)) with vertices the elements of H2n+1(p) and an
edge between two elements if they commute; such a Γ is often called a commuting
graph. [For some purposes we may want to include a loop at each vertex, because
an element commutes with itself.] Observe that if [x, y, z] ∈ Cxy and [a, b, c] ∈ Cab
commute then all elements of Cxy commute with all elements of Cab. Thus, in
Γ, each conjugacy class Cxy forms a complete graph, and the induced bipartite
graph between any two distinct conjugacy classes Cxy and Cab is either complete
or empty. So we may also form the quotient graph Γ̃(H2n+1) (respectively Γ̃(H∞))
with vertices the non-central conjugacy classes and an edge from Cxy to Cab if their
elements commute, that is, if xb − ay = 0. A subtlety to note in this definition is
that the quotient group mod the center is elementary abelian.

It will be useful to know that:

Fact 1.1 ([Erdős-Turán], see §2.6 below). For any finite group G,
e(G) = |G|c(G)

where e(G) is the number of ordered pairs of commuting elements, |G| is the size
of G, and c(G) is the number of conjugacy classes.

In the case of H2n+1(p), we have seen the conjugacy classes are determined by
2n entries; subtract the all-zero entry, and add the p central elements. So Fact 1.1
gives e(H2n+1) = |H2n+1|c(H2n+1) = p2n+1(p2n + p − 1). Dividing both sides by
p2(2n+1) shows that if two elements of H2n+1(p) are chosen at random, the chance
that they commute is about 1/p+ (1/p2n).

Section two contains background material on extraspecial p-groups, quasiran-
domness, ‘the’ random graph, axioms for H∞(p), symplectic spaces, and commut-
ing graphs. In section three we give a ‘bare hands’ proof that the commuting
graphs of the Heisenberg groups H2n+1(p) are quasi-random when n is large for
fixed p. Section four shows that H∞ contains the random graph as an induced
subgraph in a strong sense (it is essentially generated by it) and so enjoys many



COMPLEXITY AND RANDOMNESS IN THE HEISENBERG GROUPS (AND BEYOND)405

parallel properties of randomness. Section five connects these random properties of
the Heisenberg group to the group UT (n, p) – uni-upper-triangular matrices with
entries in Fp. It begins with a separate literature review on the difficulties of de-
scribing the conjugacy classes or characters of UT . This may be read now for
further motivation.

2. Background

This section gives background material on Heisenberg and extraspecial groups
(2.1), the random graph (2.2), quasirandomness (2.3), axioms (2.4), symplectic
spaces (2.5), and commuting graphs (2.6). Since this is an interdisciplinary effort
we have made an effort to bring the various topics to life (and to articulate one new
open problem).

Note: in our main cases below, p will be an odd prime.

2.1. Heisenberg and extra-special p-groups. The construction of H2n+1 and
H∞ given above makes sense for any ring. Over R, the Heisenberg groups form
a central part of analysis (if this seems like overselling, see [Howe]). Over Z,
they are a basic ingredient of theta functions in many variables. See [Mumford].
We will work over the finite field Fp. A finite group G of order pN is extraspe-
cial if Z(G) = G′ = Φ(G) ∼= Fp. Extraspecial p-groups were introduced by
Philip Hall and had early success in the Hall-Higman paper on Burnside’s problem
[Hall-Higman]. They are a standard topic in group theory texts [Aschbacher]
[Suzuki] [Huppert]. It is known that N = 2n+ 1 is forced.

There are two nonisomorphic such groups (fixing n, p): our Heisenberg groups
H2n+1(p) (distinguished by having every element of order at most p) and the groups
M2n+1(p) which have elements of order p2.1 For example M3(p) may be constructed
as a semi-direct product, letting Cp act on C(p2) by j · k = (1 + jp)k mod p2.
M2n+1(p) may be constructed as a central product of H2n−1 and M3(p). So the
present constructions for H2n+1 may be easily mirrored for M2n+1(p). Indeed,
M2n+1(p) and H2n+1 have the same character table. N.B. while there is only one
H2n+1 and only one countable H∞ there are two distinct countable M∞’s [Hall].2

The Heisenberg groups occur throughout mathematics and physics; there is even
a literature on probability for these groups. To explain, work in H3(p). A minimal
generating set is S = {[1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0]}. A Markov chain on
H3(p) based on this is:

K(x, y) =
{

1
5 if yx−1 ∈ S ∪ {id}
0 otherwise.

The work cited below shows that this Markov chain has a uniform stationary distri-
bution and order p2 steps are necessary and sufficient for convergence to stationarity.
The proofs use the eigenvalues and eigenfunctions of the associated Laplace oper-
ator L(x, y) = I −K(x, y). The spectrum of the Laplacian is a basic ingredient in
understanding the geometry of the underlying space. See [Jorgenson and Lang],
[Liu], and [Bump et al.], [Diaconis-Hough] which contain reviews.

1There are also two extraspecial groups of order 22n+1, but neither of them has exponent 2.
2corresponding to different completions of the theory.
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In logic, the extraspecial p-groups have also been present for several decades;
we mention a few central points. First, suppose p 6= 2. [Felgner] gave axioms
Tp for H∞(p) and proved there is only one countable such group, up to isomor-
phism, see §2.4 below. It is easy to see that the infinite extraspecial p-groups are
unstable in the sense of Shelah’s classification theory [Shelah]: it suffices to find
a formula ϕ(x, y) and disjoint sets of distinct elements {ai : i < ω}, {bj : j < ω}
such that ϕ(ai, bj) holds if and only if i < j. (Use the formula [x, y] = 1 – con-
veniently, our edge relation in Γ – and section three, or read the footnote on page
416.) Thus, as already observed by Felgner, Shelah’s theory applies to show that
there are 2λ pairwise nonisomorphic extraspecial p-groups of exponent p of each
uncountable size λ; a more direct construction is in [Shelah-Steprans]. (Some
parallel results on the case of exponent p2 are in [Hall].) The extraspecial p-
groups are a useful example of a (very) simple unstable theory – here “simple”
can be read as both a model theoretic term and an English adjective – especially
in their alternate guise as symplectic spaces over finite fields. See the work of
[Cherlin-Hrushovski], and [Macpherson-Steinhorn]. In yet another direction,
they were used by [Shelah-Steprans] to build so-called Ehrenfeucht-Faber groups,
uncountable groups with every abelian subgroup of strictly smaller cardinality.

We conclude this discussion by stating what might be the first appearance of
extraspecial p-groups.

Theorem 2.1 (P. Hall; see Suzuki p. 75). For prime p > 2, let G be a p-group
with every characteristic abelian subgroup cyclic. Then G is a central product of
H and S where H is a Heisenberg group and S is cyclic. [N.B. H may equal id.]

2.2. The random graph. This remarkable object appears in graph theory and
logic. There is a wonderful survey, with many readable, full proofs, in Peter
Cameron’s fine [Cameron]. As motivation, fix a large n, say 100. Pick two Erdős-
Renyi 1

2 -graphs randomly. What is the chance they are isomorphic? Intuitively,
“small”. How small? Well, the number of possible one to one maps from [n] to [n]
is n! and the number of graphs is (2)(

n
2) so it is at most n!/2(n

2), small indeed.
Now, let n =∞. Pick two Erdős-Renyi 1

2 -graphs at random, independently (flip
independent fair coins for each pair of vertices for each graph). What is the chance
they are isomorphic? The surprising answer: the chance is 1 (!). This accounts for
the label “the random graph.” There are many non-random constructions. Let S
be the set of all primes that are 1 mod 4. Put an edge from p to q if (pq ) = 1.
[The Legendre symbol (pq ) = 1 if q is a quadratic residue mod p; by reciprocity, this
happens if and only if ( qp ) = 1 so the graph is undirected.] The resulting graph is
(isomorphic to) the random graph. 3

These graphs are robust. If R is the random graph and R′ is obtained from R
by deleting any finite number of vertices and edges, then R′ ∼= R. If the vertex set

3Added when updating the manuscript: In response to the present paper, to further investigate
the discontinuity in passing from Erdős-Renyi graphs G(n, 1

2 ) to the random graph R, Chatterjee
and Diaconis asked in [Chatterjee and Diaconis]: Pick independent Γ1,Γ2 G(n, 1

2 ) graphs.
What is the size of the largest induced isomorphic subgraph? They show it has order 4 log2 n.
In a similar vein, Alon [Alon] had shown that a random graph in G(N, 1

2 ) is universal in containing
all subgraphs of order k, where k is of order log(N) (he has more precise results).
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is decomposed into finitely many subsets, the induced graph on at least one subset
is isomorphic to R.

The random (Rado) graph has a universality property; it contains every finite
or countable graph as an induced subgraph. In particular, it contains a copy of the
infinite complete graph and an infinite graph with no edges. The Rado graph is
highly symmetric: given any two finite isomorphic induced subgraphs there is an
automorphism of R extending this isomorphism.

Logicians have long studied R – after all, a graph is just a symmetric binary
relation. Say that a graph property P holds in almost all finite graphs if the
proportion of N -vertex graphs where P holds tends to 1 (equivalently, if an Erdős-
Renyi 1

2 -graph has property P with probability tending to 1). It is known that
for any first order property in the language of graphs, P holds in R if P holds in
almost all (finite) graphs. [This can be said as a zero-one law: let P be a sentence in
the first-order language of graphs. Then P holds in almost all graphs or in almost
no graphs.] We hasten to add that many interesting properties of graphs are not
first order, connectedness and hamiltonicity, for instance; and much random graph
theory is done with the chance of an edge tending to zero as n tends towards infinity.
For much more on logic and graph theory, see [Spencer].

Above, we explained how the study of a random walk and the associated Lapla-
cian gives insight into the geometry of a space. There is a curious random walk
on R leading to open math problems and new understanding of the structure of
R. To explain, it is easiest to use the following isomorphic description of R: Let
N = {0, 1, 2, . . . }. Make a graph on N via: for i < j, set i ∼ j if and only if the i-th
bit of j (in its binary expansion) is a 1. Thus, for instance, 0 is connected to all
odd numbers and 1 is connected to 0 and 1 is connected to all j equivalent to 2 or
3 mod 4. For the walk, fix Q(j) > 0,

∑
j∈NQ(j) = 1 a positive probability on N.

For j ∈ N, let N(j) = {k : k ∼ j} be the neighborhood of j. For definiteness, say
Q(j) = 1

2j+1 . (The same story works for any model ofR and the rate of convergence
would be the same; of course this depends on the measure.) Define a Markov chain
on N by:

K(i, j) =
{
Q(j)/Q(N(i)) if j ∼ i
0 otherwise.

Thus, from i, pick j among the neighbors with probability Q(j) (normalized to the
neighbors).

We were surprised to find this walk has a simple stationary distribution Π (so∑
i∈N Π(i)K(i, j) = Π(j)). That is,

Π(i) = Z−1Q(i)Q(N(i))
for Z a normalizing constant. Indeed Π(i)K(i, j) = Π(j)K(j, i) as is easy to check,
so ∑

i

Π(i)K(i, j) =
∑
i

Π(j)K(j, i) = Π(j).

Standard theory says that, for any i, j, K`(i, j)→ Π(j) as `↗∞. (See [Levin-Peres].)
Here K`(i, j) =

∑
kK(i, k)K`−1(k, j) is the chance of going from i to j in ` steps.

The question is to determine the rate of this convergence. Let

‖K`
i −Π‖ = 1

2
∑
|K`(i, j)−Π(j)|.
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We want to know how large to take ` so ‖K`
i −Π‖ < ε, and how it depends on the

starting state i: each i is connected to half of the points in N and the diameter of
R is two. So, convergence to stationarity might be very rapid (a bounded number
of steps suffice to make ‖K`

i −Π‖ < ε for all i). On the other hand, if i begins with
many zeroes, it can take a long time for the chain to get close to zero. We don’t
know and hope one of our readers will report.

The following computation shows that the starting state matters.
It is easiest to use the Boolean model for R; the vertex set is {0, 1, 2, . . . } and for

i < j there is an undirected edge from i to j if the ith bit of j is a 1. Take the driving
measure to be Q(j) = 1

2j+1 . (As explained below, the choice of Q doesn’t matter
much; essentially the same argument works for Q(j) = 1

(j+1)(j+2) , 0 ≤ j <∞.)
The transition density is K(i, j) = Q(j)/Q(N(i)). The stationary distribution is

Π(i) = Q(i)Q(N(i))/Z with Z a normalizing constant. Observe that Π(0) =
1
2 ·

1
3

Z .
Since Π(0) < 1, 1 < 1

Z < 6. Let

2(k) denote 22···2

with the exponentiation iterated k times. So 2(1) = 2, 2(2) = 4, 2(3) = 16 and we
stipulate 2(0) = 1. Below, the easily proved inequality 2(k−1) ≤ 2(k)− 2(k−1) ≤ 2(k)

will be used. The idea of the argument is simple. Start the Markov chain at
2(k). The only smaller j connected to 2(k) is 2(k−1). The larger j’s have super-
exponentially small probability. Thus, in the first step, the walk goes 2(k) → 2(k−1)

with probability super-exponentially close to 1. Similarly, it goes → 2(k−2) →
2(k−3) → · · · → 2(k−`) in the first ` steps. For any fixed `, the walk started at 2(k)

is most likely not at 0. But Π(0) ≥ 1
6 so the walk cannot have converged after `

steps.

Proposition 2.2. With notation as above,

P2(k)(X` = 2(k−1)) ≥ 1− 1
2 · 2(k−`) .

Corollary 2.3. For k > ` ≥ 2,

‖K`
2(k) −Π‖ ≥ 1

6 −
1

2 · 2(k−`) .

Proof of Corollary 2.3. By definition ‖K`
2(k) − Π‖ = supA ‖K`(2(k), A) − Π(A)‖.

Take A = {0}. Then

‖K`
2(k) −Π‖ ≥ Π(0)−K`(2(k), 0) ≥ 1

6 −
1

2 · 2(k−`) .

�

Proof of Proposition 2.2. Let N+(2(k)) = {j > 2(k) with j ∼ 2(k) in R}. So

Q(N+(2(k))) ≤
∑
j>2(k)

Q(j) = Q(2(k)) = 2
2(k+1) .

Also,

K(2(k), 2(k−1)) = 1/(2 · 2(k))
1/(2 · 2(k)) +Q(N+(2(k))) ≥

1
1 + 2(k)

2(k+1)

≥ 1− 2(k)

2(k+1) .
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(Use 1
1+x > 1− x for x > 0.) Using (1− x)(1− y) ≥ 1− x− y,

P2(k)

(
X` = 2(k−`)

)
≥ 1− 2(k)

2(k+1) −
2(k−1)

2(k) − · · · −
2(k−`)

2(k−`+1)

≥ 1− 1
2(k) − · · · −

1
2(k−`) ≥

1
2 · 2(k−`)

which completes the proof. �

Remark. The arguments above are robust. They work if the starting state 2(k)

is replaced by any j with first non-zero bit in position 2(k−1). They work if the
measure Q is replaced by any monotone decreasing probability, e.g. 1/(j+1)(j+2).

2.3. Quasirandomness. We now turn to finite random graphs. Although, as we
have just observed, there are many nonisomorphic Erdős-Renyi 1

2 -graphs of a fixed
finite size N , they generally share a series of rather special properties. For example,
almost always (as N grows), the edge distribution between pairs of reasonably sized
subsets of vertices is regular in the sense of Szemerédi’s regularity lemma; most
vertices have degree about n

2 ; all labeled graphs on a fixed finite number of vertices
occur asymptotically with the same frequency – say, (labeled) 4-cycles are not less
frequent than cliques of size 4 or independent sets of size 4.

One of the remarkable discoveries of [Chung-Graham-Wilson], [Thomason]
was that it is possible to identify a set of such (asymptotic) graph properties, a pri-
ori quite different from each other but shared by random graphs, which are in fact
equivalent to each other in the sense that any graph satisfying one of these prop-
erties must necessarily satisfy all of them. Such graphs are called quasi-random.
Quasi-random graphs form a broader class than random graphs, but nonetheless
this framework gives a powerful and often easily checkable means of speaking ap-
proximately or asymptotically of random behavior.

There is by now an extensive literature on this subject. Some variously formu-
lated lists of the equivalent properties can be found in [Chung-Graham-Wilson]
§3 (note that for ease of exposition they restrict there to edge probability 1

2 ) or in
[Krivelevich-Sudakov] Theorem 2.6 or [Gowers] Theorem 2.1. For a textbook
development see [Lovasz].

2.4. First-order axioms. When considering the infinite Heisenberg groups, of
which there are many of arbitrarily large infinite size, we switch from writing H∞
to Hω to indicate the one which is countably infinite. Here we indicate why this
is justified for countable, though as already noted above, not uncountable sizes, by
way of reviewing axioms and notation.

Recall that for p an odd prime, [Felgner] gave a set of first-order axioms Tp in
the language of groups (there is a binary function symbol × and a constant 1) which
hold in Hω(p) and which express: the axioms for group theory (associativity: for all
x, y, z we have x×(y×z) = (x×y)×z, identity: for all x, x×1 = 1×x = x, existence
of inverse: for all x there exists y such that x× y = y × x = 1), that the center is
a cyclic group of order p, that the derived group is contained in the center and is
not trivial, and (infinitely many axioms expressing that) the factor group modulo
the center is infinite. Note this avoids direct reference to the Frattini subgroup, the
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intersection of all maximal subgroups, which is not obviously first-order expressible
since it quantifies over subgroups, rather than elements.

Logicians have various notions of equivalence that are subtly different. For a
model M , write M |= T to mean that the set of axioms T all hold in M . (T for
theory, which is just a set of axioms, here always of first-order logic.) Write M ≡ N ,
pronounced elementarily equivalent, to mean that exactly the same axioms hold in
M and in N . Write M ∼= N to mean they are isomorphic. M ∼= N implies M ≡ N ,
but the reverse fails strongly by the upward and downward Löwenheim-Skolem
theorems: if M is an infinite model, say in a countable4 language, then there is
at least one N ≡ M of every other infinite size. (See [Chang and Keisler] for
standard model theory.) So to have a chance of determining the structure up to
isomorphism we must specify not only the theory but the size, but often this is not
enough: for example, there are many pairwise non-isomorphic algebraically closed
fields of characteristic zero, and countable size: one of transcendence degree n for
every n ∈ N, and one of countable transcendence degree. (However, there is just
one of any fixed uncountable size, because in that case the transcendence degree
and thus the isomorphism type is determined.) When it is enough – when there is,
up to isomorphism, precisely one way to satisfy the axioms of T on a set of size κ
– T is called κ-categorical.

Summarizing “there is exactly one countably infinite extraspecial p-group of
exponent p” in our notation: Felgner proved that Tp is ℵ0-categorical, meaning
that if M ≡ Hω (or just: M |= Tp) and M is also countably infinite, then M ∼= Hω.
(The background statement is that if p is an odd prime, H is a nonabelian finite
or countable p-group of exponent p such that H ′ = Z(H) is cyclic and H/Z(H) is
elementary abelian, then whenever D1, D2 are finite subgroups of H which are both
extraspecial and both of the same size, every isomorphism from D1 onto D2 can
be extended to an automorphism of H.) It follows that the theory Tp is complete,
meaning that for any other first-order sentence ϕ in its language, either ϕ or ¬ϕ
follows from Tp.

A note on first-order logic. Part of the art (in mathematics) is of course finding
a balance between having enough expressive power to prove interesting theorems
but not so much as to prevent abstraction. First order logic, in this sense, seems
not unlike linear algebra: much interesting mathematics initially appears to escape
it, but as, say representation theory shows for linear algebra (or, say, classification
theory for first-order logic), already there is a remarkable explanatory power.

2.5. Symplectic spaces. There is a helpful correspondence between our extraspe-
cial p-groups and non-degenerate symplectic spaces over Fp, which we outline here
with the referee’s encouragement (and will refer to in section four). For more details
see the excellent account in [Tomkinson], pages 49–53.

In the first direction, we are given an extraspecial p-groupH of exponent p and we
would like to find a nondegerate symplectic space over Fp. Recall from above that
the commutator is a map from H×H → Z(H) and only depends on the conjugacy
classes, i.e., on the cosets of the center: the commutator of [x, y, z] and [a, b, c] is
[0, 0, xb − ay]. Recall also that the quotient group mod the center G = H/Z(H)
is elementary abelian so, written additively, can be thought of as a vector space V

4If larger, we may only have models of any size greater or equal to the size of the language.
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over Fp. [For the rest of this paragraph, write elements of V as (u, v), i.e. (u, v) ∈ V
is the image of [u, v, ∗] ∈ H in H/Z(H), now using round parentheses to not conflict
with the notation for commutator.] Let g = [0, 0, 1] ∈ Z(H) (or any other generator
of the center). Define F : V × V → Fp by sending ((u1, u2), (v1, v2)) 7→ k for the
unique 0 ≤ k ≤ p − 1 such that the commutator [[u1, u2, ∗], [v1, v2, ∗]] = [0, 0, k] =
gk. Then F is (i) bilinear, (ii) alternating meaning that F ((x1, x2), (x1, x2)) = 0
(recall each [x1, x2, ∗] commutes with all elements of its conjugacy class), and (iii)
nondegenerate meaning that for every nonzero (u1, u2) ∈ V there is (v1, v2) ∈ V
such that F ((u1, u2), (v1, v2)) 6= 0.

Compare our Γ̃(H), whose edges and non-edges reflect whether F is zero.
In the second direction, we have a nondegenerate symplectic space V over Fp,

given with a basis {vi : i ∈ I} and an alternating bilinear map F , and we would
like to find an extraspecial p-group of exponent p. Informally, we try to reverse the
earlier quotient by remembering a center. Let H be the group formally given by
generators {g} ∪ {vi : i ∈ I} subject to the relations gp = vi

p = [vi, g] = 1 and
[vi, vj ] = gF (vi,vj). Most properties are easily checked; the proof that these relations
don’t collapse goes by finding an explicit construction of a nonabelian group which
satisfies them (see e.g. [Tomkinson] p. 52, or [Shelah-Steprans]).

In this sense our Heisenberg groups and symplectic spaces (mod p) are equivalent.

2.6. Commuting graphs. The commuting graph of a finite group, our Γ of the
introduction, also has an extensive literature. [Pyber] includes many early ref-
erences; a very recent survey of many kinds of graphs on groups, including the
commuting graph, is [Cameron2]. There is a direct connection to randomness
in the question: Let G be a finite group. Pick two elements in G at random,
what is the chance they commute? An early theorem in the subject shows that,
for G non-abelian, this is at most 5/8 (and this is sharp). For simple groups
[Guralnick-Robinson] show that this chance is at most 1/2. For non-abelian
solvable groups the chance is at most 1/12. This last paper surveys a surprisingly
deep literature.

We continue this discussion with two comments. First, important early questions
in this area are suggested by the title of [Erdős-Strauss]: “How abelian is a finite
group?” and the above-mentioned companion paper [Pyber] of the same name.
The maximal cliques of the commuting graph Γ correspond to maximal abelian
subgroups, however, the picture is a priori different from Ramsey’s theorem: Pyber
proves that every group of order n contains an abelian subgroup of order at least
2ε
√

logn for some ε > 0 and that this result is essentially best possible.
Second, we include the short:

Proof of Fact 1.1 (Erdős-Turán). The number of ordered pairs of commuting ele-
ments whose first element is a is |Z(a)|, the size of the centralizer of a. This number
is the same for any a′ ∈ C(a), the conjugacy class of a. So the number of ordered
pairs of commuting elements with first element conjugate to a is |C(a)||Z(a)| = |G|.
Sum over c(G) conjugacy classes to get |G|c(G) ordered pairs. �
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Figure 1. Some copies of H2m+1 in H2n+1 for n = 5,m = 2.

3. Quasirandomness

This section gives a standalone proof that the sequence of commuting graphs
of the Heisenberg group is quasi-random. Some of the properties that follow have
other explanations, see for instance section 4 below.

Recall the graph G = Γ̃(H2k+1) discussed above has vertices the non-central
conjugacy classes Cx,y with an edge from Cx,y to Ca,b if the elements of these two
classes commute. Combining x and y into a vector of length 2k it is convenient to
identify vertices with functions from {1, . . . , 2k} to p, including the all-zero function
so n = |V (G)| = p2k. For any v ∈ V (G) and 1 ≤ i ≤ 2k, we may write v(i) for the
i-th entry of v. Let the support of v, sup(v) = {i : 1 ≤ i ≤ 2k, v(i) 6= 0}. Let N(v)
denote the neighborhood of v. We emphasize a notational point: in this section, k
is from the subscript to H and n is the size of the graph.

Claim 3.1. Given k and p, we have that:
(1) Every v ∈ V (G) other than the constant-zero element has degree d = p2k−1.
(2) The density δ of G is ≈ 1

p , more precisely, δ = 1
p + ε where ε = ε(k) < 1

p2k .
(3) For v, w ∈ G, we can have:

(a) |N(v) ∩N(w)| = p2k, if v = w is the constant-zero element.
(b) |N(v) ∩N(w)| = p2k−1, if v = w is not the constant-zero element, or if

exactly one of v, w is the constant-zero element, or if v is nonzero and
w is a nonzero multiple of it.

(c) |N(v) ∩N(w)| = p2k−2 otherwise.

Proof. (1) For any v ∈ G which is not constantly zero, we can count the elements
w which commute with v by fixing some i ∈ sup(v) 6= ∅ and choosing w(j) freely
for j 6= i. Thus deg(v) = p2k−1.

(2) Counting ordered pairs, compute the density ofG by ((n−1)p2k−1+p2k)/n2 =
1
p + p−1

p2k+1 <
1
p + 1

p2k , remembering n = p2k.
(3) Case (a) is clear. Otherwise, one of the following must be true:

(i) we can choose 1 ≤ i, j ≤ 2k such that i ∈ sup(v), j ∈ sup(w) \ sup(v). In this
case |N(v) ∩ N(w)| = p2k−2. [Looking for x commuting with both, we may
choose x(`) for ` 6= i, j freely, but the value of x(i) is forced by commuting
with v and subsequently the value of x(j) is forced by commuting with w.]

(ii) the parallel to (i): we can choose 1 ≤ i, j ≤ 2k such that i ∈ sup(w), j ∈
sup(v) \ sup(w), and the proof is the same.

(iii) not (i) or (ii), so sup(v) = sup(w), but one is not a multiple of the other.
In this case, to find x commuting with both, we are solving two equations in
| sup(u)| ≥ 2 unknowns, so we are free to choose p2k−2 coordinates of x as we
like.
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(iv) v and w are nonzero multiples of each other; in this case, N(v) ∩ N(w) =
N(v) = N(w) and there are p2k−1 such x. Note that there are (n− 1)(p− 2)
such pairs (v, w) with v 6= w.

This completes the proof. �

Our graph is thus close to being regular: all vertices but one have the same
degree p2k−1 (and the remaining one has degree p2k). Recall that a graph is called
strongly regular if there are A,B such that if v, w have an edge between them
then |N(v) ∩ N(w)| = A, and if v, w do not have an edge between them then
|N(v)∩N(w)| = B. Our G is in in some sense also close to being strongly regular.

Theorem 3.2. The sequence of graphs

〈Γ̃(H2k+1) : k →∞〉

is quasirandom.

Proof. It will suffice, see e.g. the formulation of [Krivelevich-Sudakov] Theorem
2.6 item P7, to verify that for our density δ = 1

p + ε,∑
v,w∈G

||N(v) ∩N(w)| − δ2n| = o(n3). (3.1)

By Claim 3.1 this sum has several kinds of components. For each of the pairs
(v, w) in case 3.1(3)(c), we have ||N(v) ∩ N(w)| − δ2n| = |p2k−2 − ( 1

p + ε)2n| =
|n/p2 − n/p2 − ε2n − 2ε/n| < | 1n + 2

p |, recalling that ε < 1
p2k = 1

n . There are
fewer than n2 such pairs, so all together n2( 1

n + 2
p ) = o(n3). Otherwise, we have

one (v, w) in case 3.1(3)(a), and (n − 1) + (n − 1) + (n − 1)(p − 2) ≤ p2n pairs
in 3.1(3)(b). So the left side of equation (3.1) for these pairs is bounded above by
|p2k−δ2n|+p2n|p2k−1−δ2n| = |n−δ2n|+p2n|np −δ

2n| ≤ n(1−δ)+n2(p+p2δ2) =
o(n3). �

Thus we have all the equivalent formulations of quasirandomness, for example:

Corollary 3.3. For all A,B ⊆ V (G), we have that e(A,B) = 1
p |A||B|+ o(n2).

Let us verify that the analogous result transfers from the quotient Γ̃ to Γ. Recall
that in Γ, each point of Γ̃ blows up to a clique on p vertices (grouping together the
p central classes in our picture to form the blow-up of 0). Write [v] for the set of
vertices in the blow-up of v ∈ Γ̃. Then if a ∈ [v], b ∈ [w] we have that (a, b) is an
edge in Γ if and only if (v, w) is an edge in Γ̃. So the graph Γ has N = np = p2k+1

vertices and each vertex x ∈ Γ, x /∈ [0] has degree p · p2k−1 = p2k. Recalling 1.1,
we may compute density via ordered pairs of edges in Γ by N(p2k + p − 1)/N2 =
(p2k + p − 1)/p2k+1 = 1

p + ε, where ε = (p − 1)/p2k+1 < p
N goes to 0 as k → ∞.

The exponents in Claim 3.1(3) go up by one in each case and so the parallel count
in Theorem 3.2 goes through (with N instead of n).

Conclusion 3.4. The sequence of graphs

〈Γ(H2k+1) : k →∞〉

is quasirandom.
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Convention 3.5. For any group G and A ⊆ G a subset or subgroup, write Γ(A)
to mean the induced subgraph of Γ(G) formed by restricting the vertex set to A.
Likewise, for A,B ⊆ G, write Γ(A×B) for the corresponding bipartite graph, where
bipartite in this case means that we ignore the edges on A and on B, not that we
require them not to exist.

Discussion 3.6. We may also conclude from this that the sequence of bipartite
graphs Γ(H2m+1 × H2m+1) as m → ∞ is quasirandom. Since we had allowed
self-loops in Γ and Γ̃, the calculations are the same.

4. Rado-ness

This section works directly with infinite extraspecial p-groups Hω(p), for p an
odd prime. The main result shows that the commuting graph Γ̃(Hω) contains an
induced copy of the Rado graph in quite a strong way: the vertices of R (together
with the center Z(Hω)) generate Hω. We include different proofs of the various
lemmas (one due to the referee) with different advantages. At the end, we discuss
what these results say for finite Heisenberg groups.

Observe that H2n+1 appears as a subgroup of H2m+1 for m ≥ n, and also
as a subgroup of Hω (consider those [x, y, z] in the larger group whose x and y
have nonzero entries only in the first n places; it’s sufficient to show this H2n+1
appears, recalling the finite extraspecial p-groups of exponent p are determined up
to isomorphism by their size). So it follows from quasirandomness5 that:6

Corollary 4.1. For every finite k there is n∗ = n∗(k) such that every graph on k
vertices appears as an induced subgraph of Γ̃(H2n+1) for every n ≥ n∗.

Conclusion 4.2. In Γ̃(Hω), every finite graph appears as an induced subgraph.
(It follows by choosing representatives from each of the conjugacy classes involved
that the same is true in Γ(Hω).)

To motivate what follows: with a little more work (explained below), we can
find the full Rado graph R inside Γ̃(Hω) as an induced subgraph, but we might
wonder how integral this subgraph is to the structure of the whole graph. Since Γ̃
is defined in terms of conjugacy classes, a notion of a group “built over a graph” is
introduced as a surrogate for “the vertices of R generate Hω.”

Definition 4.3. Say that the extraspecial p-group H is built over the graph R if
there is X ⊆ Γ(H) such that:
(1) the set X is a union of conjugacy classes
(2) Γ̃(X) and R are isomorphic as graphs
(3) H is equal to the subgroup of H generated by X ∪ Z(H).

5 This is easier than quasi-randomness and can be seen directly. Consider n = 3. Choose as a first
vertex (1, 0, 0), (0, 0, 0). Choose as the second vertex (0, 1, 0), (a, 0, 0) where a is 0 or 1 to control
commuting with the first vertex. Choose as the third vertex (0, 0, 1), (b, c, 0) where b, c are chosen
to be 0 or 1 to control commuting with the second and third vertices respectively.
6For this section the sizes involved won’t matter, however the previous footnote suggests H2n+1
is universal for graphs of size n.
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Claim 4.4. Suppose H is an infinite extraspecial p-group and X ⊆ H is infinite
and for every x ∈ X there is y ∈ X which does not commute with x. Let G be the
subgroup of H generated by X ∪ Z(H). Then G is an extraspecial p-group also.
Note that |G| = |X|.

Remark 4.5. Why the hypothesis on X? In the language of §2.5, if V is an infinite
nondegenerate symplectic space and we are looking for subspaces corresponding to
subgroups which are also extraspecial, they should be nondegenerate. Note that if
X is an infinite set of elements of V which is nondegenerate in the sense that for
every xi ∈ X there is xj ∈ X which does not commute with it, then the subspace
W generated by X is also an infinite nondegenerate symplectic space.

Proof of Claim 4.4. Let us check that it satisfies Felgner’s axioms Tp [Felgner, p.
423]. By assumption, G satisfies the axioms for group theory. Cp = Z(H) ⊆ G.
Since G is a subgroup of an extraspecial group and is not abelian, it must be normal.
So Z(H) ⊆ Z(G) = {a ∈ G : the conjugacy class of a has size 1 in G }. By our
assumption on X, any other element of G whose conjugacy class has size 1 in G
must still have this property in H and so be in the center of H. So indeed (ii) the
center is a cyclic group of order p. Axiom (iii), which says that the derived group
is contained in the center, corresponds to a universal statement so automatically
passes to substructures.7 Axiom (iv), which says the derived group is not trivial, is
satisfied since X is assumed to contain two elements which do not commute. Axiom
(v) says every element has order p, which (is universal and) remains true. Axiom
(vi) says the factor group modulo the center is infinite, which is true because X is
infinite and the center has size p.

For the last line, note that every element of G can be written as a finite string
in elements of X ∪ Z(H) and the operations times and inverse, and if κ is infinite,
then κ<ω = κ, i.e. the set of finite sequences of elements of κ has size κ. �

We now look for infinite graphs R in Γ̃(H) in Lemma 4.7. Note that in the case
where R and H are both countable, which is really all we need for R, we may see
this simply in several ways. (The reader who believes it may look ahead to 4.8–4.9.)

First proof: Γ̃(Hω) contains any countable graph as an induced subgraph. By Corol-
lary 4.1 and the compactness theorem of first-order logic, there is a countable ex-
traspecial p-group H ≡ Hω such that Γ̃(H) contains a given countable graph R as
an induced subgraph. By ℵ0-categoricity, H ∼= Hω. �

Thanks to the referee for suggesting the following proof. For the quoted result
about symplectic spaces (whose proof uses countability) see for example [Tomkinson]
Theorem 3.9.

The referee’s proof. It is known that a countable space with a symplectic form
B has a basis {e1, e2, . . . , f1, f2, . . . } such that B(ei, fj) = δij , and B(ei, ej) =
B(fi, fj) = 0. Let v1, v2, . . . be the vertices of the Rado graph, or another given

7The axiom as written says ∀x∀y∀z(zx−1y−1xy = x−1y−1xyz), which a priori hides quantifiers in
the expressions “x−1” and “y−1” since our language has just × and 1. However, for any elements
a, b, c, d in G such that ab = ba = 1 and cd = dc = 1, we have that ϕ[a, b, c, d] = ∀z(zbdac = bdacz)
holds in H thus in G; or just observe that ∀x∀y∀v∀w∀z((xv = vx = 1 ∧ yw = wy = 1) =⇒
(zwvxy = wvxyz)) is truly universal, and note G contains all necessary inverses.
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countable graph. Map v1 to e1. Now assuming v1, . . . , vn have been mapped cor-
rectly, map vn+1 to en+1 +

∑n
i=1 xifi, where xi = 0 if vn+1 ∼ vi, and is 1 otherwise.

Now it is readily checked that the images of vi and vn+1 have product 0 with respect
to B if and only if vi and vn+1 are adjacent. �

Discussion 4.6. There is also a nice connection between this proof and footnote 4
(for n = ω), explained by the fact (see e.g. [Tomkinson] Corollary 3.10) that when
p > 2, a countably infinite extraspecial p-group of exponent p is the direct product
with amalgamated center of groups each isomorphic to H3(p). In this sense, we
can see ei as [x, 0, 0] where x has 1 in the i-th place and zeroes elsewhere, and fi
as [0, y, 0] where y has 1 in the i-th place and zeroes elsewhere.

Lemma 4.7. For any infinite graph R, there is an infinite extraspecial p-group H
[i.e., a model of Tp] whose Γ̃(H) contains R as an induced subgraph.

Proof. We follow the classical proof of the compactness theorem via ultraproducts.
Enumerate the set of vertices of R as {vα : α < κ} and enumerate the finite subsets
of κ as 〈ui : i ∈ I = [κ]<ℵ0〉. For each α < κ let Iα = {i ∈ I : α ∈ ui}. Then
the set {Iα : α < κ} has the finite intersection property, so may be extended to an
ultrafilter D on I.

For each i ∈ I, let Ri be the finite induced subgraph of R with vertex set
{vα : α ∈ ui}. Choose an isomorphic copy of this graph in Γ̃(Hω) and choose
a representative of each conjugacy class involved as a Γ̃-vertex; this amounts to
choosing a set Ai ⊆ Hω of elements in distinct conjugacy classes and a bijection
πi : {vα : α ∈ ui} → Ai so that for any α, β ∈ ui, there is an edge between vα, vβ
in R if and only if πi(vα) and πi(vβ) commute [i.e. if and only if there is an edge
between πi(vα) and πi(vβ) in Γ].

Work in the ultrapower H = (Hω)I/D, which is also an extraspecial p-group
by  Loś’ theorem (which implies the theory is preserved under ultrapowers: see
[Chang and Keisler] Corollary 4.10). For each α < κ and each i ∈ I, define
vα(i) to be πi(vα) if α ∈ ui, and any element of Hω otherwise. For each α < κ,
define vα = 〈vα(i) : i ∈ I〉/D ∈ H. Then the induced subgraph of Γ(H) with
vertex set {vα : α < κ} is isomorphic to R via the map vα 7→ vα, since for any two
α, β < κ the set {i : α, β ∈ ui} ∈ D, so there is an edge between vα,vβ in Γ(H) if
and only if there is an edge between vα and vβ in R. Moreover, in H, {vα : α < κ}
is a set of distinct elements, indeed a set of elements in distinct conjugacy classes,
so there is a corresponding copy of R in Γ̃(H) replacing each vα by its conjugacy
class. �

Corollary 4.8. There is an induced copy of the Rado graph R in Γ̃(Hω).

Proof. Let H be the extraspecial p-group given by Lemma 4.7 in the case where R
is the countable Rado graph R (which clearly satisfies the nondegeneracy hypothe-
sis). Let G be the subgroup of H generated by Z(H) and the (conjugacy classes of)
elements forming the vertices of the copy of R. Then G is countable and by Claim
4.4 it is an extraspecial p-group, so by ℵ0-categoricity it is isomorphic to Hω. �

The proofs just given show:

Theorem 4.9. Hω can be built over the Rado graph R.
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In fact, the proof shows that Hω can be built over any countable graph G which
is nondegenerate in the sense that no vertex has full degree in G.

Discussion 4.10. Just for fun we briefly sketch a complementary proof of 4.1 from
the uncountable. [Shelah-Steprans] explicitly construct uncountable extraspecial
p-groups (all of whose maximal abelian subgroups are small). By looking carefully
at their construction it is possible to see directly how to construct arbitrarily long
finite sequences of elements whose patterns of commuting and non-commuting can
be freely chosen along the way. Since Tp is complete and the statement that there
exist n elements no two of which are conjugate and which have a given pattern of
commuting and non-commuting is first-order expressible (for any fixed finite n), it
follows that Γ̃(Hω) contains any finite graph as an induced subgraph. It remains
to derive 4.1. Fix a finite graph G. Let V be a set of elements of Hω which form
the vertices of an induced copy of G. Let X be the smallest subset of Hω which
is a union of conjugacy classes and contains V . Choose n minimal so that H2n+1
contains X (since X is a finite set, it suffices to choose the minimal m such that
all the nonzero entries in x, y of each [x, y, z] ∈ X are among the first m elements).
Then for every ` ≥ n, G appears as an induced subgraph of Γ̃(H2`+1), and so
(choosing representatives of the conjugacy classes) also of Γ(H2`+1).

We may summarize sections three and four by saying that both the H2n+1(p)’s
and Hω(p) may be reasonably (and in the finite case, quantitatively) understood
as “random” objects.

5. Towards a Picture of Un
In this section we revisit a certain notoriously complicated object, UT(n, p), the

group of n×n uni-upper-triangular matrices with entries in Fp (which we will soon
abbreviate “Un”). This basic group arises as the Sylow p-subgroup of GL(n, p).
It is a “universal p-group” in the sense that every p-group is a subgroup of some
UT(n, p). The center consists of all matrices in UT(n, p) which are zero except in
the (1, n)-entry. The commutator subgroup equals the Frattini subgroup. These
consist of matrices in UT(n, p) which are zero on the diagonal just above the main
diagonal. All of these facts are proved in [Suzuki].

There has been extensive study of the conjugacy classes and characters of UT(n, p).
These have resisted explicit description and form a well known “wild” problem
[Gudivok et al]. See [Pak-Soffer], [Isaacs] for reviews. This difficulty gave
rise to Carlos André’s ‘super-character theory’. This lumps together certain con-
jugacy classes into superclasses and sums certain irreducible characters forming
super-characters. These are constant on superclasses and decompose the regular
character. They have an elegant description involving set partitions. For surveys
see [Aguiar et al.], [Diaconis-Isaacs]. We began this project hoping to under-
stand what made this character theory so complicated. Asking whether or not it
was reasonable to crudely equate ‘complicated’ with ‘random’ led us to the findings
in sections 1-4 above. This section shows how the ‘randomness’ of the Heisenberg
group manifests itself in UT(n, p).

Recall that, in our notation, the subscript in H2n+1 counts the maximal possible
number of nonzero nondiagonal entries, whereas the n + 2 in UT(n + 2, p) refers
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to the dimension of the matrix. In what follows we will often abbreviate UT(n, p)
as “Un”. Summarizing, in our notation, elements of H2n+1 and Un+2 are both
uni-upper-triangular matrices of the same size.

Lemma 5.1.
H2n+1 is a normal subgroup of Un+2.

First proof. Define a map from Un+2 to Un by simply erasing the top row, bottom
row, first column and last column of a matrix in Un. By inspection, this is a
homomorphism onto Un with kernel H2n+1(p). �

Second proof, using additional information about superclasses. First, H2n+1 is a sub-
group of Un+2. So it would suffice to show that H2n+1 is a union of superclasses
(because then H2n+1 is a union of conjugacy classes). But if C is a superclass which
contains some element of H2n+1, then all its elements must be elements of H2n+1,
because of the form of the canonical representative. �

Iterating this mapping, going from Un to Un−2 and so on gives a way of picturing
Un+2 as a tower of Heisenberg groups, each normal in the next. Of course, p-groups
have many such series; this one can be refined so that each subgroup has index p
in the one above. These series can be hard to describe and work with. One of our
discoveries is that these nested Heisenberg representations are quite understandable.

Nonetheless, the conjugacy classes of H2n+1 in Un+2 will often be bigger than
they were in H2n+1. To build an explicit example it is useful to use the fact that
sometimes the neat superclasses described above are actually conjugacy classes in
Un. Carlos Andre [André] has a necessary and sufficient condition for this to hap-
pen (thanks to Nat Thiem for spelling this out for us). The following construction
uses this. Suppose 1 < k, ` < n + 2. Let C ⊆ H2n+1 ⊆ Un+2 be the set of all
matrices A such that (1) a1,` 6= 0 and a1,i = 0 for 1 < i < `, and (2) ak,n 6= 0 and
aj,n = 0 for k < j < n. Then C is a conjugacy class of Un+2 if k < `, and a union
of more than one conjugacy class otherwise.

Observation 5.2. The image of Un+2 under the quotient by H2n+1 is Un. Thus
Un+2 is an extension of the normal subgroup H2n+1 by the quotient Un. In fact,
this extension is a semi-direct product. The matrices in Un+2 which are zero in the
top row and last column form a subgroup isomorphic to Un, and the intersection
with the subgroup which is non-zero only in the top row and last column (a copy
of H2n+1) is the identity, so the extension splits. This allows picturing Un inside
Un+2 which will become important in Theorem 5.13 below.

Corollary 5.3. Each Un+2 contains a normal subgroup of index pn(n−1)/2 whose
Γ is a quasirandom graph with density ≈ 1

p (as n→∞).

In 5.3 the size of the subgroup is fairly small, and a priori it need not say much
about the global structure of Γ(Un+2), but again, note Un is the quotient of Un+2
by precisely this subgroup.

The following introduces notation for this iterated decomposition that is used
throughout the rest of this section. For simplicity in these iterated constructions,
we will generally assume n is odd. Definition 5.4 is illustrated in Figures 2 and 3.
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Definition 5.4. For X ∈ Un+2,
(a) let u(X) ∈ Un be the image of X under the quotient of Un+2 by H2n+1, i.e.,

the unique A ∈ Un such that ak,` = xk−1,`−1 for 2 ≤ k < ` ≤ n+ 1;
(b) let h(X) ∈ H2n+1 be the unique B ∈ H2n+1 such that b1,k = x1,k for all

1 ≤ k ≤ n+ 2 and b`,n+2 = x`,n+2 for all 1 ≤ ` ≤ n+ 2.

Observe that
X 7→ (u(X), h(X)) ∈ Un ×H2n+1

defines a bijection from Un+2 to Un × H2n+1. Informally, u(X) is the “core” of
X, the matrix resulting by removing the outermost rows and columns, and h(X)
is its “shell.” The first operation, u, can be iterated by defining u0(X) = X and
u1(X) = u(X) and u2(X) = u(u(X)) ∈ Un−2, and so on down to [1] ∈ U1.

Figure 2. u(X) in Un, see 5.4(a), and in Un+2, see 5.2, for n = 5.

Figure 3. h(X) in H2n+1 (or Un+2), see 5.4(b), for n = 5.

Definition 5.5. Define a partial order on Un+2 =
⋃
{Um : m ≤ n+ 2,m odd} by:

A . X

if A = u`(X) for some 0 ≤ ` ≤ n+1
2 .

In the next observation, and in what follows, we think of trees rooted at the
bottom and growing upwards. We will give several observations and definitions
before pausing to summarize the picture.

Observation 5.6. Under this partial order (Un+2,.) is a tree with root [1] and
with uniform branching at each level: for m odd and m ≤ n+ 2, for each A ∈ Um,

|{X : u(X) = A}| = |{X : A . X} ∩ Um+2| = |H2m+1| = p2m+1.

Observation 5.7. A necessary condition for X,Y to commute in Un+2 is that:
(u(X), u(Y ) commute in Un) ∧ (h(X), h(Y ) commute in H2n+1). Thus:
(a) if X,Y commute in Un+2, then u`(X), u`(Y ) commute in Un−2`.
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(b) for any A,B ∈ Un, the bipartite commuting graph
Γ ({X ∈ Un+2 : u(X) = A} × {Y ∈ Un+2 : u(Y ) = B})

is a subgraph of Γ(H2n+1 ×H2n+1) (a priori, possibly empty or not induced).

The next definition asks “how many descendants of B (in the sense of the partial
order .) commute with X.” Note that while X ∈ Un+2, here B belongs to Un+2
from 5.5 above, so a priori may be from any Um with 1 ≤ m ≤ n+2, m odd. Recall
also that for simplicity n, hence n+ 2, is odd.

Definition 5.8. Given X ∈ Un+2 and B ∈ Un+2, define “the degree of X over B”:
deg(X,B) = |{Y ∈ Un+2 : B = u`(Y ) for some `, and Y commutes with X}|.

Example 5.9. If X,B ∈ Un+2, then deg(X,B) = 1 if and only if X and B
commute, otherwise it is zero. IfX ∈ Un+2 andB ∈ Un−`k, then unlessB commutes
with u`(X), deg(X,B) = 0. If B = [1] ∈ U1, then deg(X,B) is simply the degree
of X in the graph Γ(Un+2) (or Γ(Un+2 × Un+2)).

Discussion 5.10. We pause to reflect on the picture this sequence of definitions
gives of the structure of Γ(Un+2). (Since in U the conjugacy classes are no longer
of uniform size, it is at least initially more convenient to work with Γ and not
Γ̃.) The picture appears by induction. Since U3 = H3, Γ(U3) is described by the
previous sections. Let n be odd and greater than or equal to 3. Reversing the
map from the proof of Lemma 5.1 amounts to blowing up each vertex A of Γ(Un)
to a set {X ∈ Un+2 : u(X) = A} of size p2n+1 = |H2n+1|. To form Γ(Un+2)
we need to see how to put edges among these vertices. If A,B ∈ Γ(Un) are not
connected by an edge, then in Γ(Un+2), the bipartite commuting graph between
{X ∈ Un+2 : u(X) = A} and {Y ∈ Un+2 : u(Y ) = B}, call it G(A,B) for this
discussion, is empty. This is the content of saying: that u(X), u(Y ) commute is
necessary for X and Y to commute. If A,B are connected by an edge, then G(A,B)
is a subgraph of Γ(H2n+1×H2n+1) under the identification (X,Y ) 7→ (h(X), h(Y )).
“Subgraph” is the content of saying: that h(X), h(Y ) commute is necessary, but not
always sufficient, for X and Y to commute. An example where G(A,B) is exactly
Γ(H2n+1 ×H2n+1) is when A = B = idUn

; this is 5.3 above. A different situation
occurs when A = B has nonzero entries all along the diagonal just above the main
diagonal and zeros otherwise. As can be calculated (e.g. using the equations below)
the vertices of this G(A,B) have degree ≤ p3 (independent of n). Meanwhile, a
cumulative effect of this inductive “sparsification” is reflected in the density of
Γ(Un) decreasing rapidly as n grows, see below. The more local irregularities in
the rates of decrease suggested by this discussion seem worthy of study.

We now work out a simple sufficient condition for G(A,B) to contain a full
Γ(H2m+1 × H2m+1) as an induced subgraph for some m ≤ n related naturally to
A, B. Of course, the condition assumes A,B commute. Similar results can be
obtained considering k-partite graphs above A1, . . . , Ak (provided they form a k-
clique in Γ(Un)). The reader may wish to look ahead to Discussion 5.11 or to the
figures in the text.

Whether X,Y ∈ Un+2 commute may be studied via the following elementary
picture. Let Ei,j be the equation asserting the (i, j)-entries of XY and Y X are
equal: 〈row i of X〉 · 〈column j of Y 〉 = 〈row i of Y 〉 · 〈 column j of X 〉. Consider
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A = u(X), its entries indexed from (2, 2) to (n + 1, n + 1), and likewise for B =
u(Y ). Towards understanding Γ({X : u(X) = A} × {Y : u(Y ) = B}), it is
convenient to think of A, B as fixed, so all the “core” entries of X and Y are
determined, whereas the “shell” entries x1,2, . . . , x1,n+2, x2,n+2, . . . , xn+1,n+2 of X
and y1,2, . . . , y1,n+2, y2,n+2, . . . , yn+1,n+2 of Y are for now free variables. Then these
equations Ei,j are of three kinds:
(a) E1,3, . . . , E1,n+1 are (n−1) equations in the 2(n−1) variables {x1,2, . . . , x1,n},
{y1,2, . . . , y1,n}. 8 We omit E1,2 because it is always satisfied.

(b) E2,n+2, . . . , En,n+2 are (n− 1) equations in the 2(n− 1) variables [notice this
set has empty intersection with the variables from (a)] {x3,n+2, . . . , xn+1,n+2},
{y3,n+2, . . . , yn+1,n+2}. Likewise, omit En+1,n+2 which is always satisfied.

(c) the “Heisenberg” equation E1,n+2 asserts the top right corners are equal:

x1,2y2,n+2 + · · ·+ x1,n+1yn+1,n+2 = y1,2x2,n+2 + · · ·+ y1,n+1xn+1,n+2.

Define σA ⊆ {3, . . . n + 1} to be the set of columns with at least one nonzero A-
entry above the diagonal, τA ⊆ {2, . . . , n} the set of rows with at least one nonzero
A-entry above the diagonal, and likewise for σB , τB .9

If i ∈ {3, . . . , n+1}\σB then the left-hand side of E1,i is zero, and also yi,n+2 has
zero coefficients [so effectively does not appear] in (b). If i ∈ {3, . . . , n+1}\σA then
the right-hand side of E1,i is zero, and xi,n+2 has zero coefficients in (b). Likewise,
if j ∈ {2, . . . , n} \ τB then the left-hand side of Ej,n+2 is zero and y1,j has zero
coefficients in (a), and if j ∈ {2, . . . , n} \ τA then the right-hand side of Ej,n+2 is
zero and x1,j has zero coefficients in (a).

It follows that given tuples (of elements of Fp) 〈x1,i : i ∈ τB〉a〈xj,n+2 : j ∈ σB〉
and 〈y1,i : i ∈ τA〉a〈yj,n+2 : j ∈ σA〉 which together solve (a) and (b), if we
subsequently restrict to X = {X : u(X) = A, x1,i = x1,i for i ∈ τB , xj,n+2 = xj,n+2
for j ∈ σB} and Y = {Y : u(Y ) = B, y1,i = y1,i for i ∈ τA, yj,n+2 = yj,n+2 for
j ∈ σA} then the commuting between X and Y is controlled only by the Heisenberg
equation, and so corresponds to an induced subgraph of Γ(H2n+1 ×H2n+1).

Figure 4. An example for n = 5. Here A = u(X) is nonzero
at values a3,5, a3,6, a5,6, so σA = {5, 6}, τA = {3, 5}.

8for visualization, here are a few: [E1,3 : x1,2 · b2,3 = · · · ], [E1,4 : x1,2 · b2,4 + x1,3 · b3,4 = · · · ],
[E1,5 : x1,2 · b2,5 + x1,3 · b3,5 + x1,4 · b4,5 = · · · ], . . . , [E1,n+1 : x1,2 · b2,n+1 + x1,3 · b3,n+1 + · · ·+
x1,n · bn,n+1 = · · · ] where “= · · · ” repeats the expression on the left replacing x’s by y’s of the
same index, and b’s by a’s of the same index (some terms which cancel were omitted).
9Although the sets σA, τA depend only on A, they are computed by considering the indices entries
of A would have sitting inside a matrix of Un+2.
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Discussion 5.11. Here is an informal summary of where we are. In order for
X,Y ∈ Un+2 to commute, it is necessary and sufficient that the following conditions
are satisfied. First, u(X) must commute with u(Y ) in Un. Second, the equations
asserting that the elements of XY and Y X along the top row and right column,
i.e. in positions (1, 2), . . . , (1, n + 1), (2, n + 2), . . . , (n + 1, n + 2), are equal, must
hold. Third, the “Heisenberg equation,” asserting that the top right corners of
XY and Y X are equal (i.e. that h(X) commutes with h(Y )) must hold. Restating,
whenever u(X), u(Y ) commute in Un and the second equations are satisfied, control
of commuting falls entirely to the Heisenberg equation. As for where we are going:
as we will see below, if A,B ∈ Un (or some tuple A1, . . . , Ak ∈ Un) all commute and
have “enough” zeros, then there exist reasonably large subsets X ⊆ {X : u(X) = A}
and Y ⊆ {Y : u(Y ) = B} between which commuting is entirely controlled by the
Heisenberg equation. (“Reasonably large”: because the non-Heisenberg equations
can then be satisfied by fixing a reasonably small number of values in the top row
and right column.) If moreover these reasonably large subsets are “symmetric” (see
below) then under the maps X 7→ h(X), Y 7→ h(Y ), our X,Y both map to the
same copy of some H2m+1 inside H2n+1, or the parallel for the k-partite case. A
notion of symmetrization is introduced for this reason.

Definition 5.12. Given σ ⊆ {3, . . . , n+ 1}, τ ⊆ {2, . . . , n} define the symmetriza-
tions σ∗ = τ∗ = σ ∪ τ ⊆ {2, . . . , n+ 1}.

The next theorem summarizes an instance of this analysis, showing the recurrent
appearance of Γ(H) (for some H) in Γ(U). When t = 1, we find a copy of Γ(H)
for some H; when t = 2, of Γ(H ×H); we can just as easily state a more general
version for arbitrary finite t, finding Γ(H × · · · × H). It is illustrated in Figure 5
below.

Theorem 5.13. Suppose A1, . . . , At form a clique in Γ(Un). Then there are subsets
X∗i ⊆ {X : u(X) = Ai} for i = 1, . . . , t such that the t-partite graph whose pieces
are X∗i (in Γ(Un+2)) is naturally isomorphic to the t-partite commuting graph whose
pieces are H2m+1, where m = n− |

⋃
i σAi ∪

⋃
i τAi
|.

Proof. The above analysis asked for tuples of elements of Fp with indices in a
restricted set solving (a) and (b). Notice that in this case the trivial sequences (all
zeros) are always a solution. Suppose, then, that we are given A1, . . . , At ∈ Un
forming a clique in Γ(Un) and we are considering the t-partite commuting graph
whose i-th part is {X : u(X) = Ai}. Letting σ∗ = τ∗ =

⋃
i σAi

∪
⋃
i τAi

and
restricting {X : u(X) = Ai} to X∗i = {X : u(X) = Ai, x1,i = 0 for i ∈ σ∗, xj,n+2 =
0 for j ∈ τ∗}, the commuting on the t-partite graph X∗1, . . . ,X∗t is entirely controlled
by the Heisenberg equation; moreover, there is a particular copy of H2m+1 ⊆ H2n+1
which is the common image of every X∗i under the map X 7→ h(X). �

Discussion 5.14. First, regarding symmetrization: had we said in 5.13 only that
the resulting graph was an induced subgraph of Γ(H2n+1×· · ·×H2n+1), a priori the
vertex sets Vi ⊆ H2n+1 would need not be the same; for small sizes, this may affect
statistics. This said, no real effort is being made here to optimize m. Second, some
readers of Theorem 5.13 may see the possible power of H to recur, especially when
the Ai’s are similar or small, and some may see the (a priori) possible power of
other Ai’s to keep m low by collectively spreading out. Both forces are interesting
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in their own right (see 5.20 below). Further information on their relative strengths,
perhaps on average, could certainly be interesting.

Figure 5. Theorem 5.13 for A1 = · · · = At = A as in figure 4.
First, the left image marks values implicated by τ (on the top row)
and σ (right column). The middle image symmetrizes. Now set all
marked values e.g. to zero, and on the right is the copy of H2k+1

which remains. Here k = 2, n = 5.

Here is a simple example of a corollary of the previous proof, however, notice
that the partition given depends on both A and B; it is not claimed that a single
partition of {X : u(X) = A} works against {Y : u(Y ) = B} for any B.

Corollary 5.15. Let A,B ∈ Un and m = n − |σA ∪ σB ∪ τA ∪ τB |. There are
equipartitions of X = {X : u(X) = A} into {Xi : i < p2(n−m)} and of Y = {Y :
u(Y ) = B} into {Yi : i < p2(n−m)} such that: for any two i, j, we have that
Γ(Xi ×Yj) is either isomorphic to Γ(H2m+1 ×H2m+1) or the empty graph.

Proof. Let σ∗ = τ∗ = σA∪σB∪τA∪τB . Partition the elements of {X : u(X) = A}
according to their values on {x1,i : i ∈ τ∗} ∪ {yj,n+2 : j ∈ σ∗}. If A,B do not
commute, there is an empty graph in each case. Otherwise, fixing i, j we have that
the equations (a) and (b) [as above, or in 5.13] are uniformly satisfied or unsatisfied
on all pairs from Xi and Yj . The second case gives the empty graph, and the first
reduces to the Heisenberg equation on the values which remain free. �

Similar arguments show other ways quasirandomness is pervasive in Γ(U).

Discussion 5.16. In H the randomness is only one level deep. In U the appearance
of quasirandomness is indestructible in the sense that it recurs after arbitrary quo-
tients by H, until we reach [1] (or in the other direction, reappears under unlimited
reverse quotienting).

Discussion 5.17. Still, if A,B commute in Un, then necessarily u`(A) commutes
with u`(B) for 0 ≤ ` < n+1

2 . Moreover, m plays a role: there are fewer edges
between {X : u(X) = A} and {Y : u(Y ) = B} when A, B provide more constraints.
Is there a quantifiable drift of edges as n → ∞ towards having both “lower rank”
endpoints, visible for instance in deg(X, [1]) in terms of σ, τ of u(X)?

Discussion 5.18. The successive peeling off of Heisenberg groups can be organized
differently. By simply multiplying matrices it is easy to see that in U(n + 2, p)
the subgroup H(2n + 1, j, p) which is non-zero only in the top j rows and last
j columns is a normal subgroup, with complement U(j) consisting of matrices in
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U(n+2, p) which are zero in the top j rows and last j columns. This complement is
isomorphic to U(n− 2j, p) (and the extension splits). H(2n+ 1, j) is a subgroup of
H(2n+1, j+1, p) for j from 1 to n/2 with the top being U(n+2, p). It is not always
the case that there is a complement of a normal pattern subgroup: the center and
commutator of U(n+2, p) are normal pattern subgroups without complements. For
more on this see [Marberg].

Discussion 5.19. There has been recent work in developing various superchar-
acter theories for groups such as H(ω) and some U(ω). For an elegant expo-
sition, see [Lochon]. It would be fascinating to see some applications of this
theory along the lines of [Arias-Castro, Diaconis, Stanley]. See the work of
[Bendikov, Saloff-Coste] for first steps.

We conclude with several comments about this very interesting graph.

Discussion 5.20. [Pak-Soffer, p. 22] gives the known bounds for c(Un(p)) as:

p
n2
12 (1+o(1)) ≤ c(Un(p)) ≤ p 7n2

44 (1+o(1))

where the lower bound is attributed to Higman and the upper bound to Soffer.

By Fact 1.1 the average degree of a vertex in Γ(Un) is subject to essentially the
same bounds. It also follows that as n→∞ the density of Γ(Un) is “super-sparse”
of order p−cn2 . There is a lot of effort in the graph theory limit community to define
structure theory for sparse graphs. These examples show that truly super-sparse
graphs can still have interesting structure.
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(Poznań, 1985), North-Holland Math. Studies, vol. 144, pps. 307–331. North-
Holland, Amsterdam, 1987.

[Tomkinson] M. J. Tompkinson, FC-Groups. Pitman, London, 1984.

Persi Diaconis
Departments of Mathematics and Statistics
Stanford University
diaconis@math.stanford.edu

Maryanthe Malliaris
Department of Mathematics
University of Chicago
mem@math.uchicago.edu


