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Abstract. This paper continues our investigation of the dynamics of

families of transcendental meromorphic functions with finitely many

singular values all of which are finite. Here we look at a generaliza-
tion of the family of polynomials Pa(z) = zd−1(z − da

(d−1)
), the family

fλ = λ tanp zq . These functions have a super-attractive fixed point, and,

depending on p, one or two asymptotic values. Although many of the
dynamical properties generalize, the existence of an essential singularity

and of poles of multiplicity greater than one implies that significantly

different techniques are required here. Adding transcendental methods
to standard ones, we give a description of the dynamical properties; in

particular we prove the Julia set of a hyperbolic map is either connected

and locally connected or a Cantor set. We also give a description of the
parameter plane of the family fλ. Again there are similarities to and dif-

ferences from the parameter plane of the family Pa and again there are

new techniques. In particular, we prove there is dense set of points on
the boundaries of the hyperbolic components that are accessible along

curves and we characterize these points.

1. Dedication

We dedicate this paper to Vaughan Jones and take this occasion to share
a fond memory. The second author met Vaughan on her first trip to New
Zealand to a conference he organized in the small coastal town of Tolaga Bay
— best known as a good place to go wind surfing. We shared a 1950’s style
motel suite where Vaughan slept on the living room sofa. One evening, he
was showing me the Southern sky and I pointed out that Orion was upside
down. Vaughan explained politely that it was I who was upside down.

2. Introduction

This paper is part of an ongoing program to understand the dynamic and
parameter spaces of dynamical systems generated by transcendental mero-
morphic functions with a finite number of singular values. In holomorphic
dynamics in general, the singular values control the periodic and eventually
periodic stable behavior. Functions with finitely many singular values have
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no non-periodic stable behavior, so the singular values provide a natural way
to parameterize such a family in order to visualize how the dynamics vary
across it. In such full generality, though, that is not really practical. What
does work is to constrain the dynamic behavior of most of the singular values,
for example by insisting that their orbits tend to an attracting fixed point
with constant multiplier, and to study the dynamic behavior as the others
vary freely. One virtue of this approach is that it allows one to use computer
graphics to gain some intuition.

This philosophy has driven the work on rational dynamics, most famously
the study of the quadratic family Pc(z) = z2 + c. Computing the orbits of
the critical value c leads one to the well-studied picture of the Mandelbrot
set, which shows that, generically, the critical value either escapes to infinity
or tends to an attractive periodic cycle. Many of the techniques initiated by
Douady, Hubbard, Sullivan and a lot of others were developed to understand
this picture. (See, e.g. [DH, McM]). Our work on transcendental functions
extends the theory for rational functions, so let us begin with a brief review
of that story, first for quadratics and then for polynomials. See section 3 for
definitions.

In the quadratic case, what we are calling the generic values for c are
those for which the dynamics are hyperbolic. This set is partitioned into
infinitely many open, bounded, simply connected sets (Mandelbrot-like hy-
perbolic components) and one unbounded set homeomorphic to the outside
of a disk. These components are separated by a “bifurcation locus”, where
the dynamics undergoes changes. The dynamics for c’s in the bounded sets is
quite different from those in the unbounded set. In the former, the unstable
(or Julia) set is always connected and locally connected, while in the latter it
is always a Cantor set, and the action of Pc on this Cantor set is conjugate
to the shift map on two symbols. Thus, this unbounded component is called
a shift locus.

This situation can be generalized to polynomials of degree d > 1. A “dy-
namically natural” one dimensional slice can be obtained by constraining the
origin be a critical point of multiplicity d−1. Thus, all but one of the singular
values is fixed, and the origin is always an attracting fixed point. There is one
more “free” critical value a, and one can ask how the dynamics depend on it.
Such polynomials can be written in the form

Pa(z) = zd−1(z − da

(d− 1)
)

They were studied in [Roe] (see also [EMS] where the family zd+c is studied)
where it is shown that, in addition to Mandelbrot hyperbolic components and
a shift locus, there is a new type of bounded hyperbolic component called a
capture component. In it, the critical point 0 attracts the free critical point



DYNAMICS OF THE MEROMORPHIC FAMILIES fλ = λ tanp zq 471

a. We use “shell component” to refer to the Mandlelbrot-like components, to
distinguish them from the capture and shift-locus components.

It is natural to ask what different, if anything, happens for transcenden-
tal functions. There are three essential differences between polynomial and
transcendental maps.
• For a polynomial, infinity is always a fixed critical value with no other

preimages, but for a transcendental map, it is an essential singularity that
has preimages, and those preimages are essential singularities of iterates
of the map.

• Transcendental maps are infinite to one.
• In addition to critical values, transcendental maps can have another type

of singular value where the local inverses are not all well defined. These
are called “asymptotic values”. The standard example is 0 for ez.

If one restricts to families with finitely many singular values, and in addi-
tion requires that all the singular values are finite, there are many parallels
with polynomials. For example, in the tangent family λ tan z, the functions
have two symmetric asymptotic values, ±λi, and these are the only singular
values. Because of the symmetry, there are symmetries in the dynamics and
in the parameter plane. In [KK], we studied this family and showed that the
parameter space has a structure analogous to that for the quadratic maps.
There are shell components that are hyperbolic components much like the
hyperbolic components of the Mandelbrot set, where the asymptotic values
tend to attracting periodic orbits. There is also a shift locus component where
both asymptotic values are attracted to the fixed point 0. On this component,
the map is conjugate on its Julia set to a shift map not on two symbols, but
on infinitely many symbols.

A natural generalization of the tangent family is one where there are two
asymptotic values, no critical values, and, rather than require the asymptotic
values to be symmetric, one requires that 0 be an attractive fixed point with its
multiplier fixed across the family. In this situation, at least one asymptotic
value is always attracted to zero. We proved in [CJK1, CJK2] that the
structure of the parameter plane was analogous to that for rational maps of
degree two that have a fixed point with constant multiplier: there are two
collections of shell components and the complement of their closure is an
annular shift locus.

The next step in our program is to look at families with more than two
singular values and study one dimensional slices of their parameter spaces to
see what new structures we find. In this paper, we consider functions that are
transcendental analogues of the polynomials Pa: the family fλ(z) = λ tanp zq

for pq > 1. These functions have a critical value of multiplicity pq at the
origin and either one or a pair of symmetric asymptotic values. The origin is
a super-attractive fixed point and the basin of points attracted to the origin,
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B, is never empty. The component of B containing the origin is the immediate
basin B0.

Our first set of results is about the dynamic plane. We show that, like
quadratic polynomials and tangent maps, there is a dichotomy of the con-
nectivity of the Julia set for hyperbolic maps. The techniques are similar to
those in [CJK1, CJK2] but need to be modified because there are poles of
multiplicity greater than one in the Julia set. To deal with this we use an
estimate of Rippon and Stallard, [RS].

Theorem A. The immediate basin of the origin B0 is completely invariant
if, and only if, it contains the asymptotic value(s). If it does, it is infinitely
connected, the Julia set is a Cantor set, and fλ on the Julia set is topologically
conjugate to the shift map on infinitely many symbols.

Theorem B. If B0 does not contain an asymptotic value, all the Fatou com-
ponents are simply connected. In particular, there are no Herman rings.

Theorem C. If fλ is hyperbolic and B0 does not contain an asymptotic value,
the Julia set is connected and locally connected.

The second set of results shows that the parameter plane has a structure
analogous to that of the polynomials Pa.

Theorem D. The bifurcation locus divides the parameter plane into three
types of hyperbolic components: shell components, a central capture compo-
nent or shift locus, and non-central capture components. The shift locus is
a punctured disk, but the remaining components are simply connected. There
are exactly 2q unbounded shell components and no unbounded capture compo-
nents.

The properties of the shell components are analyzed in [FK] and [CK1].
(See also [ABF] for a more general discussion.) In particular, they are simply
connected and have piecewise analytic boundaries. Here we concentrate on
the properties of the capture components and their boundaries. We prove

Theorem E. The shift locus contains the disk of radius (π/4)1/q centered at
the origin. There are only finitely many hyperbolic components with diameter
greater than a given ε > 0.

A parabolic point is a parameter for which the function has a parabolic
cycle and a Misiurewicz point is a parameter for which an asymptotic value of
the function is eventually periodic. Such a function is not hyperbolic. For the
polynomial families it is known ([M, Roe, EMS] and the references therein)
that such points are landing points of curves in the shift locus and that they
are dense in its boundary. The techniques used to prove these results depend
heavily on the maps having finite degree. Our final result generalizes these
results to our family of infinite degree maps.
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Theorem F. The boundary of the shift locus contains a a dense set of par-
abolic and Misiurewicz points and they accessible; that is, landing points of
curves. The boundaries of the non-central capture components contain a dense
set of Misiurewicz points which are accessible but they contain no parabolic
points.

The paper is organized as follows. After defining our basic concepts and
setting notation we introduce the family fλ = λ tanp zq in section 4 and
prove the results that constitute theorems A and B. In section 5 we discuss
hyperbolicity in our context and in section 6 we prove the theorems whose
results we have combined in theorem C. We then turn to the parameter plane
and in section 7 we show how the symmetries of the functions are reflected
there. We also recall earlier results that describe the structure of the shell
components. In section 8 we prove our results about capture components and
their boundaries including theorem E and the boundary accessibility results
in theorem F. The last section contains results about the bifurcation locus
and the rest of theorem E.

3. Basics and Tools

3.1. Meromorphic functions. Let f : C → Ĉ be a transcendental mero-
morphic function and let fn(z) denote the n−th iteration of f , that is fn(z) =
f(fn−1)(z) for n ≥ 1. Then fn is well-defined except at the poles of the func-
tions f, f2, . . . , fn−1, . . ., which form a countable set. The dynamics divide
the plane into two complementary sets, the Fatou set where the dynamics are
stable and the Julia set where the dynamics are unstable or chaotic. More
precisely, the Fatou set F (f) of f is

{z ∈ C | for all n, fn is defined and normal in a neighborhood of z};

the Julia set J(f) = Ĉ \ F (f). It contains infinity and all the poles of fn.
If f is a meromorphic function with more than one pole, then the set of

prepoles P = ∪n≥1f
−n(∞) is infinite. By the big Picard theorem, fn is

normal on Ĉ \ P, and J(f) = P, (see e.g. [BKL1]). In this case, the Fatou
set is the interior of the set where fn(z) is well-defined for all n ≥ 1.

A point c ∈ C is called a critical point of a meromorphic function, that is,
if f ′(c) = 0 or it is a pole of order greater than 1. The image of a critical

point is called a critical value of f . A point v ∈ Ĉ is called an asymptotic
value if there is a path γ : [0,∞)→ C such that

lim
t→∞

γ(t) =∞ and lim
t→∞

f(γ(t)) = v.

For an asymptotic value v, if there is a simply connected unbounded domain
A such that f(A) is a punctured neighborhood of v and f |A is a universal
covering, then A is called an asymptotic tract of v and v is called a logarithmic
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singularity. For example if f(z) = tan z. It is easy to check that

lim
y→∞

tan(iy) = i and lim
y→−∞

tan(iy) = −i,

therefore ±i are asymptotic values of f(z). In fact, they are logarithmic
singularities with asymptotic tracts contained in the upper and half plane,
respectively. Two asymptotic tracts A1, A2 for v are equivalent if A1 ∩ A2 is
also an asymptotic tract. For readability, we will use the term asymptotic
tract for its equivalence class.

The set of singular values of f , denoted by S(f), is the closure of the set of
points in C that are asymptotic or critical values of f . In fact, S(f) consists
of those values at which f is not a regular covering, that is

f : C \ f−1(S(f))→ Ĉ \ S(f)

is a covering.1 The set

PS(f) = ∪v∈S(f) ∪∞n=0 f
n(v)

is called the post-singular set of f .

Definition 1. A meromorphic function f is called a singularly finite map if
S(f) is a finite set.

A point z is a periodic point of order p ≥ 1, if fp(z) = z and fk(z) 6= z
for any k < p. The multiplier of the cycle is α = (fp)′(z); the periodic point
is attracting if 0 < |α| < 1, super-attracting if α = 0, parabolic if α = e2πiθ,
where θ is a rational number and repelling if |α| > 1.

Just as for rational maps, the repelling periodic points are dense in the
Julia set, (see [BKL1]).

3.2. Fatou or stable sets of meromorphic functions. Let D be a com-
ponent of the Fatou set, then f(D) is either a component of the Fatou set or
a component missing one or two points. For the orbit of D under f , there are
only two cases:
• there exist integers m 6= n ≥ 0 such that fm(D) ⊂ fn(D), and D is

called an eventually periodic domain;
• for all m 6= n, fn(D)∩ fm(D) = ∅, and D is called a wandering domain.
Suppose that {D0, · · · , Dp−1}, where Di = f(Di−1), is periodic, then ei-

ther:
(1) Di is (super)attractive: each Di contains a point of a periodic cycle with

multiplier |α| < 1 and all points in each Di are attracted to this cycle.
Some domain in this cycle must contain a critical or an asymptotic value.
If α = 0, the critical point itself belongs to the periodic cycle and the
domain is called superattractive.

1Rational maps are defined at infinity so they may have critical values there.
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(2) Di is parabolic: the boundary of each Di contains a point of a periodic
cycle with multiplier α = e2πip/q, (p, q) = 1, and all points in each domain
Di are attracted to this cycle. Some domain in this cycle must contain
a critical or an asymptotic value.

(3) Di is a Siegel disk: each Di contains a point of a periodic cycle with mul-
tiplier α = e2πiθ, θ irrational. There is a holomorphic homeomorphism
mapping each Di to the unit disk D, and conjugating the first return map
fp on Di to an irrational rotation, z 7→ αz, of D. The preimages under
this conjugacy of the circles |ξ| = r, r < 1, foliate the disks Di with fp

forward invariant leaves on which fp is injective.
(4) Di is a Herman ring: each Di is holomorphically homeomorphic to a

round annulus and the first return map is conjugate to an irrational ro-
tation of the annulus by a holomorphic homeomorphism. The preimages
under this conjugacy of the circles |ξ| = r, 1 < r < R, foliate the disks
with fp forward invariant leaves on which fp is injective.

(5) Di is an essentially parabolic (Baker) domain: the boundary of each Di

contains a point zi (possibly ∞), fnp(z) → zi for all z ∈ Di, but fp is
not holomorphic at zi. If p = 1, then z0 =∞.

Theorem 3.1. [BKL4] If f is a singularly finite map, then there are no
wandering domains in the Fatou set.

Theorem 3.2. [Ber, RS] If f is a singularly finite map, then there are no
Baker domains in the Fatou set.

3.3. Superattractive fixed points. We will need the following theorem
that characterizes the behavior of a holomorphic map near a superattracting
fixed point (see [CG],[M] for details).

Theorem 3.3. [The Böttcher Coordinate] Suppose that f is a holomorphic
map defined in some neighborhood U of 0 and that 0 is a super-attracting fixed
point; that is,

f(z) = amz
m + am+1z

m+1 + · · · , where m ≥ 2 and am 6= 0.

Then there exists a conformal map φ(z), called the Böttcher coordinate at 0,
such that φ ◦ f ◦ φ−1(z) = zm; it is unique up to the choice of an (m − 1)th
root of unity.

In practice, we usually conjugate by a linear transformation so that am = 1
and the map is monic. Then, following [CG], Theorem 4.1, the Böttcher map
is defined by

φ(z) = z

∞∏
n=0

(
fn+1(z)

(fn(z))m
)m
−(n+1)

,

where f0(z) = z. Because we have assumed f monic, the Böttcher map is
unique and satisfies

lim
z→0

φ(z)/z → 1.
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Given φ defined on U , one would like to use the functional relation φ(f(z)) =
(φ(z))m to extend its definition to some maximal domain in the basin of at-
traction of 0, and in fact to the entire immediate basin. This, however, is not
always possible. Defining such an extension involves computing expressions
of the form z → m

√
φ(f(z)) and this does not work in general since the mth

root cannot be defined as a single valued function; for example, if f(z) = 0
for some z 6= 0 in the basin, or if the basin is not simply connected. In fact,
if it contains no singular points, φ can be extended until the pullback meets
a singular point – and hence to the whole basin.

4. The Family F = {fλ = λ tanp zq }

The focus of this paper is the family

F = {fλ = λ tanp zq, λ ∈ C \ {0}, p, q ∈ N, pq > 1}.
If pq = 1, we obtain the tangent family which has been well studied; see
[CJK1, CJK2, K, KK]. It is the paradigm for families of functions with
two asymptotic values and no critical values. When pq > 1, however, the
functions in F have a superattractive point at the origin which creates a
substantive change in the dynamics.

4.1. Covering properties of fλ. For any fλ(z) = λ tanp zq, its derivative
is f ′λ(z) = pqλzq−1 tanp−1 zq sec2 zq. Therefore solutions of zq = kπ for all
k ∈ Z, are critical points, and their images are the critical value 0; moreover,
each solution zq = kπ + π/2 for k ∈ Z is a pole of fλ(z) of order p. That is,
if p ≥ 2, ∞ is a critical value as well as an essential singularity. Since tan z
has two asymptotic values, ±i, and two asymptotic tracts, fλ has asymptotic
values vλ = ipλ and v′λ = (−i)pλ and has 2q asymptotic tracts each of which
is mapped to a punctured neighborhood of an asymptotic value. The tracts
are separated by the Julia directions along which the poles approach infinity.
If p is odd, v′λ = −vλ and each has q asymptotic tracts, whereas if p is even,
v′λ = vλ and all 2q asymptotic tracts correspond to this asymptotic value.
The singular set S(fλ) = {0, vλ, v′λ,∞} if p ≥ 2 or {0, vλ, v′λ} if p = 1. For
readability in the rest of this part of the paper we suppress the dependence
on λ and set f = fλ, v = vλ, etc.

4.2. Symmetries of f . For any f ∈ F it is easy to see that if pq is even,
f(−z) = f(z) whereas if pq is odd f(−z) = −f(z).

Let ωj = eπj/q, j = 0, . . . , 2q− 1, denote the qth roots of ±1. The labelling
is such that if j is even, ωj is a root of +1 and if j is odd, it is a root of −1.

If pk = |(kπ + π/2)1/q|, the poles of f are

pk,j = (pk)1/qωj , j even and p−k,j = (pk)1/qωj , j odd, k ∈ N, j = 0, . . . , 2q−1.

The poles lie on rays that define the Julia directions for f and divide the
dynamic plane into 2q sectors of width π/q.
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In addition, with the same indices, the zeroes of f are

0, qk,j = |(kπ)1/q|ωj , j even and q−k,j = |(kπ)1/q|ωj , j odd.

They lie on the same rays as the poles. Denote the Julia ray through ωj by
δj(t), t ∈ [0,∞).

This tells us that in the dynamic plane of f if p is even, there is a 2q-fold
symmetry: f(ωjz) = f(z) for all j; and if p is odd, there is a q-fold symmetry:
f(ωjz) = f(z) for j even and f(ωjz) = −f(z) for j odd. In each of the 2q
sectors bounded by the Julia rays, there is an asymptotic tract. Any curve
γj(t), t ∈ [0,∞), asymptotic to a ray which is not a Julia ray, is an asymptotic
path whose image lands at an asymptotic value. If p is odd, the asymptotic
tracts of v and v′ alternate.

4.3. The basin of zero. Denote the basin of attraction of zero by

B = {z | fn(z)→ 0 as n→∞}

and let B0 be the immediate basin; that is the component of B containing 0.
Since zero is a superattracting fixed point, the basin is never empty.

Lemma 4.1. If z ∈ B, then −z ∈ B.

Proof. The orbits of z and −z are the same if pq is even or are symmetric
with respect to 0 if pq is odd. Thus either both of them belong to B or neither
does. �

Lemma 4.2. B0 is symmetric with respect to 0. That is, if z ∈ B0, then
−z ∈ B0 too.

Proof. Let −B = {−z | z ∈ B} and −B0 = {−z | z ∈ B0}. It is obvious
that 0 ∈ −B and that −B = B by lemma 4.1. Since B0 is a component of B,
−B0 = B0. �

From this lemma, it follows that when p is odd and f has two distinct
asymptotic values, then either both are in B0 or neither is.

In order to determine when B0 = B, we need the following lemma.

Lemma 4.3. Let U ∈ C be a simply connected open set.
(1) If 0, v, v′ /∈ U , then f−1(U) is a union of infinitely many simply connected

open sets, and each component is conformally equivalent to U . Note that
if v, v′ 6∈ U then even if U is unbounded, the components of f−1(U) are
bounded.

(2) If 0 /∈ U but either v ∈ U or v′ ∈ U , then f−1(U) is a union of infinitely
many bounded simply connected sets and finitely many simply connected
unbounded sets, each of which is contained in one of the asymptotic tracts.
If p is even (v′ = v) there are 2q unbounded sets. If p is odd, there are q
such sets, v′ is in −U and f−1(−U) contains another q unbounded sets.
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(3) If 0 ∈ U but v, v′ /∈ U , then f−1(U) is a union of infinitely many simply
connected open sets, each of which is a branched cover of U , branched at
a single point. The order of branching depends on p, q: the order of all
components not containing 0 is p and that of the component containing
0 is pq.

(4) If 0, v, v′ ∈ U , then f−1(U) is an unbounded connected set with infinite
connectivity.

Proof. Write f(z) = λ tanp zq = L◦P ◦T ◦Q(z), where L(z) = λz, P (z) = zp,
T (z) = tan z, and Q(z) = zq. Let U be a simply connected open set in C.

Case (1): If U contains neither 0 nor both v and v′, then P−1 ◦ L−1(U) =
∪pi=1Vi, where each Vi is a simply connected open set and none of the Vi
contains either ±i or 0. Moreover, L ◦ P : Vi → U is conformal. Recall that
the map

T : C→ Ĉ \ {±i}
is a universal covering map. Since each Vi ⊂ C\{±i}, it follows that T−1(Vi) =

∪∞j=1W
j
i , where each W j

i is a simply connected open set and T : W j
i → Vj is

also conformal. Moreover, each W j
i is contained in a vertical strip of width π:

Hj = {z = x+ yi | aj−1 ≤ x ≤ aj , and aj − aj−1 = π}.

Note that 0 /∈ Vi because 0 /∈ W j
i . Therefore for each W j

i , Q−1(W j
i ) =

∪qk=1U
jk
i , where the U jki are simply connected open sets and Q : U jki → U ji is

also conformal.
Case (2): If v or v′ is in U but 0 is not, then P−1 ◦ L−1(U) = ∪pi=1Vi,

where each Vi is a simply connected open set not containing 0. Moreover,
L ◦ P : Vi → U is conformal. As these q sets are permuted by the rotation
τ(z) = e2πi/pz, the asymptotic values of T , ±i, are in different Vi’s. As above,
the map

T : C→ Ĉ \ {±i}
is a universal covering map so that if neither i nor −i is in Vi, T

−1(Vi) =

∪∞j=1W
j
i , where each W j

i is a simply connected open set and T : W j
i → Vj is

conformal. Again each W j
i is in a vertical strip of width π,

Hj = {z = x+ yi | aj−1 ≤ x ≤ aj , and aj − aj−1 = π}.

If i is in Vi, it has no preimages under T and T−1(Vi) consists of a single
simply connected unbounded set Wi and T : Wi → Vi \ {i}, is a universal

covering; similarly if −i is in Vi. Note that 0 /∈ W j
i or Wj because 0 /∈ Vi.

Therefore for each W = W j
i or Wi, Q

−1(W ) is a union of q simply connected
open sets.

Case (3): If 0 is in U but both v and v′ are not, then P−1◦L−1(U) = V is a
simply connected set containing 0 but neither i nor −i, and L◦Q : V → U is a
branched cover of degree p. Similarly T−1(V ) is also a union of infinitely many
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simply connected sets in vertical strips, each of which contains a preimage of
0. Then for each component W of T−1(V ), either 0 6∈ W and Q−1(W ) is a
union of q simply connected sets containing a single non-zero preimage of zero
or 0 ∈W and it is one simply connected set.

Case (4): if 0, v, v′ ∈ U , then P−1 ◦ L−1(U) = V is a simply connected set

containing 0 and both i and −i. If U is bounded, the set V ′ = Ĉ\V is a simply

connected unbounded set in Ĉ that doesn’t contain 0, i or −i. As in Case (1),
we apply the map T−1 and T−1(V ′) is a union of simply connected sets Wi

contained in vertical strips, but in this case, T : Wi → V ′ is a branched cover
of degree p. If U is unbounded, V ′ contains p simply connected components
and we apply T−1 to each of these. In either case, (Q◦T )−1(V ′) is a union of
infinitely many bounded simply connected sets so that f−1(U) is a connected
set with infinite connectivity. �

Lemma 4.4. The immediate basin B0 contains an asymptotic value if and
only if all the preimages of 0 are in B0.

Proof. Let Dr(0) ⊂ B0 be a small disk centered at 0 with radius r, such that
no point in the orbit of the asymptotic values lies on ∂Dr. For any n ≥ 1,
let Un be the component of f−n(Dr) containing 0. It follows that Un−1 ⊂ Un
and B0 = ∪n≥0Un. By lemma 4.3, Un is simply connected and contains no
other preimages of 0 if and only if v, v′ /∈ Un−1. �

Remark 4.1. Lemma 4.4 indicates that when we take successive preimages
of a neighborhood of 0 by an inverse branch of f that fixes 0, they are nested
and, if for some n, Un contains an asymptotic value, but Un−1 does not,
then Un does not contain any non-zero preimages of 0; note these are critical
points. Therefore if there is no asymptotic value in B0, the Böttcher map of
theorem 3.3 defined on a neighborhood in B0 extends injectively to the whole of
B0 whereas if B0 does contain an asymptotic value, the Böttcher map extends
injectively to the Un containing that asymptotic value, but not to Un+1; in
particular it is defined at the asymptotic value. We will describe this further
in section 6.

Since theorem 3.3 applies to monic maps, we conjugate f(z) = fλ(z) =
λ tanp zq to the monic map

hµ(z) = µpq tanp(z/µ)q = zpq + · · ·

by the linear map σ(z) = µz, where µ = λ1/(pq−1) is chosen as a (pq − 1)st

root of λ. Then we have

Theorem 4.5. [The Böttcher coordinate for fλ] If U is a neighborhood of 0
in B0, there is a conformal map, φ, defined up to the choice of a (pq − 1)st

root of λ, such that for z ∈ U , φ(0) = 0 and φ(f(z)) = (φ(z))pq.
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Proof. By theorem 3.3, on a small neighborhood U of 0 there is a map φh :
U → D such that φh(h(z)) = (φh(z))pq. Therefore, φ(z) = φλ(z) = φh(σ(z))
is the desired map. �

Note that the asymptotic values are in the immediate basin of 0 of hµ if and
only if the asymptotic values of fλ are in B0 so the map φ extends injectively
to the preimage of the disk with radius |φ(v)| in D.

Theorem 4.6. The immediate basin of 0 is completely invariant, that is
B = B0, if and only B0 contains an asymptotic value.

Proof. By lemma 4.4, if B0 contains an asymptotic value, it also contains all
the preimages of zero so it is completely invariant.

On the other hand, again by lemma 4.4, if B0 contains no asymptotic value,
then the only preimage of 0 in B0 is 0. Therefore all the other preimages are
in other distinct components of B. �

Lemma 4.7. If B0 does not contain an asymptotic value, all the components
of B are simply connected. Moreover, if v′ = −v, they are each in different
components.

Proof. By lemma 4.4, B0 = ∪n≥1Un. Since B0 doesn’t contain an asymptotic
value, it follows that the Böttcher map extends to all of B0 and so it is simply
connected. Applying lemma 4.3, we know any preimage, f−n(B0), is also
simply connected.

Suppose both v′ = −v and v ∈ U , where U is some preimage of B0. Then
by lemma 4.1, −U is also a preimage of B0 and it contains v′ and v. Therefore
U ∩ −U 6= ∅ and 0 ∈ U so that U = B0. �

Theorem 4.8. If the asymptotic values belong to the Fatou set or if they are
accessible boundary points of a Fatou component there are unbounded compo-
nents of the Fatou set.

Proof. Let V be a punctured neighborhood of the asymptotic value v so that
f : f−1(V ) → V is a regular covering and {f−1(V )} contains q or 2q, as p
is odd or even, unbounded simply connected components, each contained in
an asymptotic tract for v. If p is odd, v′ = −v, and {f−1(−V )} also has q
unbounded simply connected components.

If p = 1 or 2, v and v′ are omitted; then these 2q unbounded components
are the only components of {f−1(V )}. If p > 2, v and v′ are not omitted
and {f−1(V )} contains infinitely many bounded domains each containing a
preimage of v or v′. Since V contains no critical value, f is a regular covering
of each component of {f−1(V )} onto its image.

Note that if v is in the Fatou set, the neighborhood V can be taken small
enough that it, and hence all its preimages, belong to the Fatou set. Suppose
this is the case and that B0 is not completely invariant. Let U be the compo-
nent of the Fatou set containing V ; by Cases (1), (2) and (3) of lemma 4.3,
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Figure 1. The dynamic plane for (1.22 + 1.3i) tan3 z2. The
asymptotic value lands in the immediate basin of zero af-
ter one iteration. The magenta regions are the basin of 0.
The black dots are the prepoles that accumulate to form the
boundaries of the components of the basin. The asymptotic
value is in the component between the first and second poles
in the fourth quadrant.

{f−1(U)} consists of 2q unbounded components contained in the asymptotic
tracts and infinitely many bounded components. They are all simply con-
nected and so each unbounded component is contained a single asymptotic
tract.

In figure 1 the asymptotic value is contained in B and in figure 2 the
asymptotic value is contained in the basin of a non-zero attracting point.

Now suppose v is not in the Fatou set but is an accessible boundary point
of a component U of the Fatou set; then −v is also accessible. If U = B0,
let γ(t) be a symmetric curve in B0 through 0 that lands at both v and −v.
If U 6= B0, then v and −v are in disjoint symmetric components U and −U
and for readability we work only with U . There are two possibilites: either
U = f−n(B0) for some n > 0 and some branch of the inverse, and it is bounded
and contains a preimage of 0; or U is in the basin of a periodic Siegel disk
and it contains a preimage of the periodic point (or a periodic point) in the
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Figure 2. The dynamic plane of 2i tan3 z2 which has a non-
zero attracting fixed point. The black region is the basin of a
period 1 cycle. The magenta regions are the basin of 0. The
white dots surround the poles

disk. In either case we let γ be a curve that starts at this preimage in U and
lands at v.

Then f−1(γ(t)) contains ∪∞j=−∞∪mi=1, δ
j
i (t) where m = q or m = 2q and

{δji } is a collection of unbounded curves contained in the ith asymptotic tract

for V . If U = B0, δji and δji+1 meet at a preimage of 0 but if U 6= B0, they are
disjoint. In either case, we see that each asymptotic tract intersects infinitely
many components of the Fatou set.

If p > 2, f−1(γ(t)) also contains infinitely many bounded curves limiting
on the preimages of v. Note that since v is a boundary point of U , if N is a
neighborhood of∞, each of the infinitely many components Wj = f−1(U)∩N
is only a subset of the asymptotic tracts and f−1(U) consists of infinitely many
unbounded components.

Figures 3 and 4 show examples where the asymptotic value is respectively
on the boundary of B0 or the boundary of U = f−1(B0) for a branch of the
inverse. The bounded Fatou components extend all the way to infinity in the
directions indicated. This doesn’t show because of round off error.

�
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Figure 3. The dynamic plane for f(z) =
√

π
4 tan3 z2. The

asymptotic value v is −
√
π/4i, f3(v) = f2(v) and v is on

the boundary of the immediate basin of zero. The full basin
contains infinitely many components, both bounded and un-
bounded. Roundoff error has truncated the prepoles in the
boundary that tend to infinity; in fact, the hyperbola-like
curves containing prepoles around which are bounded do-
mains extend to infinity separating the asymptotic tracts into
infinitely many unbounded domains.

Remark 4.2. Recall that if the asymptotic values belong to the Fatou set,
either they are attracted to zero, and thus belong to B, or they are in the
attracting basin of, or accumulate on the boundary of a non-zero periodic
cycle.

We also have
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Figure 4. The dynamic plane for f(z) = λ tanh3 z2 where
λ = 1.067098 − 1.135274i. The asymptotic value v is on
the boundary of a preimage B1 = f−1(B0) in the fourth
quadrant. Again the full basin contains infinitely many
bounded and unbounded components and divides the asymp-
totic tracts into infinitely many regions.

Proposition 4.9. If V is an unbounded component of the Fatou set of fλ,
and f(V ) contains an asymptotic value, then infinity and all the prepoles are
accessible points from inside the Fatou set.

Proof. Since f(V ) contains an asymptotic value, V must intersect at least
one of the asymptotic tracts. It follows that an asymptotic path in the tract
maps to a path landing at an asymptotic value. The asymptotic path gives
access to infinity. The asymptotic paths pull back to paths that give access
to the prepoles. �
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Remark 4.3. Note that this does not imply that all points of J are accessible.
The prepoles are only a countable dense subset of J .

We can now complete the classification of Fatou components for functions
in F .2

Theorem 4.10. No map fλ can have a Herman ring.

Proof. This theorem was proved in [KK] for the family λ tan z and for the
family of functions with exactly two finite asymptotic values and one at-
tracting fixed point of constant (non-zero) multiplier in [CJK2]. Our family
reduces to the first if pq = 1 and is similar to the second, although the as-
ymptotic values agree or are symmetric and the constant multiplier is zero.

Suppose f has a periodic cycle of Herman rings. Let A be one of the
components of the cycle; then for some k, fk(A) = A. Choose z ∈ A and

set γ = {fkn(z)}∞n=0; γ is a topological circle that bounds a topological disk
D(γ) containing the inner boundary of A; moreover γ is forward invariant
under fk. Let γ1 = γ and for i = 1, . . . , k, let γi = f i−1(γ); let D(γi) the disk
bounded by γi.

The curves γi separate the annuli Ai = f i(A) into two annuli, an inner an-
nulus Ii contained in D(γi) and an outer annulus Oi, its complement. Since A
is part of a cycle of Herman rings f : fN−1(A)→ fN (A) is a homeomorphism.
Moreover, fk is conjugate to a rotation on A and is an orientation preserving
homeomorphism.

We now separate our considerations depending on how the asymptotic
value(s) are situated with respect to the disks Di = D(γi).
• Suppose first that v and v′ are outside all of the disks Di. It follows that

for each i, {f−1(γi)} consists of infinitely many bounded closed curves,
one of which is γi−1. Suppose gi : γi → γi−1 is this branch of f−1. Then
gi : Di → Di−1 and therefore, going forward, f : Di−1 → Di. This
means that fn forms a normal family on the Di. This is a contradiction
because each Di contains the inner boundary component of Ai.
• Now assume v ∈ Di for some fixed i. It follows each closed component of
{f−1(γi)} is either an unbounded arc or a simply connected closed curve.
If p = 1 or 2 these are unbounded curves are in the only components of
the inverse; if p > 2, all other components are bounded. In the first case,
there cannot be a Herman ring because the maps along the ring are all
injective. In the second, one of the bounded components is a γi belonging
to an annulus of the ring and the argument of the previous bullet applies.
• Finally assume that both asymptotic values belong to some Di so that

there are no asymptotic values in Ĉ \Di. Then {f−1(Ĉ \Di)} consists
of infinitely many pairwise disjoint bounded punctured topological disks

2This theorem is proved for the family λ tan z2 in [Na]
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Um \ {pm} where the pm are poles. One of these, say Ui intersects the
inner annulus Ii. It follows that f : Ii → Oi+1.
Since there are at most two asymptotic values, if all the disks Dj , j =
1, . . . k, are mutually disjoint, there are no asymptotic values either inside
Dj , j 6= i or in their common exterior. It follows that for all j 6= i,
f : Ij → Ij+1, and therefore fk : Ii → Oi. This is a contradiction since
f is conjugate to a rotation on Ai.
Because the γj are disjoint, if some of the Dj intersect, they form a nest.
Let Ij1 be the innermost inner annulus and Oj2 the outermost outer
annulus. Then the ring R between γj1 and γj2 contains no asymptotic
values and f−k maps R homeomorphically to itself, preserving the inner
and outer boundaries. Now we argue as above to conclude that the fnk

form a normal family on R. This implies j1 = j2, and the nest contains
only Di. We saw above that in this case the map cannot be conjugate to
a rotation. This contradiction completes the proof that are no Herman
rings.

�

A corollary of the above discussion is

Corollary 4.11. If B0 is not completely invariant, the Julia set is connected.

Proof. If B0 is not completely invariant v, v′ 6∈ B0 and by lemmas 4.4 and 4.3,
the basin B consists of infinitely many bounded simply connected components.

If v, v′ ∈ B \ B0, the basin is the full stable set so the Julia set is the
complement of infinitely many simply connected components and is connected.

Otherwise, either there are no other components of the Fatou set and again
the Julia set is connected or there is a cycle of attracting, parabolic or Siegel
domains attached to an asymptotic value. By theorem 4.10, there are no
Herman rings so any components in such a cycle and their preimages are
simply connected, so again the Julia set is connected. �

5. Hyperbolic Maps

A general question in dynamical systems is what happens to the dynamical
properties if we perturb a function slightly. In particular, when do these
properties persist under deformation; if they do, the map is called hyperbolic.
More specific characterizations of hyperbolicity depend on the context. The
following discussion is a summary of material in [DH, McM, M] for rational
maps. Discussions of hyperbolicity for transcendental meromorphic maps that
include singularly finite ones can be found in [KK, RS, Z]. We omit proofs
and direct the reader to the literature.

From the discussion below, the following definition of hyperbolicity for
rational maps is a good one to adapt to singularly finite maps.
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Definition 2. Suppose f(z) is a singularly finite meromorphic map. Then

f(z) is hyperbolic if PS(f) ∩ J(f) = ∅.

Note that if f is a singularly finite hyperbolic map, the singular points
must all be attracted to attracting or superattracting cycles.

A related condition, (see [M]), which is equivalent to the above, says that
a rational map is expanding on its Julia set if there exist constants c > 0 and
K > 1 such that for all z in a neighborhood V ⊃ J(f), |(fn)′(z)| > cKn.

Because the Julia set of a meromorphic function is unbounded and its
iterates have singularities at the prepoles, we need a version of this condition
tailored to transcendental maps. We use the following one proved in [RS]
which applies to hyperbolic functions in F .

Proposition 5.1 (Rippon-Stallard). If S(f) is bounded and PS(f)∩J(f) =
∅, then there exist two constants c > 0 and K > 1 satisfying

|(fn)′(z)| > cKn(|fn(z)|+ 1)/(|z|+ 1).

for all z ∈ J(f) \ An(f) and all n where An(f) is the set of points where fn

is not analytic (prepoles of lower order).

Note that in the family F the poles are critical points in the Julia set but
their image is infinity. They and their preimages form the set An(f).

6. Julia Set Dichotomy

The Julia set of a hyperbolic quadratic map is either locally connected or
a Cantor set. In this section, we prove the same is true for maps in the family
F .

6.1. Local connectivity for hyperbolic maps. In this section we prove

Theorem 6.1. If the Julia set of a hyperbolic map in F is connected, it is
locally connected.

This is proved for rational maps in [M], section 19, based on Douady’s
work. The proof there follows directly from three lemmas. Here we adapt
them to the family F to obtain the proof for these maps. In the following
lemmas we assume the Julia set is connected and f is hyperbolic. As we saw
above, this means that B0 is not completely invariant, all components of the
Fatou set are simply connected and the asymptotic value is either attracted
to zero or a non-zero attracting cycle.

Lemma 6.2. If f is hyperbolic and U is a simply connected component of the
Fatou set, then ∂U is locally connected.

Proof. The immediate basin of zero, B0, is bounded and forward invariant
and therefore its boundary contains no prepoles. We can apply the argument
in [M] section 19: we use the Böttcher map φ on B0 to conjugate f to the
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map z 7→ zpq on the disk D and define an annulus structure that tesselates
B0. There are rays Rt in B0 that are the pullbacks by φ of radii of angle
t in D. As in [M], we fix an annulus A0 in B0 and look at the intersection
It = Rt ∩A0. The branches of f−1 that fix B0 define a set of pullbacks of the
It whose lengths go to zero. The Rippon-Stallard estimate applies and shows
that these pullbacks converge uniformly to ∂B0 and therefore that it is locally
connected.

We divide the rest of the proof into two cases:
(1) Suppose that the basin of zero, B, contains the asymptotic value. Then

the basin is the whole Fatou set. If Un is any component of B such that
fn(Un) = B0, fn : ∂Un → ∂B0 is a local homeomorphism and so its
boundary is locally connected.

(2) Assume now that f has a non-zero attracting periodic cycle.
• The boundaries of all bounded components of the basin of zero

are locally connected since, as above, they contain no prepoles and
argument above applies.

• If k = 1, there is only one component V of the cycle. Then it is
unbounded, contains a periodic point ζ and one asymptotic value
v. Since f is infinite to one on V , ∂V is an infinite curve and
it contains infinitely many poles. We can conjugate f on V to a
linear map to C in a neighborhood O of ζ by the König map φ,
where φ(ζ) = 0 and φ′(ζ) = 1, and extend it injectively until we
reach v. Suppose φ(v) = r0e

2πit∗ . The rays in V are the curves
Rt = φ−1(re2πit) for fixed t and varying r. The ray Rt∗ joins ζ to
v. Let γ be the curve in V defined by |φ(γ)| = r0; let A0 be the
annulus between γ and f(γ). It is a fundamental domain for the
action of f on V . Set It = A0 ∩Rt.
There is a unique branch g of f−1 such that `∗ = g(Rt∗) joins ζ to
infinity. The preimages {lj = f−1(`∗)} each join a pole pi on ∂V
to infinity and separate V into strips. Because the poles are acces-
sible the lj extend continuously to them. Starting with the strip
containing the fixed point, the strips can be labelled consecutively
and this can be used to enumerate the branches of the inverse in
the same way one defines branches of the logarithm. Their end-
points separate ∂V into compact sets Ji such that Ji ∩ Jj = pi.
The curves {γi = f−1(γ)} are U-shaped doubly infinite curves sep-
arating the preimages of ζ from one another. The preimages of the
γi are curves in the strips that end at the prepoles.
For each possible choice of inverse branches of f , we obtain a pull-
back of A0 and these form a tesselation of V . Choosing sequences
of inverse branches appropriately, we can form successive nests of
these fundamental domains. Each such nest is contained in one of
the strips. The inverse branches are hyperbolic isometries so the
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hyperbolic lengths of the pullbacks of the It are bounded. For each
t, we can find sequences of inverse branches to the pullbacks of the
It lie that in a nested set of annuli. If t = t∗, the pullbacks nest
down to a prepole; since these are accessible, they have a unique
accumulation point. For other values of t, the Rippon-Stallard es-
timate applies to show that the accumulation points are unique.
Therefore, the boundary of V is locally connected.

• If k > 1, the argument is even easier. Now the asymptotic value
is in a bounded component V1. Then V0 = f−1(V1) is unbounded
and fixed under fk. The argument above applies to V0. Since there
are no critical values in the cycle of domains, the inverse maps
going backwards around the cycle are local homeomorphisms and
because the boundary of V0 is locally connected they extend to
the boundary. This proves each of the domains in the cycle has a
locally connected boundary.

�

Lemma 6.3. Suppose that f is hyperbolic with connected Julia set. Given
ε > 0, if q > 1, the Euclidean diameters of only finitely many components of
the Fatou set are greater than ε. If q = 1, the conclusion holds in the spherical
metric.

Proof. By hypothesis, the Fatou set consists of infinitely many bounded
components, and at most 2q unbounded components, each of which can
be identified with an asymptotic tract. As in section 4.2, set ωj = eπj/q,
j = 0, . . . , 2q − 1, the qth roots of ±1. The labelling is such that if j is even,
ωj is a root of +1 and if j is odd, it is a root of −1. The zeros of f are of the

form zk,j = |(kπ)1/q|ωj , j = 0, . . . , 2q − 1.
We work first with the basin of zero, B. Consider f−1(B0) = ∪k,jUk,j

where k ∈ N, j = 0, . . . 2q − 1. Note that if k = 0, U0,j = B0 for all j.
For k 6= 0, the Uk,j are mutually disjoint. Because B0 does not contain the
asymptotic value, the Uk,j are bounded. In addition, since −B0 = B0 and
f(zωj) = f(z), we see that Uk,j = ωjUk,0, so their diameters are independent
of j. It therefore suffices to consider only those components Uk = Uk,0 along
the ray ω0. Let U0 = B0 and let Mk be the diameter of Uk.

As we saw above, the map f = λ tanp zq is a composition of maps f =
L ◦ P ◦ T ◦ Q where L(z) = λz, P (z) = zp, T (z) = tan(z), and Q(z) = zq;
note that if q = 1, Q(z) is the identity.

First set ζ = Q(z) and write F (ζ) = f(z). The Fatou set of F is the
image under Q of the Fatou set of f . Note that F (ζ + π) = F (ζ), Q(zk) =
Q(zk,0) = kπ. Let Vk = Q(Uk). By the periodicity of F , Vk+1 = Vk + π,

so these sets all have the same diameter, say M̂ . We also have for each k,
Vk = T−1 ◦ P−1 ◦ L−1(B0) for some inverse branches of P and T . Therefore
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Vk is contained in a vertical strip of width π,

Hj = {z = x+ yi | aj−1 ≤ x ≤ aj , and aj − aj−1 = π}.
The map Q sends the asymptotic tracts of f to those of F , and these are

the upper and lower half planes. Therefore, there is some y0 such that the half
planes =ζ > y0,=ζ < −y0 are in the asymptotic tracts of F . Since we have
assumed the asymptotic values tend to an attracting cycle, these asymptotic
tracts belong to unbounded components of the Fatou set. It follows that the
components Vk also lie between the horizontal lines y = ±y0. Thus each Vk
is contained in a rectangle Rk of height 2y0 and width π so that M̂ ≤ 2y0π.

Suppose q > 1. Let Pk = Q−1(Rk) where we choose the branch of the
inverse so that Uk ⊂ Pk. Then using the derivative, we estimate

Rk ⊂ Rk ≈ Rk/(kπ)
q−1
q . (1)

Therefore, only finitely many Uk have diameter greater than ε and by
symmetry, only finitely many of the other Uk,j have diameter greater than ε

The remaining bounded Fatou sets are contained in Q−1(Rk \ Vk). These
include both sets in B and, if there is a non-zero attracting cycle, the bounded
components of its basin. Since none of these bounded sets contains a critical
value, the inverse branches defined on them yielding bounded preimages are
conformal homeomorphisms. The sizes and shapes of these inverse images is
controlled by Koebe estimates involving uniform bounds on the derivative of
F in Rk and the diameters of the Uk. The diameters of these components
shrink by factors of the order 1/|kπ|n(q−1) as k, n go to infinity.

If q = 1, the function f is the same as the function F . Although the sets in
each Rk are all the same size in the Euclidean metric, as k →∞ they shrink
in the spherical metric. As above, for each k the nth bounded preimages of
the components of B and those of the basin(s) of the non-zero cycle(s) have
diameters that shrink to zero so the lemma holds in this case as well.

�

The last lemma in [M] is purely topological and applies here without mod-
ification.

Lemma 6.4. If X is a compact subset of the Riemann sphere such that any
component of its complement has locally connected boundary, and such that,
for any ε > 0, at most finitely many of these complementary components have
spherical diameter greater than ε, then X is locally connected.

Theorem 6.1 now follows directly from these lemmas.
In the proof of lemma 6.2, working with hyperbolic maps, we defined the

dynamic rays in B0. These rays are defined in the same way even if f is not
hyperbolic and their preimages define rays in the remaining components of
B. Similarly, if the map has a non-zero attracting cycle, there are dynamic
rays in the periodic components of the cycle and their preimages are rays in
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the preimages of the components. We use the notation Rt for any of these
dynamic rays.

If t is rational, the rays Rt are called rational rays. It is clear that they
are eventually periodic or periodic under iteration by f . A direct corollary of
Theorem 6.1 is

Corollary 6.5. The landing points of the rational rays in B0 are eventually
repelling periodic points.

6.2. Cantor Julia sets. It follows from theorem 6.1 that if f is hyperbolic
and B0 is not completely invariant, the Julia set is locally connected. In this
section we show that if B0 is completely invariant, the Julia set is totally
disconnected and homeomorphic to a Cantor set.

Theorem 6.6. If the asymptotic values are in B0, the Julia set J is a Cantor
set and the action of f on J is conjugate to the one sided shift on a countable
countable set of symbols.

Proof. By theorem 3.3, there exists a neighborhood U of 0 and a map ϕ
conjugating f on U to z 7→ zpq. Take r > 0 small enough so that U0 =
ϕ−1(Dr(0)) does not contain the asymptotic values and its boundary does not
contain any point in the forward orbit of the asymptotic values. Let Un be the
component of f−n(U0) containing 0 so that Un ⊂ Un+1 and B0 = ∪∞n=0Un.

Since we are assuming the asymptotic values are in B0, by theorem 4.6,

B0 = B. We claim that J = Ĉ \B is a Cantor set.
There exists an N such that UN−1 does not contain any asymptotic val-

ues but UN contains the asymptotic value v; in fact, by construction it also
contains v′. By lemma 4.3, U1, · · · , UN is a nested set of simply connected
domains and f−1(UN ) is an infinitely connected set whose complement is a
collection of topological disks, each punctured at a pole. We add the poles to
each of these disks and enumerate them. To do so, recall that they lie along
the rays separating the asymptotic tracts and were labelled in section 4.2 by:

pkj = (pk)1/qωj , j even and p−kj = (pk)1/qωj , j odd k ∈ N, j = 0, . . . , 2q−1,

where pk = |(kπ + π/2)1/q|. We therefore let A±kj be the complementary

disk containing p±kj and set W = Ĉ \ UN . The maps f : Akj → W and
f : A−kj →W are branched coverings of degree p over ∞.

Note that J ⊂
⋃
k∈N(∪2q−1

j=1 Akj )∪(∪2q−1
i=1 A−kj )∪{∞}) so that J has infinite

connectivity. It is easy to see that

F = ∪n≥1f
−n(UN ) and J =

⋂
n≥1

f−n(∪k∈N(∪2q−1
i=1 Akj )∪(∪2q−1

i=1 A−kj )))∪{∞}).

The next step is to look at the preimages of the A±kj ; recall that they
contain poles or critical points but no singular values and so any preimage of
A±kj maps injectively onto it. For the sake of readability, we use the notation
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kj where we assume k is positive if j is even and k is negative if j is odd.
Consider A

k
j0
0

for a fixed j0, k0; there are p components of f−1(A
k
j0
0

) in each

Akj ; we denote them by A
kjl k

j0
0

, where l = 1, . . . , p. Thus, if x ∈ A
kjl k

j0
0

, then

f(x) ∈ A
k
j0
0

.

We continue to take preimages and again the maps are injective. To enu-
merate them carefully would require using three new indices for each succes-
sive preimage step. Therefore, to keep the notation readable, at the nth step,
we will write kjl · · · k

j
l k
j
l where there are n entries and the k, j, l of each entry

vary independently.
We claim that ∩Akjl ···kjl is a single point which, in turn, shows that J is

a Cantor set. The proof of this claim is essentially the same as the proof of
lemma 6.3. In that argument we showed that the components of the basin
of zero were contained in the pullbacks of rectangles of fixed size and shape.
The same argument shows that each of the sets (A±kj )

q is contained in a
rectangle of fixed height 2y0 and width π containing pk. Taking qth roots we
get an estimate on the diameters of sets containing the A±kj . Again, as in
lemma 6.3, because the inverse branches of f on these sets are conformal, the
successive preimages shrink by a definite factor; this proves the claim.

Each set Akjl ···k
j
l

contains a unique prepole whose order is the number of

entries. Thus we can label it pkjl ···k
j
l
, assign it the symbol kjl · · · k

j
l and note

that f(pkjl ···k
j
;
) is the prepole whose symbol is obtained by dropping the first

kjl . Recall that the Julia set is the closure of the set of prepoles. Putting the
standard sequence topology on the set of symbols of arbitrary finite length,
we can form its closure Σ by adding the symbols · · · kjl k

j
l of infinite length and

the shift map σ is continuous in this topology.3 Thus the map Ξ that assigns
the prepole to its finite symbol extends to a continuous map Ξ : Σ→ J such
that Ξ ◦ σ = f ◦ Ξ. �

7. Parameter Plane

As we saw above, the dynamics of the functions fλ = λ tanp zq ∈ F ,
λ ∈ C∗ = C \ {0}, depend on the location of the asymptotic values. The
functions in this family are what we called Generalized Nevanlinna Functions
in [CK1]. Nevanlinna functions are meromorphic functions with m asymp-
totic values and no critical values. A neighborhood of infinity consists of m
distinct asymptotic tracts contained in sectors of angle 2π/m. The poles ap-
proach infinity along the rays defining the sectors. These rays are called Julia
directions. By a classical theorem of Nevanlinna [Nev] this topological de-
scription of their mapping properties is characterized by an analytic condition:
they satisfy the relation Sg(z) = P (z) where Sg = (g′′/g′)′ − (1/2)(g′′/g′)2

3See [DK] for a detailed construction of Σ.
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is the Schwarzian differential equation and P (z) is a polynomial of degree
m− 2. This means that if h is topologically conjugate to a solution g of this
equation, and it is meromorphic, then h also satisfies a Schwarzian equation
with a different polynomial of the same degree.

A Generalized Nevanlinna function has the form h = P ◦ g ◦ Q where
g is a Nevanlinna function and P and Q are polynomials of degrees p and
q respectively. Thus if g has m asymptotic tracts, h has mq tracts. The
following theorem was proved in [FK].

Theorem 7.1. If h2 is a meromorphic function topologically conjugate to a
generalized Nevanlinna function h1 = P1 ◦ g1 ◦ Q1 then h2 is a generalized
Nevanlinna function h2 = P2 ◦ g2 ◦Q2, where the degrees of Pi and Qi agree
and the gi have the same number of asymptotic values.

As a corollary we have

Corollary 7.2. Let fλ ∈ F be a hyperbolic function and let h be a meromor-
phic function topologically conjugate to fλ. Then, up to conjugation by an
affine transformation, h = fλ′ for some λ′.

Another corollary that follows by standard quasiconformal surgery tech-
niques, (for example[BF]) is

Corollary 7.3. If fλ is a hyperbolic function and g is a meromorphic function
topologically conjugate to fλ, then g is quasiconformally conjugate to fλ.

It follows that the λ plane has a structure that reflects the dynamics; that is,
it consists of components containing topologically quasiconformally conjugate
hyperbolic maps for which the orbits of the asymptotic values tend to the
superattracting fixed point 0, or tend to a non-zero attracting cycle. These
components are separated by a Bifurcation locus consisting of parameters for
which the dynamics are rigid.

This gives us a natural division of the hyperbolic components:
The hyperbolic components are divided into two categories:
• Shell components in which the asymptotic value is attracted to a periodic

cycle different from the origin. By symmetry, if there are two asymptotic
values, ±vλ, either both are attracted to the same cycle, or each is at-
tracted to a cycle and the cycles are symmetric. We denote the collection
of shell components by S and the individual components for which fλ
has an attracting cycle of period n by Ωn. Note that since 0 is the only
critical value, if λ ∈ Ωn the multiplier mλ of the non-zero attracting cycle
of fλ, is not zero.
• Capture components in which the asymptotic value is attracted to 0. As

we saw in section 4.3, if there are two asymptotic values, neither or both
are attracted to 0. We denote the set of capture components by C and
divide this set into subsets Cn, where

Cn = {λ | n ≥ 0 is the minimal k such that fkλ (vλ) ∈ B0}.
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Figure 5. The parameter plane for λ tanh3 z2. The green
regions are capture components. The yellow regions are pe-
riod 1 shell components; the cyan regions are period 2; the
red regions period 3.

Define the set of centers of components of Cn, n > 0, as

Zn = {λ | n ≥ 1 is the minimal integer such that fkλ (vλ) = 0}.

It is clear that these analytic equations have solutions; for example, if
n = 1 the centers are the points |(nπ)1/q|ωj . Hence that the components
of Cn are not empty.
There is only one component C0 and we call it the central component. It
has no center because λ = 0 is a parameter singularity.

In section 6.2 we saw that the functions in the central capture component
are precisely those whose Julia set is not connected, and is in fact a Cantor
set. Below we will see that this makes it quite different from the non-central
capture components.

Before we give a more detailed analysis of the hyperbolic components we
discuss some general properties of the parameter plane.

7.1. Symmetries in the parameter plane. In section 4.2 we saw that the
functions in F exhibit a 2q-fold symmetry if p is even and a q-fold symmetry
if p is odd.
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Figure 6. A blowup of the central capture component near
the cusp. The capture components are dark pink. The shell
components are colored as in figure 5.

The parameter plane also has symmetries and they also need to be de-
scribed in terms of the parities of p and q.

Note first that we always have
• f−λ(z) = −fλ(z) so that v−λ = −vλ and

• fλ̄(z) = fλ(z̄), so that vλ̄ = vλ if p is even and vλ̄ = v′λ otherwise.
These relations are reflected in the parameter plane, but exactly how de-

pends on the parities of p and q.
If λ is real, fλ leaves the real axis invariant. Also, since tan iz = i tanh z,

if pq is odd fλ leaves the imaginary axis invariant and otherwise maps it
to the real axis. This is an example of a more general phenomenon relating
lines in the parameter and dynamic planes: the rays ωjt, t ∈ (0,∞) divide the
parameter plane into 2q sectors. For λ along these rays, fλ exhibits invariance
along the corresponding rays of the dynamic plane. This is made explicit in
the following.

Proposition 7.4. Suppose t and x are real, then
• For j even, ft(ωjx) is real and fωjt leaves the line through ωjx invariant.
• For j odd; if p is even, fωjt leaves the line through ωjx invariant whereas

if p is odd, it maps the line through ωjx to the perpendicular line through
iωjx.
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The proof of this proposition follows from the next two lemmas. Let t > 0.

Lemma 7.5. Suppose λ = ωjt.
(1) If pq is even, then fλ is conjugate to ft(z) = t tanp zq,
(2) whereas if pq is odd, then fλ is conjugate to gt(z) = t tanhp(zq) or to

g−t(z) = −t tanhp(zq).

Proof. (1) if p is even, fλ is conjugate to ft since

fλ(ωjz) = ωjt tanp zq = ωjft(z).

If p is odd and q is even, then for j even

fωjt(ωjz) = ωjt tanp(ωjz)
q = ωjt tanp(zq)

and for j odd,

fωjt(−ωjz) = ωjt tanp(ωjz)
q = −ωjt tanp(zq).

(2) if pq is odd

fλ(ipωjz) = ωjt tanp(ipqzq) = ωjt tanp(±izq) = ±ipωjt tanhp(zq).

�

Denote the qth roots of ±i by ξj = e(2j+1)π/2q, j = 0, . . . 2q−1. For j even,
they are roots of i and for j odd, they are roots of −i.

Lemma 7.6. Suppose pq is even. If λ = ξjt, then fλ is conjugate to gt.

Proof. Set η = (i)pξj . Then ηq = (i)pqξqj
If p is even, then (ηz)q = ±izq and

fξjt(ηz) = ξjt tanp(ηz)q = ξjt tanp(±izq) = (i)pξjt tanhp zq = ηgt(z).

Next suppose p is odd, and q is even. Suppose, furthermore, that (i)pq = 1.
If j is even, so that ξqj = i, then

fξjt(ηz) = ξjt tanp(ηz)q = ξjt tanp(izq) = (i)pξjt tanhp zq = ηgt(z).

If j is odd, so that ξqj = −i, then

fξjt(−ηz) = ξjt tanp(−ηz)q = ξjt tanp(−izq) = (i)pξjt tanhp zq = −ηgt(z).
If (i)pq = −1, a similar calculation shows that fξjt is conjugate to gt.

�

An example: See figures 5 and 6. Consider gt(z) = t tanh3 z2. We know that
ξ0 = eiπ/4 is a square root of i. We will show that the map fξ0t(z) = ξ0t tan3 z2

is conformally conjugate to gt.
The asymptotic values of this map are (±i)3ξ0t. With the notation used

above, η = i3ξ0. Then the map fξ0t is conjugate to gt(z) by h(z) = −ηz since

fξ0t(−ηz) = ξ0t tan3((−ηz)2) = ξ0t(−i)3 tanh2(z2) = −ηt tanh3 z2.
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Remark 7.1. (1) It is easy to check that the iterates of the asymptotic values
of ft or gt are all on the real line. Moreover as in [KK] and [CK1], if
pq is odd, the dynamics of gt = t tanhp zq and g−t = −t tanhp zq are
related: If gt has two n−cycles, then g−t has two n-cycles or one 2n-
cycle depending on whether n is even or odd. Therefore, below, we will
concentrate on the real maps ft(x) = t tanp xq and gt(x) = t tanhp xq,
where x ≥ 0.

(2) If pq is odd and λ = ξjτ , j = 0, . . . 2q − 1, then λ and the asymptotic
values are on perpendicular lines and the iterates of the asymptotic val-
ues alternate between these lines. In fact fλ goes through an interesting
bifurcation process, see [KK] and [CJK1] for a discussion of this when
ft(z) = it tan z.

Remark 7.2. It follows directly from the above discussion that to understand
the properties of the parameter plane, it suffices to study their properties in a
sector of angle width π/q. Below, we will use either the sector Sr, bounded
by the positive real ray through ω0 and the ray through ω1, or the sector Si,
bounded by the rays through ξ0 and ξ1.

7.2. Shell components. Properties of the shell components were studied
for a more general class of families of meromorphic functions in [FK]. To
give a more complete picture of the parameter plane for our families, and
in particular to understand the deployment of the capture components, we
summarize the relevant results in [FK]. Recall that if f is hyperbolic and
has a non-zero attracting cycle of period n, then λ belongs to a hyperbolic
component of the parameter space which we denote by Ωn. We assume here
for readability that there is only one asymptotic value.

Theorem 7.7. [FK]
(1) The multiplier map ρ : Ωn → C∗ is a universal covering map, so in

particular, Ωn is simply connected. It extends continuously to ∂Ωn. The
boundary is piecewise analytic and the points on ∂Ωn are such that mλ =
1 are cusps.

(2) At points of ∂Ωn where mλ = e2πit/s, t/s ∈ Q, there is a standard
bifurcation of the periodic cycle and the point is a common boundary
point of shell components of period s and ns.

(3) There is a unique point λ∗ ∈ ∂Ωn such that fn−1
λ∗ (vλ∗) = ∞; in partic-

ular, the asymptotic value is a prepole of fλ∗ and is part of a “virtual
cycle”. That is, if γ(t) is asymptotic path for vλ∗ in the dynamic plane
of fλ∗ , then

lim
t→1

fnλ∗(γ(t)) =∞

and λ∗ is called a virtual cycle parameter of order n.
(4) If λn → λ∗, λn ∈ Ωn, and λ∗ the virtual cycle parameter, then ρ(λn)→ 0;

thus, λ∗ is called a virtual center of Ωn.
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(5) Every virtual center is a virtual cycle parameter.
(6) The virtual centers of the Ωn are accumulation points of virtual centers

of components Ωn+1.

For the family F we also have the following results proved in [CK1],

Theorem 7.8. [CK1] If λ∗ is a virtual cycle parameter of order n then it is
on the boundary of a shell component Ωn, n > 1 and is its virtual center.

Theorem 7.9. [CK1] The only unbounded hyperbolic components in the λ
plane are the 2q shell components of order 1. Moreover, these are the only
shell components of order 1. They are pairwise tangent to the lines ωjt, j =
0, . . . , 2q − 1, t > 0.

and

Theorem 7.10. Each virtual cycle parameter of order n > 1 is the virtual
center of 2q shell components of order n+ 1.These shell components are pair-
wise tangent to vectors that divide a circle centered at the point into 2q equal
parts.

These theorems show that the shell components are in many ways analogous
to the components of the Mandelbrot set for polynomials. See figure 5.

8. Capture Components

The new results on parameter spaces in this paper concern the capture
components. Although the central and non-central components have some
properties in common; for example, by theorem 7.9, they are all bounded,
there are important differences. We divide the discussion between the central
and non-central components. We assume throughout that λ is in the chosen
sector Sr or Si.

8.1. Connectivity. We prove in this section that the central capture com-
ponent is a punctured disk and the other capture components are simply
connected. We first work with the central capture component and then with
the non-central ones. These results, together with Theorem 7.7 show that all
the hyperbolic components except the central capture component are simply
connected.

8.1.1. The central component. Recall that by definition,

C0 = {λ | vλ, v′λ ∈ B0}.

Theorem 8.1. The set C0 ∪ {0} is connected and simply connected.

Proof. In theorem 4.5, we defined the Böttcher coordinate φλ of fλ in terms
of the Böttcher coordinate φh of the conjugated monic map hµ, where µ =

λ1/(pq−1) for some choice of the root. It is easier to do the computations using
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that coordinate. We assume the roots are taken so that µ is also in the chosen
sector.

By lemma 4.4, the pullbacks by the Böttcher coordinate can be extended
injectively until they meet an asymptotic value: vλ for fλ and wµ = ipµpq for
hµ. We can therefore define maps

ϕ : C0 ∪ {0} → D by λ 7→ φλ(vλ), ϕ(0) = 0

and
ϕµ : C0,µ ∪ {0} → D by µ 7→ φh(wµ), ϕµ(0) = 0

where C0,µ = {µ = λ1/(pq−1), λ ∈ C0.}.
To see that ϕ is holomorphic with respect to λ, it is enough to see that ϕµ

is holomorphic in µ. Note that hµ(wµ) = µpq tanp(wqµ) is holomorphic in µ

and by lemma 4.3, its nth iterate, hnµ(wµ) is also holomorphic. It never takes

the values q
√
kπ because if it did, λ would be in a non-central component.

Thus
hn+1
µ (wµ)

(hnµ(wµ))pq
=
µpq tanp(hnµ(wµ)/µ)q

(hnλ(wµ)pq

is holomorphic and never equal to 0. Therefore

( hn+1
λ (wµ)

(hnλ(wµ))pq
)pq−(n+1)

= 1 + · · · (2)

is holomorphic in µ, and this implies that ϕ(µλ) is holomorphic in µ.
Second, the map ϕ(µ) is a proper map. Consider a point µ0 ∈ ∂C0,µ; the

Böttcher map φµ0
is a conformal map from the immediate basin of hµ0

onto the
unit disk. In particular, for any ε > 0, φ−1

µ0
is a single valued function on the

disk of radius 1− ε. This property is preserved under any small perturbation
of µ0, and so holds for any µ ∈ C0,µ sufficiently close to µ0 which implies that
ϕ is a proper map from C0,µ ∪ {0} onto D.

By equation (2), in a neighborhood of 0,

ϕ(µ) = wµ(1 + · · · ) = ipµpq(1 + · · · ),
thus 0 is removable. That is, the map ϕ can be extended as proper surjective
map from Cµ0 ∪ {0} → D of degree pq branched only at 0.

Since we are working in a sector, the roots are well defined and the map
ϕ is well defined on that sector. We extend it to all of C0 by the symmetry
relations. �

Just as in the dynamic setting, we use the map ϕ to define parameter rays
and gradient curves in C0.

Definition 3. The inverse images in C0 of the rays in D, Rθ = ϕ−1(se2πiθ),
s ∈ (0, 1), and θ fixed in [0, 1), are rays in C0. If θ is rational, we say the ray
Rθ is rational.
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The analogue of the rate of escape to infinity in the outside of the Mandel-
brot set is |ϕ(v)|.

A direct corollary to theorem 6.6 is

Corollary 8.2. If λ ∈ C0, the Julia set Jλ is a Cantor set and the action of
fλ on Jλ is conjugate to the one sided shift on a countable alphabet. Moreover,
if R+ is the positive real axis, the conjugacy is well defined on C0 \ R+.

Proof. We saw in theorem 6.6 that for any fixed λ ∈ C0, B0 is completely
invariant and Jλ is a Cantor set. Since the asymptotic values are attracted to
the origin, fλ is hyperbolic and by standard arguments (see e.g. [McM, KK])
the Julia set moves holomorphically and injectively. Because we removed R+

from C0, λ varies in a simply connected domain so the map Ξ is well defined
in this domain. �

Remark 8.1. A component of the parameter space for which the Julia set is
a Cantor set and the dynamics are conjugate to a shift map is often called the
shift locus; therefore we will call C0 the shift locus for F .

Next we show that there is a disk inside the central component

Lemma 8.3. Let t∗ = (π/4)1/q. The disk D = D(0, t∗) is contained in the
central capture component C0.

Proof. First consider the function h(x) = x/ tanxq for real x. Its derivative

h′(x) =
tanxq − qxq sec2 xq

tan2 xq
< 0

for xq ∈ (0, π/2), since

qxq sec2 xq

tanxq
= q

xq

sinxq
1

cosxq
> 1.

Thus for any x ∈ (0, t∗), h(x) = x/ tanxq > h(t∗) = t∗ and so

t tanxq < x for x ∈ (0, t∗), t ∈ (0, t∗]. (3)

Therefore, for any t ∈ (0, t∗] and x ∈ (0, t∗), by inequality (3), we have

ft(x) = t tanp xq < t tanxq < x.

Next, we use this inequality to prove that

|fλ(z)| = |λ tanp(z)q| < |z| (4)

for all λ ∈ D and all z ∈ D. This implies that for any such λ, the whole disk
D is in B0 and, in particular, that the asymptotic value vλ = ipλ is attracted
to the origin.

Note first that if z = x + iy ∈ D, then | tan z| ≤ | tanx| < 1. Now since
π/4 < t∗ < 1, for z, λ ∈ D, inequality (3) implies

|fλ(z)| = |λ(tan(zq))p| < |λ tan zq| < |λ tan<zq| < |z|.
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which proves inequality (4). �

It follows that the segment (0, t∗) ∈ C0 is the ray R0; its endpoint is clearly
not in C0 and so it is a boundary point of C0. Moreover, it is obvious that the
ray lands there.

The next two theorems show there are many points on the boundary of the
disk D = D(0, t∗) that are also boundary points of C0.

Definition 4. If λ is a parameter such that the asymptotic value of fλ lands
on a repelling fixed point, then λ is called Misiurewicz parameter.

Remark 8.2. Misiurewicz points were initially defined for the family of qua-
dratic polynomials as parameter points where the critical value eventually lands
on a repelling periodic cycle. The critical point could not belong to the cycle
because then the cycle would contain a critical value and be attracting. In the
family F , if pq = 2, the asymptotic values are omitted and so cannot belong to
any periodic cycle; they may, however land on one, and if they do, the cycle
must be repelling. If, on the other hand, pq > 2, the asymptotic values have
infinitely many preimages; if one of these belongs to a periodic cycle, so does
the asymptotic value. If this is the case, and if the cycle is repelling, we again
call the parameter a Misiurewicz point.

Recall that ωj j = 0, . . . , 2q − 1 are the qth roots of ±1 respectively for j

even and odd, and t∗ = (π/4)1/q.

Theorem 8.4. If pq is even, then any point the form λ = t∗ωj is a boundary
point C0 and is a Misiurewicz parameter. There are 2q such points, equally
distributed on the circle and one of them is on the positive real axis.

Proof. By hypothesis, ft∗ is even so ft∗(vt∗) = ft∗(−t∗) = ft∗(t∗) = t∗. Also,

f ′t∗(t∗) = pq tq∗ tanp−1(tq∗) sec2(tq∗) = pqπ/2 > 1

and t∗ is a repelling fixed point. In other words, the image of the asymptotic
value is a fixed point, and λ = t∗ is a Misiurewicz parameter.

Since pq is even, lemma 7.5 applies, and ft∗wj is conjugate to ft∗ ; these are
also Misiurewicz parameters. �

Theorem 4.8 implies

Proposition 8.5. If λ∗ = t∗ωj is a Misiurewicz parameter on the boundary
of C0, then Bλ∗ , the basin of zero for fλ∗ , contains infinitely many unbounded
simply connected components.

Proof. The proof will follow from theorem 4.8 if we show that the asymptotic
value vλ∗ is an accessible boundary point of the immediate basin of zero for
fλ∗ .

Without loss of generality, assume j = 0. Since t∗ is real, the immediate
basin B0 for ft∗ contains the rays φ−1

t∗ (ipr), r ∈ [0, 1); the limit as r → 1
exists so it is accessible. �
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There is another set of 2q equally distributed rays in C0 that extend outside
D and end in parabolic cusps.

More precisely,
Theorem 8.6. Let ωj, ξj, j = 0, . . . 2q − 1 be the qth roots of ±1 and ±i
respectively.
(1) If pq is even, the endpoints of the lines tξj, in C0 are points for which

the functions have a parabolic fixed point and hence a cusp.
(2) If pq is odd, the endpoints of the lines tωj in C0 are points for which the

functions have a parabolic period two cycle. More precisely, if pq ≡ 1
mod 4 and j is even, the function at the endpoint has two parabolic fixed
points, whereas if j is odd, the it has a parabolic cycle with period two. If
pq ≡ 3 mod 4, the parity of j is reversed.

The proof follows by applying the following lemma about a monotonic
function of a real variable with an asymptotic value to the family ft(z) =
t tanhp zq.

Lemma 8.7. Let ft(x) = f(t, x) be a family of analytic real maps satisfying
the following:

• for each t > 0, f ′t(x) > 0 for all x > 0, and for each x > 0, df(t,x)
dt > 0

for all t > 0.
• for each t, there is a bt > 0 such that ft : [0,∞)→ [0, bt) and bt → 0 as
t→ 0.

• lim
t→∞

ft(x) =∞
• lim
x→∞

ft(x) = bt and lim
x→0

ft(x) = 0

Then there exists a t0 such that
(1) For every fixed t in (0, t0), and for all x > 0, limn→∞ fnt (x)→ 0.
(2) ft0 has a positive parabolic fixed point.
(3) If t > t0, ft has an attracting fixed point other than 0.

Proof. By hypothesis, for any fixed x, f(t, x) and its partial derivative with
respect to t are monotonic positive increasing functions of t and f(t, x)→∞
as t → ∞; thus there exists a t1 = t1(x) such that ft(x) > x for all t ≥ t1.
Moreover, since for any fixed t, limx→∞ ft(x) = bt > 0, for large x, say
x > bt, bt > ft(x) and so x > ft(x). Therefore for any t > t1, there exists an
x = x(t) > 0, such that ft(x) = x and x(t) is a continuous function of t.

Define the set

S = {t | there exists an x = x(t) ∈ (0,∞) such that ft(x) = x}.

By the above, the set S is non-empty.
Let t0 be the infimum over all t in the set S. It is easy to see that when t

is very small, ft(x) < x for all x > 0. Thus for such t, ft has no positive fixed
points so that t0 > 0. Moreover, for any t ∈ (0, t0), fnt (x)→ 0 as n→∞.



DYNAMICS OF THE MEROMORPHIC FAMILIES fλ = λ tanp zq 503

Let x0 > 0 be a solution of ft0(x0) = x0. We claim that x0 is a parabolic
fixed point with multiplier +1.

Suppose not. Since for each t > 0, f ′t(x) > 0 for all x > 0, f ′t0(x0) > 0. If
f ′t0(x0) > 1, since f ′t(x) depends continuously on t, f ′t(x) > 1 in some interval
I of t0, and thus ft(x) = x has a solution for all t in this interval contradicting
the minimality of t0. Similarly, if f ′t0(x0) < 1, then f ′t(x) < 1 in some interval
I of t0 and ft(x) = x has no solution in I, again contradicting the minimality
of t0. Therefore x0 is a parabolic fixed point.

For any t > t0, ft(x0) > x0 and limx→∞ ft(x) → bt, so limx→∞ f ′t(x) = 0
and there is another solution of ft(x) = x with derivative less than 1. That
is, there exists an attracting fixed point x ∈ (x0,∞).

�

As a corollary we have

Corollary 8.8. There exists a t0 > t∗, depending on p, q such that for the
family ft(z) = t tanhp zq

(1) if t ∈ (0, t0), fnt (x)→ 0 for all x ≥ 0.
(2) if t = t0, ft(x) has a parabolic fixed point.
(3) if t > t0, ft(x) has another attracting fixed point.

Proof. Note first that if pq is even, ft(x) = t tanhp xq satisfies ft(−x) = ft(x)
and f−t(x) = −ft(x) whereas if pq is odd, ft(−x) = f−t(x). Thus if we confine
our discussion to x, t > 0, the above lemma applies. Therefore we need only
show that that t0 > t∗ = (π/4)1/q for this family. In fact, we will show
t0 ≥ 1 > t∗.

This will follow directly by showing

t∗ tanhp xq < tanhp xq < x, for all x > 0. (∗∗)

Note that t∗ < 1 and tanhp xq < 1 so that tanhp xq < x for all x ≥ 1. Thus
we need only prove (∗∗) for x < 1. In this case xq ≤ x and tanhp xq ≤ tanhxq

so that
t∗ tanhp xq

x
<

tanhp xq

x
<

tanhp xq

xq
<

tanhxq

xq
.

Therefore, we need only show that tanhx < x for x > 0. This follows
because if g(x) = x − tanhx, then g(0) = 0 and g′(x) = 1 − sech2 x > 0 so
that g(x) > 0 for all x > 0. �

Proof of Theorem 8.6. Lemmas 7.5, 7.6 and 8.7, together imply:
(1) if pq is even, the line segment tξj , t ∈ [0, t0) ∈ C0, and therefore ft0ωj is

conjugate to gt0 and has a parabolic fixed point.
(2) if pq is odd, the line segment tωj , t ∈ [0, t0) ∈ C0, and therefore ft0ωj is

either conjugate to gt0 , which has two parabolic fixed points, or to g−t0 ,
which has a parabolic cycle of period 2.

�
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8.2. Rational rays in C0. In the last section we considered the parameter
rays ωjt and ξjt in C0. Their images under the map ϕ defined in theorem 8.1
using the Böttcher maps in the dynamic planes are rays in the disk D. The
theorems above show that if λ belongs to one of these rays in C0, the as-
ymptotic value, v lies on a ray in the dynamic plane that is invariant under
f . Moreover, those rays are radii of a conformal disk in the parameter plane
whose endpoints are either Misiurewicz points or points for which the function
has a parabolic cycle. This is true more generally.

Theorem 8.9. The rational rays Rθ ∈ C0 land at parameters for which the
asymptotic values either belong to, or land on repelling periodic cycles, or are
attracted to parabolic cycles.

Proof. We saw above that the first case of the theorem is true for rays with
t = ωj and the second for rays with t = ξj . It will suffice therefore to consider
rational rays θ in the sector between t0 = ω0 = 0 and t1 = ω1.

Note that any accumulation point λ∞ of Rθ in ∂C0 is finite by theorem 7.9.
The functions fλ, their asymptotic values, prepoles and periodic points depend
holomorphically on λ; the dependence is not, however, necessarily injective
in a neighborhood of λ∞. In addition, ϕ is holomorphic in λ so Rθ is real
analytic in τ .

Assume now that θ is a fixed rational. In the dynamic planes, depending
on p, q and θ, but not on which point λ on the ray Rθ, the asymptotic value
vλ, and its forward orbit, may lie on rays whose arguments differ by π/2. For
a given point on Rθ, we single out the dynamic ray that contains vλ and by
abuse of our notation above, denote it by

Rθ(s) = Rθ,λ(s) = φ−1
λ(s)(se

iθ), s ∈ (0, 1).

Since θ is rational, there are minimal integers k, l such that fk+l
λ(s)(Rθ) ⊆

f lλ(s)(Rθ) and a k-cycle of rays, {Rl+jθ = f j+lλ(s)(Rθ)}, j = 0, . . . , k − 1, that is

periodic.
Unless we need to emphasize λ(s), for readability we will suppress it. Note

that for some value of s, f l(v) = Rlθ(s). If l = 0, Rθ(s) = R0
θ(s) is periodic

and the ray Rk−1
θ is either an asymptotic path for all fλ(s) or it is not an

asymptotic path for any fλ(s). Since l is the minimal integer such that f l(vλ)
is on a periodic ray, if l > 0, none of the rays in the cycle is an asymptotic
path.

Below we assume p is even so that there is only one asymptotic value. The
argument for p odd is similar and left to the reader.
• First suppose that l = 0, and for all s, the rays Rk−1

θ are asymptotic

paths. Using the maps φλ(s), we can conjugate the family of maps fkλ(s)

to a family of real maps gσ : [0,∞) → [0, bσ], s = s(σ), satisfying the
hypotheses of lemma 8.7. Then there exists a σ0 such that if σ ∈ (0, σ0)
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the asymptotic value of gσ is attracted to 0 and gσ0
has a parabolic fixed

point. Set λ∞ = s(σ0); it follows that fλ∞ has a parabolic cycle and is
in ∂C0. It is an accumulation point of the ray Rθ, and because the fλ
with parabolic cycles of order k form a discrete set, it is unique and the
ray lands there.

• Now suppose that either l = 0 and for all s, the rays Rk−1
θ are not

asymptotic paths or that l > 0. It follows that for all s, none of the
dynamic rays in the cycle, Rl+kθ is an asymptotic path; therefore each of
these periodic rays, including the one containing the asymptotic value if
l = 0, ends at a boundary point of the region of injectivity, Oλ(s), of the
Böttcher map φλ(s). Because the rays are periodic, their endpoints bs,j ,
j = 0, . . . , k − 1, form a periodic cycle and the cycle and its multiplier
are holomorphic functions of λ(s). Since since λ(s) is in C0, the cycle
is repelling. The rays contain all of the forward orbit of the asymptotic
value.
Note that although, if l = 0, and one of the periodic rays contains an
asymptotic value, it is not behaving locally like an asymptotic value
because its preimage is not an asymptotic path.
As s → 1, the cycle persists and in the limit it is either parabolic or
repelling. Thus there is a unique limit point λ∞ = lims→1 λ(s).
If the cycle for s = 1 is parabolic, the asymptotic value v∞ = vλ∞ of fλ∞
is in the immediate basin of the cycle and so l = 0 and it is attracted
to the parabolic point of the limit cycle. That is, the boundary of the
component of the parabolic basin containing v∞ shares the parabolic
point with the boundary of B0,∞.
Therefore if l > 0, the limit cycle is repelling. Now suppose the cycle for
s = 1 is repelling. Then v∞ lies in the Julia set because it is no longer
attracted to zero and there are no other parabolic or attracting cycles
to attract it. The subsequence of f−n(v∞) that lies on the limit of the
periodic cycle of rays tends to the limit repelling cycle. Therefore, v∞
eventually lands on this cycle and the point is a Misiurewicz point.
Summarizing, we have shown that if l > 0, λ∞ is a Misiurewicz point
and if l = 0, it is either a Misiurewicz point or a parabolic point.

�

We remark that the above theorem implies that the endpoint of a rational
ray in C0, cannot be a virtual cycle parameter.

8.3. The components of Cn. Recall that the non-central components are
defined by

Cn = {λ | n ≥ 0 is the minimal k such that fkλ (vλ) ∈ B0},

and the set of centers of Cn by

Zn = {λn n ≥ 1 is the minimal integer such that fnλ (vλ) = 0}.



506 TAO CHEN and LINDA KEEN

The map Ξ of theorem 6.6 that assigned a unique symbol of length n to each
prepole of order n can be used to assign a similar symbol to the prezeroes and
thus to the centers of the non-central components yielding an enumeration
scheme for these components. It is also clear from the definitions that

Proposition 8.10. If λ ∈ Zn, then λ is in a component of Cn.

Using standard techniques of quasiconformal surgery, see e.g. [FG], Prop.
4.5, the non-central components are simply connected and can be enumerated
by the centers. Precisely,

Theorem 8.11. Each component of Cn is open, simply connected and con-
tains a unique center.

Sketch. For any component Cin ∈ Cn, define the map ψ : Cin → D by

ψ(λ) = φλ(fnλ (v))

where φλ : B0,λ → D is the Böttcher map for fλ defined on its immediate
basin of 0 in theorem 4.5. Since the only singular value in B0,λ is the origin,
φλ is defined and injective on the whole basin. Note that if λ∗ = ψ−1(0), λ∗

is a center. Moreover, as in the proof of theorem 8.1, the map ψ is a proper
map.

We next show that the map ψ is a local homeomorphism. To this end
choose λ 6= λ∗ ∈ Cin, and set ξ = ψ(λ) 6= 0. For any ξ ∈ D, standard surgery
techniques yield a quasiconformal map τξ such that Fλ(ξ) = τξ◦fλ∗τ−1

ξ is holo-

morphic. Normalizing so that τξ fixes 0 and the pole (π/2)1/q, it follows from
the generalized form of Nevanlinna’s theorem, [CK1], that Fλ(ξ) = fλ(ξ) ∈ F .
Moreover, by the conjugacy, fnλ(ξ)(vλ(ξ)) is in the immediate basin of zero,

B0,λ(ξ), and has Böttcher coordinate ξ. Thus φ−1
λ∗ ◦ ψ : Cin → B0,λ∗ is a

homeomorphism, which proves the theorem. �

We can use the map ψ to define rays for each Cn ∈ Cn as we did for C0:
set Rnt = ψ−1(se2πit), s ∈ [0, 1). As for C0, if t is rational, the ray is either
periodic or preperiodic. The proof of theorem 8.9 applies here to prove

Theorem 8.12. The rational rays Rθ ∈ Cn ⊂ Cn land at parameters for
which the asymptotic values land on repelling periodic cycles and hence are
Misiurewicz points.

Proof. The proof that the rational rays land is very similar to the proof of
theorem 8.9 and we leave it to the reader to fill in the details. To prove
that the limit cycles are repelling and not parabolic, recall that we proved
that there could only be a parabolic cycle in the limit if the ray containing
the asymptotic value belongs to a periodic, and not a preperiodic ray for
s < 1. Since λ(s) ∈ Cn, the asymptotic value vλ(s) is not in B0,λ(s), but in

Bn,λ(s) = f−nλ(s)(B0,λ(s)) for some branch of the inverse. This implies that the

dynamic rays containing vλ(s) cannot be periodic. Thus in the argument of
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theorem 8.9, we are in the l > 0 case; the limit cycle is preperiodic and not
periodic. It therefore cannot be parabolic proving the theorem.

�

An immediate corollary is

Corollary 8.13. The landing points of the rational rays of the non-central
capture components are not accessible boundary points of a shell component.

Proof. In [FK] it is proved that at all boundary points but one of a shell
component Ω, f has a neutral cycle; the exception is the virtual center where
it has a virtual cycle. Moreover, the boundary is piecewise analytic; it is pa-
rameterized by the real line and has parabolic cycles at the rational numbers;
it has cusps at the integers. If λt, t rational, were the landing point of a curve
in Ω, fλt would have a parabolic cycle; if it were also a landing point of a
rational ray rt′ in a component of Cn, fλt would be a Misiurewicz point. Thus,
this cannot happen. �

9. Bifurcation Locus

Define the bifurcation locus as the complement of the hyperbolic compo-
nents:

B = C∗ \ (S ∪ C)

Theorem 9.1. Both the centers of the capture components and the Misi-
urewicz points cluster on boundary of the capture components.

Proof. If the set, Z, of centers of capture components were not dense in
the boundary of the capture components, ∂C, there would exist an open set U
which meets ∂C but contains no solution of fnλ (v) = 0 for any n ≥ 1. Consider
the family of maps hn(λ) = fnλ (v) defined on U , for all n ≥ 1. Then hn−1(λ)

omits the values kπ, for every k ∈ Z because if fn−1
λ (v) = kπ, then fnλ (v) = 0

and λ 6∈ U .
Therefore hn(λ) is a normal family for it misses more than 3 values. Since,

however, U intersects ∂C, it contains an open set V in a capture component
so that a limit function of the hn is the constant function 0 on V and hence
U . It also contains points λ that are not in any capture component so that
hn(λ) 6→ 0; thus the family is not normal. This contradiction indicates that
the centers cluster on the boundary of the capture components.

If the set of Misiurewicz points is not dense in ∂C, there exists an open
set U which meets the boundary and contains no Misiurewicz points. Again
consider the family hn(λ) = fnλ (v) for all n ≥ 1. Now suppose that for some

n ≥ 1 and some k, hn(λ) = (kπ + π/4)1/q. Then

hn+1(λ) = fλ(hn(λ)) = fλ((kπ + π/4)1/q) = λ;

that is, λ is a periodic point in the forward orbit of v, so it is a Misiurewicz
point in U . Therefore the family hn omits the values (kπ + π/4)1/q for all
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k ∈ Z and hn(λ) is a normal family. As above, we have a contradiction
since U intersects ∂C, so the family cannot be normal. This implies that the
Misiurewicz points are dense in ∂C as claimed. �

Theorem 9.2. The centers and virtual centers accumulate on B.

Proof. By theorem 7.7, the virtual centers are boundary points of shell com-
ponents and hence belong to B. Moreover, each center is an accumlation point
of centers of higher order.

In [CK1] we proved that the capture components and shell components of
period greater than one for F are contained between curves that are asymp-
totic to the Julia directions. We also proved that there are curves joining the
virtual centers at the points ((k + 1/2)π)1/q on the Julia rays to the period
one components that separate the non-central capture components centered
at the zeros (kπ)1/q on those rays. All the other hyperbolic components are
contained in these rectangular-like regions. The argument and computation
that shows the number of such rectangular-like regions whose diameter is big-
ger than any given ε is finite is similar to the argument and computation in
lemma 6.3. Since there are infinitely many such components, their diameters
go to zero. In particular, if cn, n → ∞, is a sequence of centers of distinct
capture components in one of these rectangular-like regions, any accumula-
tion point cn cannot be interior to a hyperbolic component and so must be in
B. �

Note that it follows immediately that the Misiurewicz points on the boundary
of C0 are limits of sequences of virtual cycle parameters and centers whose
orders tend to infinity. This is illustrated in figure 6.

In fact, the pictures of the parameter space show that capture components
and shell components exhibit an interesting combinatorial structure. More-
over, they indicate that the only parabolic parameters on ∂C0 are cusps. We
plan to explore this further in future work.
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