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Abstract. We analyse extensions Σ of groupoids G by bundles A of abelian
groups. We describe a pushout construction for such extensions, and use it

to describe the extension group of a given groupoid G by a given bundle A.
There is a natural action of Σ on the dual of A, yielding a corresponding

transformation groupoid. The pushout of this transformation groupoid by the

natural map from the fibre product of A with its dual to the Cartesian product
of the dual with the circle is a twist over the transformation groupoid resulting

from the action of G on the dual of A. We prove that the full C∗-algebra of

this twist is isomorphic to the full C∗-algebra of Σ, and that this isomorphism
descends to an isomorphism of reduced algebras. We give a number of examples

and applications.

We respectfully dedicate this paper to the memory of Vaughan Jones: Extraor-
dinary mathematician, proud New Zealander, and gracious colleague.

Introduction

There is a significant body of literature regarding the C∗-algebras of extensions of
groupoids by group bundles. The main goal of this paper is to introduce a pushout
construction for extensions of groupoids by abelian group bundles and explore its
applications.

Specifically, we consider a locally compact Hausdorff groupoid G together with
an abelian group bundle pA : A → G(0) where pA a continuous, open map. Then
we consider the following notion of an extension that fixes unit spaces, represented
by the diagram

A Σ G :

G(0)

ι p

(†)
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here Σ is a locally compact Hausdorff groupoid, p : Σ → G is a continuous open
surjective groupoid homomorphism that restricts to a homeomorphism Σ0 ∼= G(0),
and ι : A → Σ is a groupooid homomorphism that is a homeomorphism onto
ker(p) = p−1(G(0)) in the subspace topology, such that p◦ ι = pA, rΣ ◦ ι = rA = pA,
sΣ ◦ ι = sA = pA, rG ◦ p = rΣ and sG ◦ p = sΣ.

A fundamental class of such examples are T-groupoids (also called twists) in-
troduced by the second author in [Kum83]. Then A is the trivial bundle G(0) ×T
such that ι(r(σ), z)σ = σι(s(σ), z) for all σ ∈ Σ and z ∈ T. These groupoids and
their restricted groupoid C∗-algebras, C∗(G; Σ), have enjoyed considerable scrutiny
[MW92, MW95, Kum83, Kum86]. As usual, in this context we often write σ̇ in
place of p(σ).

More recently, we considered more general extensions in [IKSW19] and [IKR+21]
as in (†) where it is assumed that A is endowed with an action of G and that the
extension is compatible in the sense that σι(a)σ−1 = ι(σ̇ · a) for all a ∈ A and
σ ∈ Σ such that pA(a) = s(σ).

As a consequence of the main result in [IKR+21], we showed that if Σ has a
Haar system, then C∗(Σ) can be realized as the C∗-algebra of a twist. Specifically,

the action of G on A induces a natural action of G on Â (regarded as a space). We

constructed a T-groupoid Σ̃ of the form

Â ×T Σ̃ Âo G.

Â

i j

(‡)

We proved ([IKR+21, Theorem 3.4]) that C∗(Σ) is isomorphic to the restricted C∗-

algebra C∗(Âo G; Σ̃) of this T-groupoid. (In [IKR+21] the T-groupoid is denoted

Σ̂, but here we use Σ̃ to avoid possible confusion in our examples.) The T-groupoid

Σ̃ is at the heart of the Mackey obstruction which appears in the classical “Mackey
machine” of [Mac58].

The chief motivation for this article is the observation that the T-groupoid Σ̃
above—which was based on the construction of [MRW96, Proposition 4.3]—is de-
rived from a natural and functorial “pushout” construction based on the second
author’s work in [Kum88] for étale groupoids (there called “sheaf groupoids”).
Specifically, suppose we are given an extension as in (†), an abelian group bundle
B admitting a G-action, and an equivariant groupoid homomorphism f : A → B.
Then there is a similar sort of extension

B f∗Σ G

G(0)

ι p

inducing the given G-action on B. In Theorem 1.5, we show that the construction
producing f∗Σ has good functorial properties that characterize the extension up to
a suitable notion of isomorphism. Using these properties, we show in Theorem 2.5
that the collection TG(A) of isomorphism classes of extensions of A by G forms an
abelian group (see also [Tu06, §5.3]).
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We close by illustrating how the pushout construction clarifies and interacts with
our work in [IKSW19] and [IKR+21]. In Theorem 3.2 we prove that the exten-
sion (‡) employed in [IKR+21] arises from our pushout construction. Specifically,

the natural pairing (χ, a) 7→ χ(a) from Â ∗ A to T yields a groupoid homomor-

phism f : Â ∗ A → Â × T given by f(χ, a) = (χ, χ(a)) (see Section 3.1). There

is a natural action of Σ on Â (compatible with that of G as above) and we prove

that Σ̃ ∼= f∗(Â o Σ). This allows us to realise the C∗-algebra of an extension of a
groupoid G by an abelian group bundle A as the C∗-algebra of a T-groupoid over
the resulting transformation groupoid Âo G.

Several consequences flow from this observation. First suppose that A is an
abelian group and that A = G(0) ×A, carrying the action of G that is trivial in the
second coordinate, so that Σ is a generalised twist. Each χ ∈ Â defines a homomor-
phism fχ : A → T× G(0), so we can form the resulting pushout fχ∗ (Σ). We prove
in Proposition 3.6 that C∗(Σ) is the section algebra of an upper-semicontinuous

C∗-bundle over Â with fibres C∗(G, fχ∗ (Σ)). When A is compact, this yields a
direct sum decomposition which remains valid for the corresponding reduced C∗-
algebras (see Proposition 3.7). In Corollary 3.10 we extend [IKR+21, Theorem 3.4]
to the case that Ω is a T-groupoid extension of Σ such that its restriction to ι(A)
is abelian. When G is étale, this enables us to generalize [IKR+21, Theorem 4.6]
to this case (see Corollary 3.11) thereby providing criteria that guarantee that the
natural abelian subalgebra of C∗r (Σ; Ω) is Cartan (see also [DGN+20, Theorem 5.8]
and [DGN20, Theorem 4.6]).

In Subsection 3.2, we consider the case where the extension Σ is determined
by an A-valued 2-cocycle defined on G and show that the pushout construction is
compatible with the natural change of coefficients map on cocycles. We describe the

explicit construction of Σ̃ in terms of 2-cocycles at the beginning of Subsection 3.3,
and then consider various examples of this construction.

1. Pushouts of Groupoid Extensions

We fix a locally compact Hausdorff groupoid G. In our applications, G will have a
Haar system, but this is not required for the pushout construction itself. However,
we do assume that G has open range and source maps. We call a locally compact
abelian group bundle pA : A → G(0) a G-bundle if pA is open and G acts on the left
of A by automorphisms. For compatibility with [IKSW19]—and other examples we
have in mind—we will write the group operations in the fibres of such A additively.
An extension Σ of A by G is determined by a diagram (†) as in the introduction.
Recall that Σ is a locally compact Hausdorff groupoid, p is continuous and open
surjection inducing a homeomorphism from Σ(0) onto G(0), and ι is a continuous
open injective homomorphism onto ker p = {σ ∈ Σ : p(σ) ∈ G(0) }. We call such an
extension compatible if the action of G on A induced by conjugation is the given
G-action on A; that is, σι(a)σ−1 = ι(σ̇ · a).

Definition 1.1. If Σ1 and Σ2 are both compatible extensions by a locally compact
abelian group G-bundle A, then we say that they are properly isomorphic if there
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is a groupoid isomorphism f : Σ1 → Σ2 such that the diagram

Σ1

A G

Σ2

f

p1ι1

ι2 p2

(1.1)

commutes. We let TG(A) be the collection of proper isomorphism classes of com-
patible extensions. We denote the equivalence class of a compatible extension Σ by
[Σ].

Remark 1.2. The second author considered extensions of this sort for étale groupoids
in [Kum88, §2]. In [Tu06, §5.3], Tu denotes this set by ext(G,A) and states
that it forms an abelian group (see Theorem 2.5 below). Since the openness of
pA : A → G(0) implies that A has a Haar system (see [IKR+21, Lemma 2.1]), it
follows that if G has a Haar system, then we can then equip Σ with a Haar system
whenever [Σ] ∈ TG(A) (see [IKR+21, Lemma 2.6]).

Of course, given G and a G-bundle A, we would like to know that TG(A) is not
empty. To provide a basic example, we follow [Kum88, Definition 2.1].

Example 1.3 (The Semidirect Product). We can build a fundamental compatible
extension A / G from the fibred product { (a, γ) ∈ A × G : pA(a) = r(γ) }. We let
(A / G)(2) =

{ (
(a1, γ1), (a2, γ2)

)
: s(γ1) = r(γ2)

}
, and then define

(a1, γ1)(a2, γ2) = (a1 + γ1 · a2, γ1γ2) and (a, γ)−1 = (−(γ−1 · a), γ−1).

Then we can identify the unit space of A / G with G(0) so that r(a, γ) = r(γ)
and s(a, γ) = s(γ). We can then exhibit A / G as an extension by letting ι(a) =
(a, pA(a)), and letting p(a, γ) = γ. Since

(a′, γ)(a, pA(a))(−γ−1 · a′, γ−1) = (γ · a, pA(γ · a)),

A / G is a compatible extension as required.

Example 1.4. For i = 1, 2 let Ai be a locally compact abelian group G-bundle.
Note that A1 ∗ A2 = { (a, a′) : pA1(a) = pA2(a′) } is also a locally compact abelian
group G-bundle. Let Σi be a compatible groupoid extension of G by Ai. Then as
in [Kum88, §2], we may form the fibered product

Σ1 ∗G Σ2 := {(σ1, σ2) ∈ Σ1 × Σ2 | p1(σ1) = p2(σ2)}.

It is straightforward to check that Σ1 ∗G Σ2 is a compatible groupoid extension of
G by A1 ∗ A2.

Assume now that B is another abelian group G-bundle, and that f : A → B is
a G-equivariant map. Following [Kum88, Proposition 2.6], we prove that we can
“pushout” Σ in a unique way to an extension of G by B.

Theorem 1.5 (Pushout Construction). Let A and B be locally compact abelian
group G-bundles. Let f : A → B be a continuous G-equivariant map. Assume that
Σ is a compatible extension of G by A. Then there is a compatible extension f∗Σ
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of G by B and a homomorphism f∗ : Σ → f∗Σ such that the following diagram
commutes

A Σ

G.

B f∗Σ

ι

f f∗

p

ι∗

p∗

(1.2)

Moreover, f∗ and f∗Σ are unique up to proper isomorphism in the sense that if Σ′

is a compatible extension such that the diagram

A Σ

G

B Σ′

ι

f f ′

p

ι′
p′

(1.3)

commutes, then there is a proper isomorphism g : f∗Σ→ Σ′ such that g ◦ f∗ = f ′.

Proof. Consider the fibred-product groupoid

D := (B / G) ∗G Σ = { ((b, γ), σ) ∈ (B / G)× Σ : σ̇ = γ }
of Example 1.4. Define θ : A → D via θ(a) =

(
(−f(a), pA(a)), ι(a)

)
. Since ι is a

homeomorphism onto its closed range, θ(A) is a closed wide subgroupoid of D.
Let d = ((b, γ), σ) ∈ D. We claim that dθ(A) = θ(A)d. To see this, note that

dθ(a) =
(
(b, γ), σ)((−f(a), pA(a)), ι(a)

)
=
(
(b− γ · f(a), γ), σι(a)

)
=
(
(−f(γ · a) + pA(γ · a) · b, γ), ι(σ̇ · a)σ

)
.

Since σ̇ = γ, we deduce that

dθ(a) =
(
(−f(γ · a), pA(γ · a)), ι(γ · a)

)
(b, γ, σ)

= θ(γ · a)d.

Let f∗Σ := D/θ(A). As usual, we denote the class of ((b, σ), γ) in f∗Σ by [(b, σ), γ].
Then [(b, γ), ι(a)σ] = [(b+f(a), γ), σ]. Since j(A) has a Haar system by Remark 1.2,
f∗Σ is a locally compact Hausdorff groupoid by [IKR+21, Lemma 2.2]. The oper-
ations are given by

[(b1, γ1), σ1][(b2, γ2), σ2] = [(b1 + γ1b2, γ1γ2), σ1σ2] and

[(b, γ), σ]−1 = [(−γ−1 · b, γ−1), σ−1].

We can identify the unit space with G(0) and then

r([(b, γ), σ]) = r(γ) and s([(b, γ), σ]) = s(γ).

To see that f∗Σ is a compatible extension by B, let

ι∗(b) = [(b, pB(b)), pB(b)] and p∗([(b, γ), σ]) = γ.

It is not hard to verify that this satisfies the algebraic requirements for an extension.
The most difficult one might be the inclusion p−1

∗ (G(0)) ⊆ ι∗(B) for which we provide
an outline of the proof: take [(b, γ), σ] ∈ f∗Σ such that p∗([(b, γ), σ]) = u ∈ G(0).
Then γ = u, giving σ̇ = u. Since Σ is an extension, there exists a ∈ A(u) such
that ι(a) = σ. It follows that [((b, u), ι(a))] = [((b+ f(a), u), u)] = ι∗(b+ f(a)). It
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is easy to check that b+ f(a) is independent of the choice of the representative of
[(b, γ), σ].

Since ι∗ and p∗ are clearly continuous and since ι∗ is easily seen to be a home-
omorphism onto its range, we just need to see that p∗ is open. For this, we apply
Fell’s Criterion (see [IKR+21, Lemma 3.1]). Suppose that γn → γ = p∗

(
[(b, σ), γ]

)
.

Since p : Σ → G is open, we can pass to a subnet, relabel, and assume that there
are σn → σ in Σ such that σ̇n = γn. Since pB is open, we can pass to sub-
net, relabel, and assume there are bn → b in B such that pB(bn) = r(γn). Then
[(bn, γn), σn]→ [(b, γ), σ] as required.

The map f∗ is the composition of the embedding of Σ into D and the quotient
map D 7→ D/i(A): f∗(σ) = [

(
(0r(σ), p(σ)), σ

)
]. Since f is G-equivariant, pB(f(a)) =

pA(a) and

f∗(ι(a)) = [(0, pA(a)), pA(a)] = [(f(a), pB(f(a))), pB(f(a))] = ι∗(ι(a)),

and (1.2) commutes as required.
Now let Σ′ be an extension as in (1.3). Define g̃ : D → Σ′ by g̃((b, γ), σ) =

ι′(b)f ′(σ). Since

ι′(b1)f ′(σ1)ι′(b2)f ′(σ2) = ι′(b1)ι′(f ′(σ1) · b2)f ′(σ1)f ′(σ2)

and since p′(f ′(σ1)) = σ̇1, it follows that g̃ is a groupoid homomorphism. On the
other hand,

g̃(θ(a)) = g̃((−f(a), pA(a)), ι(a)) = ι′(−f(a))f ′(ι(a)) = ι′(−f(a))ι′(f(a))

= ι′(pA(a)).

Hence g̃ factors through a homomorphism g : f∗Σ → Σ′. Clearly, g(ι∗(b)) = ι′(b)
and p′ ◦ g = p∗, so g makes the diagram analogous to (1.1) commute. We have
g ◦ f∗ = f ′ by construction.

To see that g is a proper isomorphism, we still need to see that g is an isomor-
phism with a continuous inverse.

For this, fix α ∈ Σ′. There exists σ ∈ Σ such that p(σ) = p′(α). Using (1.3),
there exists b ∈ B such that α = ι′(b)f ′(σ). So g̃, and hence also g, is onto.

Now suppose that ι′(b)f ′(σ) is a unit. Then f ′(σ) = ι′(−b). Hence p′(f ′(σ)) is a
unit, and σ = ι(a) for some a ∈ A. But then ι′(−b) = f ′(σ) = f ′(ι(a)) = ι′(f(a)).
Hence, b = −f(a). That is,

((b, p(σ)), σ) = ((−f(a), pA(a)), ι(a)) ∈ θ(A).

Thus g is injective.
To see that g is an isomorphism of topological groupoids, it suffices to see that

g is open. We use Fell’s criterion. So suppose that g(αi) → g(α) where αi =
[(bi, p(σi)), σi] and α = [(b, p(σ)), σ] ∈ f∗Σ. Since p′ ◦g = p∗, we have p(σi)→ p(σ).
Since p is open, we can pass to a subnet, relabel, and assume there exist ai ∈ A
such that ι(ai)σi → σ. But

αi = [(−f(ai) + bi), p(σi), ι(ai)σi],

and then
ι′(−f(ai) + bi)f

′(ι(ai)σi)→ ι′(b)f ′(σ).

It follows that
ι′(−f(ai) + bi)→ ι′(b).
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Since ι′ is a homeomorphism onto its range, αi → α as required. �

Corollary 1.6. Let A, B and C be locally compact abelian group G-bundles. Let
f : A → B and g : B → C be continuous G-equivariant maps. Assume that Σ is a
compatible extension of G by A. Then (g ◦ f)∗Σ is properly isomorphic to g∗(f∗Σ).

Proof. This follows from the uniqueness of (g ◦ f)∗Σ up to proper isomorphism
guaranteed by Theorem 1.5. �

.

2. The Extension Group TG(A)

As in [Kum88, §2], we can use our pushout construction to introduce a binary
operation on TG(A). Suppose that [Σ], [Σ′] ∈ TG(A). Define ∇A : A ∗ A → A by
∇A(a, a′) = a+ a′. Proper isomorphisms f : Σ→ Γ and f ′ : Σ′ → Γ′ of compatible
extensions of A by G determine a proper isomorphism f ∗ f ′ : Σ ∗ Σ′ → Γ ∗ Γ′ of
extensions by A∗A. The uniqueness assertion of Theorem 1.5 then yields a proper
isomorphism ∇A∗ (Σ ∗G Σ′)→ ∇A∗ (Γ ∗G Γ′). Hence the formula

[Σ] + [Σ′] := [∇A∗ (Σ ∗G Σ′)] (2.1)

is well defined.

Example 2.1. Let [Σ] ∈ TG(A). Let A / G be the semidirect product defined in
Example 1.3. Define g : (A / G) ∗G Σ → Σ by g((a, σ̇), σ) = ι(a)σ. We obtain a
commutative diagram

A ∗ A (A / G) ∗G Σ

G.

A Σ

ι∗ι

∇A
p̃

g

ι

p

The uniqueness assertion in Theorem 1.5 implies that ∇A∗ ((A /G) ∗G Σ) is properly
isomorphic to Σ. In other words, [A / G] + [Σ] = [Σ].

Example 2.2. Let A ι−→ Σ
p−→ G be a compatible extension. Then we obtain

another compatible extension A ι′−→ Σ
p−→ G by letting ι′(a) = ι(−a) = ι(a)−1.

We will write Σ−1 for Σ viewed as this alternate extension. Define θ : A → A by
θ(a) = −a. Then θ is G-invariant. Since the diagram

A Σ

G

A Σ−1

ι

θ id

p

ι′

p

commutes, we can identify [θ∗Σ] with [Σ−1] by Theorem 1.5.

Example 2.3. Take [Σ] ∈ TG(A) and let A / G be the semidirect product. The map
g : Σ ∗ Σ−1 → A / G given by g(σ, τ) = (ι−1(στ−1), σ̇) is a homomorphism. Since
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the diagram

A ∗ A Σ ∗G Σ−1

G

A A / G

ι∗ι′

∇A
p̃

g

ι

p

commutes, we see that [Σ] + [Σ−1] = [A / G] for all Σ ∈ TG(A).

Example 2.4. Take [Σ], [Σ′] ∈ TG(A). Let f̃ : Σ ∗G Σ′ → Σ′ ∗G Σ be the flip.
Similarly, let f : A ∗ A → A ∗ A be given by f(a, a′) = (a′, a). The diagram

A ∗ A Σ ∗G Σ′

A ∗ A Σ′ ∗G Σ G

A ∇∗(Σ′ ∗G Σ)

ι∗ι′

f f̃
p̃

ι′∗ι

∇A

p̃

∇A∗
i

p

commutes. Since ∇A ◦ f = ∇A, it follows from Theorem 1.5 that [Σ] + [Σ′] =
[Σ′] + [Σ].

In Examples 2.1–2.4, we have proved much of the following theorem, which is
patterned on [Kum88, Theorem 2.7].

Theorem 2.5. Let G be a locally compact groupoid with open range and source
maps, and let A be a locally compact abelian group G-bundle. Then the binary op-
eration ([Σ1], [Σ2]) 7→ [∇A∗ (Σ1 ∗G Σ2)] of (2.1) makes TG(A) into an abelian group
with neutral element given by the class [A / G] of the semidirect product of Exam-
ple 1.3, and [Σ]−1 = [Σ−1] as in Example 2.2. For each continuous G-equivariant
map f : A → B of G-bundles, define TG(f) : TG(A) → TG(B) to be the induced
map: TG(f)[Σ] = [f∗Σ]. Then TG is a functor from the category of G-bundles to
the category of abelian groups.

Proof. By considering diagrams similar to that in Example 2.4, we see that the
operation in (2.1) is well-defined and associative. We saw that [A / G] acts as an
identity in Example 2.1 and the statement about inverses follows from Example 2.3.
The computation in Example 2.4 shows that TG(A) is an abelian group.

By Corollary 1.6 we have TG(f ◦ g) = TG(f) ◦ TG(g) if f and g are a composable
pair of continuous G-equivariant maps of G-bundles. The proof that TG(f) is a
group homomorphism follows as in the proof of [Kum88, Theorem 2.7]. �

3. Applications and Examples

In this section we consider a unit space fixing extension Σ of G by the group
bundle A as illustrated in the diagram (†) from the introduction. We review the
basic details. We assume that all groupoids considered in this section are second-
countable locally compact Hausdorff groupoids with Haar systems. The Haar sys-
tem on Σ is denoted λ = {λu}u∈Σ(0) and we further assume that pA : A → Σ(0)

is a bundle of abelian groups that is a closed subgroupoid of Σ. It is equipped
with a Haar system denoted β = {βu}u∈Σ(0) and the fibers are denoted A(u) for
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u ∈ Σ(0). The existence of a Haar system on A implies that pA is open. It follows
by [IKR+21, Lemma 2.6(c)] that there is a Haar system α = {αu}u∈Σ(0) on G such

that for all f ∈ Cc(Σ) and u ∈ Σ(0) we have∫
Σ

f(σ) dλu(σ) =

∫
G

∫
A
f(σa) dβs(σ)(a) dαu(σ̇). (3.1)

Moreover, there is a natural action of Σ, and therefore G, on A.
Note that p : Σ→ G is a continuous, open surjection inducing a homeomorphism

from Σ(0) onto G(0), and ι : A → Σ is a homeomorphism onto ker p. (Both p and ι
are assumed to be groupoid morphisms).

Recall that if Σ is a T-groupoid over G then

Cc(G; Σ) := {f ∈ Cc(Σ) : f(tσ) = tf(σ) for all t ∈ T, σ ∈ Σ}

is a ∗-algebra under the operations described in [MW92, §2], and C∗(G; Σ) is its
closure in the norm obtained by taking the supremum of the operator norm under
all ∗-representations.

We may also view Cc(G; Σ) as compactly supported continuous sections of the
one-dimensional Fell line bundle over G associated to Σ. One can then construct the
associated (right) Hilbert C0(G(0))-module (see [IKR+21, §1.3]) as the completion
of Cc(G; Σ) in the norm arising from the C0(G(0))-valued pre-inner product given
by 〈f, g〉 := (f∗ ∗ g)|G(0) for all f, g ∈ Cc(G; Σ). We denote the Hilbert module by
H(G; Σ) and observe that left multiplication induces a natural ∗-homomorphism
λ : Cc(G; Σ) → L(H(G; Σ)). We may define the reduced norm of an element
f ∈ Cc(G; Σ) to be the operator norm of its image: ‖f‖r := ‖λ(f)‖. Then C∗r (G; Σ)
is the closure of Cc(G; Σ) in the reduced norm.

Lemma 3.1. With notation as above, let F ⊂ G(0) be a G-invariant clopen subset.
Then F is also Σ-invariant and the reduction Σ|F is a twist over the reduction
G|F . Moreover, the characteristic function of F determines a central multiplier
projection pF such that

pFC
∗
r (G; Σ) ∼= C∗r (G|F ; Σ|F ).

Proof. Observe that H(G; Σ) decomposes as the direct sum of a Hilbert C0(F )-
module and a Hilbert C0(F c)-module in the following way

H(G; Σ) ∼= H(G|F ; Σ|F )⊕H(G|F c ; Σ|F c).

Note that multiplication by the characteristic function of F , which we denote by
pF is the projection onto the first component, that pF is in the center of the multi-
plier algebra of C∗r (G; Σ), and Cc(G|F ; Σ|F ) acts trivially on the second component.
Hence the operator norm of Cc(G|F ; Σ|F ) acting on H(G|F ; Σ|F ) coincides with that
of its action on H(G; Σ). �

3.1. The T-groupoid of an extension. As noted in the introduction, we want
to see that the T-groupoid constructed in [IKR+21, §3.1] is an example of the
pushout construction of Theorem 1.5. The C∗-algebra C∗(A) is abelian and the

Gelfand dual of C∗(A) is an abelian group bundle p̂ : Â → G(0) = Σ(0) with fi-
bres p̂−1({u}) ∼= A(u)∧ (see [MRW96, Corollary 3.4]). Furthermore, since abelian
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groups are amenable, it follows from [Wil19, Corollary 5.39] and [Wil07, Proposi-

tion C.10] that p̂ is open. Therefore we can view Â as a right G-bundle for the

natural right action of G on Â.
Since G and Σ both act on Â, regarded as a topological space fibered over

Σ(0), we can form the transformation groupoids Â o G and Â o Σ. Moreover,
Â ∗ A = { (χ, a) : p̂(χ) = pA(a) } is a Â o G-bundle (as well as an Â o Σ-bundle).

Defining ι∗ : Â ∗ A → Â o Σ by ι∗(χ, a) = (χ, a) and p∗ : Â o Σ → Â o G by
p∗(χ, σ) = (χ, σ̇), we obtain an extension

Â ∗ A Âo Σ Âo G.

Â

ι∗ p∗

We defined a T-groupoid Σ̃ associated to this extension in [IKR+21, Proposition 3.2]
as follows. Define

D = { (χ, z, σ) ∈ Â ×T× Σ : p̂(χ) = r(σ) }

and let H be the subgroupoid of D consisting of triples of the form (χ, χ(a), a)
for a ∈ A(p̂(χ)). Then H is a normal subgroupoid of D and we can form the

locally compact Hausdorff groupoid Σ̃ := D/H (we use the notation Σ̃, rather than

the notation Σ̂ of [IKR+21], to avoid clashing with classical notational conventions
when Σ is a group, for example in Remark 3.3).

Theorem 3.2. Let Σ be the extension of G by the group bundle A as in the dia-
gram (†) and adopt the notation established above. Let f : Â ∗ A → Â ×T be the
canonical map given by

f(χ, a) = (χ, χ(a)). (3.2)

Then Σ̃ is properly isomorphic to the pushout f∗(Âo Σ). Moreover,

C∗(Σ) ∼= C∗(Âo G; f∗(Âo Σ)) and C∗r (Σ) ∼= C∗r (Âo G; f∗(Âo Σ)).

Proof. Theorem 1.5 implies that there is a unique (up to proper isomorphism)

extension f∗(Âo Σ) of Âo G by Â ×T and a twist morphism that is compatible

with f . In particular, f∗(Âo Σ) is a T-groupoid. We get a natural map g : Âo Σ

to Σ̃ given by g(χ, σ) = [χ, 1, σ], and the diagram

Â ∗ A Âo Σ

Âo G

Â ×T Σ̃

ι∗

f

p∗

g

i

j

commutes. The proper isomorphism of Σ̃ with f∗(ÂoΣ) follows from the uniqueness
guaranteed by Theorem 1.5 and the final assertion follows from [IKR+21, Theo-
rem 3.3]. �

It follows immediately that if Σ is properly isomorphic to the semidirect product

A / G, then [Âo Σ] = [Âo (A / G)] = [A / (Âo G)] and hence [Σ̃] is trivial. Thus

C∗(Σ) ∼= C∗(Âo G).
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Remark 3.3. As mentioned in the introduction, the twist Σ̃ appearing in Theo-
rem 3.2 is responsible for the Mackey obstruction of the classical normal subgroup
analysis of [Mac58]. Indeed, let us apply the theorem when Σ is a locally compact
group and A is a closed normal abelian subgroup. Then Σ and G = Σ/A act on

A by conjugation and give right actions on the space of characters Â. The corre-

sponding twist Σ̃ is the quotient of the groupoid (Â o Σ) × T where (χ, aσ, θ) is
identified with (χ, σ, θχ(a)) for all a ∈ A. We let [χ, σ, θ] be the class of (χ, σ, θ)

in Σ̃. If χ ∈ Â, then let Σ(χ) and G(χ) be the stabilizers at χ for the actions on

Â, and let Σ̃(χ) be the isotropy group of Σ̃ at χ. We observe that Σ̃(χ), up to an
obvious identification, is the pushout of the group extension

A Σ(χ) G(χ)

by the homomorphism χ : A → T. Indeed, this pushout χ∗(Σ(χ)) is the quotient
of Σ(χ) × T by the equivalence relation identifying (aσ, θ) with (σ, θχ(a)) for all

a ∈ A. Thus we just identify [χ, σ, θ] ∈ Σ̃(χ) with [σ, θ] ∈ χ∗(Σ(χ)). The class

of Σ̃(χ) in H2(G(χ),T) is the classical Mackey obstruction. More precisely, let L
be an irreducible unitary representation of Σ. According to Theorem 3.2, we may

view it as a representation of the twisted groupoid (Â o G, Σ̃). Its restriction to

Â defines a measure class which is invariant and ergodic under the action of G.
If this measure class is transitive, which will be always the case if A is regularly
embedded, then we have a representation of a twisted transitive measured groupoid

(OoG, Σ̃|O), where O ⊂ Â is an orbit of the action and Σ̃|O is the reduction of Σ̃ to

O. We pick χ ∈ O. Since the (Σ̃(χ), Σ̃|O)-groupoid equivalence Σ̃χO is compatible
with the twists in the sense of [Ren87, Définition 5.3], it implements a bijective

correspondence between the unitary representations of (O o G, Σ̃|O) and those of

(G(χ), Σ̃(χ)). Therefore L is given by an irreducible unitary representation of the

twisted group (G(χ), Σ̃(χ)).

Example 3.4. Let H be a locally compact abelian group and let A ⊂ H be a
closed subgroup. Then applying the above theorem with Σ = H and A = A, we

conclude that Σ̃ is a bundle of abelian groups over Σ̃(0) ∼= Â where each fiber is an
extension of H/A by T. Each of these extensions is abelian because H is abelian

(and the action of H on Â is trivial). Hence, each extension is determined by a
symmetric T-valued Borel 2-cocycle and any such 2-cocycle is necessarily trivial by
[Kle65, Lemma 7.2]. But the twist is not trivial in general: for example, if H = R
and A = Z ≤ R, then triviality of the twist would imply C∗(R) ∼= C0(T × Z),
which is nonsense.

Example 3.5 (Generalized Twists). We now consider the case where A is a locally
compact abelian group, A = G(0) × A, and G acts on A by translation on the first
factor. Since this simply gives us a twist when A = T, we will say that Σ is a
generalized twist in this case. Note that even for twists, Σ need not be a trivial
extension. Generalized twists were studied in [IKSW19].

View Â := Â×G(0) as a locally compact space. (We put the factor of G(0) on the

right, as a reminder that we are thinking of Â as a space rather than as a group, and
to line up with the natural identification of Â∗A with Â×G(0)×A, which we make
without further comment). Then G acts on the second factor of Â. This means we
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can replace ÂoG and ÂoΣ with the products Â×G and Â×Σ, respectively. Under
these identifications, Equation (3.2) becomes f(χ, u, a) = (χ, u, χ(a)). Moreover we
may assume that the Haar system β on A = G(0) ×A is constant in the sense that
there is a fixed Haar measure µ on A such βu = µ for all u ∈ G(0).

If χ ∈ Â, then we get a G-equivariant map fχ : G(0) × A → G(0) × T given by
fχ(u, a) = (u, χ(a)). Thus we can form the pushout fχ∗ (Σ) so that

G(0) ×A Σ

G

G(0) ×T fχ∗ (Σ)

ι

fχ

p

fχ∗

ι′

p′

commutes. Then C∗(G; fχ∗ (Σ)) is the completion of Cχc (Σ) consisting of functions
g ∈ Cc(Σ) such that g(ι(r(σ), a)σ) = χ(a)g(σ) with the ∗-algebra structure dis-
cussed at the beginning of this section.

Proposition 3.6. Let Σ be a generalized twist as in Example 3.5. For χ ∈ Â,
let fχ : G(0) × A → G(0) ×T and fχ∗ (Σ) be the G-equivariant map and T-groupoid
defined above. Then with notation as above,

C∗(Σ) ∼= C∗(Â× G; f∗(Â× Σ)) (3.3)

and C∗(Σ) is the section algebra of an upper-semicontinuous C∗-bundle over Â with

fiber at χ ∈ Â isomorphic to C∗(G; fχ∗ (Σ)).

Proof. The isomorphism in (3.3) comes from Theorem 3.2.

The map p : Â × G(0) → G(0) is continuous and satisfies p ◦ s = p ◦ r so that
f∗(Â × Σ) is a groupoid bundle over Â as in Appendix A. Hence we can invoke

Proposition A.1 to see that C∗(Â×G; f∗(Â×Σ)) is isomorphic to the section algebra

of an upper-semicontinuous C∗-bundle over Â. Since we can identify f∗(Â×Σ)(χ)

with fχ∗ (Σ) and (Â× G)(χ) with G, the result follows. �

Proposition 3.7. With notation as in Example 3.5, suppose that A compact. Then
the dual Â is discrete and

C∗(Σ) ∼=
⊕
χ∈Â

C∗(G; fχ∗ (Σ)) and C∗r (Σ) ∼=
⊕
χ∈Â

C∗r (G; fχ∗ (Σ)).

Proof. To prove the first isomorphism, note that by Proposition A.1

C∗(Σ) ∼= C∗(Â× G; f∗(Â× Σ))

is a C0(Â)-algebra. That is, letting ZM(C∗(Σ)) denote the center of M(C∗(Σ)),

there is a σ-unital *-homomorphism ρ : C0(Â)→ ZM(C∗(Σ)). Since Â is discrete,
the images of the characteristic functions of singleton sets under ρ give rise to a
family {qχ}χ∈Â of mutually orthogonal central projections in M(C∗(Σ)) which sum
to unity in the strict topology. Moreover, the summands coincide with the fibers
of the upper-semicontinuous C∗-bundle over Â given in Proposition 3.6 and hence

qχC
∗(Σ)qχ = qχC

∗(Σ) ∼= C∗(G; fχ∗ (Σ)).

for all χ ∈ Â.
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For the second isomorphism, let π : C∗(Σ) → C∗r (Σ) be the canonical quo-
tient map. An argument like that of the preceding paragraph using the family
{π(qχ)}χ∈Â of mutually orthogonal central projections in M(C∗r (Σ)) gives C∗r (Σ) ∼=⊕

χ∈Â π(qχ)C∗r (Σ). Lemma 3.1 gives π(qχ)C∗r (Σ) ∼= C∗r (G; fχ∗ (Σ)), and the result
follows. �

Remark 3.8. If A = T and Σ is a twist, then Â = Z, and we have [fn∗ (Σ)] = n[Σ] for
n ∈ Z. It follows that the central summand corresponding to n = 1 is isomorphic
to C∗(G; Σ) and thus there is central projection q = q1 ∈M(C∗(Σ)) such that

C∗(G; Σ) ∼= qC∗(Σ) and C∗r (G; Σ) ∼= qC∗r (Σ)

Now suppose that G = G(0) so that Σ = A is itself an abelian group bundle
regarded as a groupoid with unit space G(0) and let Λ be a T-twist over A. Then
since A is amenable C∗(A; Λ) = C∗r (A; Λ) (see, for example [SW13, Thm 1]). We
shall say that such a twist is abelian if Λ is also an abelian group bundle—that
is if Λ(u) is abelian for each u ∈ G(0). Then Λ is abelian if and only if C∗(Λ) is

abelian and in that case C∗(Λ) ∼= C0(Λ̂). Arguing as in Example 3.4, we see that
such extensions must be pointwise trivial but need not be globally trivial. If Λ
is determined by a continuous T-valued 2-cocycle c, then Λ is abelian if and only
if c is symmetric (cf., [DGN+20, Lemma 3.5]). Suppose now that Λ is abelian.

For n ∈ Z, let Vn := {χ ∈ Λ̂ : χ(z, u) = zn for all z ∈ T and u ∈ G(0)}. Then

C∗(Λ) ∼= C0(Λ̂) decomposes as a direct sum with summands of the form C0(Vn).
Note that each Vn is clopen. The projection q in Remark 3.8 may then be identified
with the characteristic function of UΛ := V1 and hence

C∗(A; Λ) ∼= qC∗(Λ) ∼= C0(UΛ).

See [DGN20, Section 3] for a related construction.

In the case that Λ ∼= T×A and thus Λ̂ ∼= Z× Â, we have UΛ
∼= {1} × Â ∼= Â.

We return now to the more general situation where Σ is a unit space fixing
extension of G by the group bundle A as in the diagram (†) from the introduction.
Suppose that, in addition, Ω is a T-groupoid extension of Σ

G(0) ×T Ω Σ

G(0)

ι̃ p̃

such that ΛΩ := p̃−1(A), its restriction to A, is an abelian group bundle over G(0).
We may thus regard Ω as an extension of G by ΛΩ. We assume that A, Σ and G
are endowed with Haar systems that satisfy (3.1), the Haar system in G(0) × T is
given by the Haar measure on T, and the Haar system on Ω is the one naturally
defined by the Haar systems on G(0) ×T and Σ. To declutter notation a little, we

write Λ̂Ω for the dual bundle (ΛΩ)∧.

Corollary 3.9. With notation as above let f : Λ̂Ω ∗ ΛΩ → Λ̂Ω × T be given by
f(χ, a) = (χ, χ(a)). Then

C∗(Ω) ∼= C∗(Λ̂Ω o G; f∗(Λ̂Ω o Ω)) and

C∗r (Ω) ∼= C∗r (Λ̂Ω o G; f∗(Λ̂Ω o Ω)).
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Proof. This follows immediately from Remark 3.8, the above discussion, and The-
orem 3.2 with ΛΩ in place of A. �

By arguing as in Remark 3.8 and Corollary 3.9 we may conclude that C∗(Σ; Ω) is
isomorphic to the corner associated to the central projection qΩ in

M(C∗(Λ̂Ω o G; f∗(Λ̂Ω o Ω)))

corresponding to the characteristic function of

UΩ := UΛΩ
⊂ Λ̂Ω = (Λ̂Ω o G)(0).

Observe that UΩ is an invariant clopen set under the action of both G and Ω and
thus both groupoids act on UΩ.

Corollary 3.10. With notation as above define g : UΩ ∗ΛΩ → UΩ×T by g(χ, a) =
(χ, χ(a)). Then

C∗(Σ; Ω) ∼= C∗(UΩ o G; g∗(UΩ o Ω)) and C∗r (Σ; Ω) ∼= C∗r (UΩ o G; g∗(UΩ o Ω)).

Proof. Observe that(
Λ̂Ω o G

)
UΩ

∼= UΩ o G and
(
Λ̂Ω o Ω

)
UΩ

∼= UΩ o Ω.

For (χ, a) ∈ UΩ ∗ ΛΩ ⊂ Λ̂Ω ∗ ΛΩ,

f(χ, a) = (χ, χ(a)) = g(χ, a) ∈ UΩ ×T

Therefore, (
f∗(Λ̂Ω o Ω)

)
UΩ

∼= g∗(UΩ o Ω).

Hence, by Remark 3.8 and Corollary 3.9

C∗(Σ; Ω) ∼= qΩC
∗(Λ̂Ω o G; f∗(Λ̂Ω o Ω)

)
qΩ

∼= C∗
(
(Λ̂Ω o G)UΩ

; (f∗(Λ̂Ω o Ω))UΩ

)
∼= C∗

(
UΩ o G; g∗(UΩ o Ω)

)
.

The case for the reduced C∗-algebras follows by a similar argument. �

Recall that an étale groupoid G is said to be effective if the interior of the
isotropy groupoid is G(0) and topologically principal if the set of points with trivial
isotropy is dense in G(0). These notions are equivalent if the étale groupoid G is
second countable (see [BCFS14, Lemma 3.1]). The above corollary allows us to
generalize [IKR+21, Theorem 4.6] (see also [DGN+20, Theorem 5.8] and [DGN20,
Theorem 4.6]).

Corollary 3.11. With notation as above, suppose that G is étale and that the action
groupoid UΩ o G is second countable and effective. Then the image of C∗r (A,ΛΩ)
under the natural embedding into C∗r (Σ; Ω) is a Cartan subalgebra with Weyl twist
g∗(UΩ o Ω).

Proof. This follows from Corollary 3.10 and [Ren08, Theorem 5.2]. �
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Example 3.12. Let H be a discrete abelian group and let E be a T-twist over
H—that is, a central extension by T. Since H is discrete, there is a T-valued
skew-symmetric bicharacter $ on H and a set of generating unitaries {uh | h ∈ H}
in C∗(H;E) such that for all g, h ∈ H

uguh = $(g, h)uhug.

By [Kle65, Lemma 7.2] the extension E is trivial if and only if $(g, h) = 1 for
all g, h ∈ H. Let A be a subgroup of H which is maximal amongst subgroups
on which $(·, ·) is identically 1. It is shown in [Kum86, Example 1.12] that the
C∗-subalgebra B generated by {ua | a ∈ A} is a diagonal subalgebra of C∗(H;E).
We now show that this also follows from Corollary 3.11 with Σ := H, A := A,
G = H/A and Ω := E.

Since the restriction of $ to A is trivial the extension E is trivial on A and thus
Λ is trivial as a T-twist. Hence, B ∼= C∗(A) and UΛ

∼= Â. There is a continuous

homomorphism $A : H → Â such that for all h ∈ H, a ∈ A
($A(h))(a) = $(h, a).

Moreover, A = ker$ and thus $ induces an injection H/A → Â. The action of

H/A on Â is then given by translation and, hence, is free. Since H/A is étale and its

action on UΩ
∼= Â is principal, the image of C∗r (A,ΛΩ) ∼= C∗(A) under the natural

embedding into C∗r (Σ; Ω) = C∗(H;E) is a diagonal subalgebra.

3.2. Extensions by 2-cocycles. Extensions associated to groupoid 2-cocycles
yield some nice applications of the pushout construction. For convenience, we
review the basics here. (For more details, see [IKSW19, Appendix A].) Assume
that pA : A → G(0) is a G-bundle. As before we write A(u) for p−1

A (u) for u ∈ G(0).

Assume that ϕ : G(2) → A is a continuous normalized 2-cocycle. That is, ϕ(γ1, γ2) ∈
A(r(γ1)) for all (γ1, γ2) ∈ G(2), ϕ(γ0, γ1) +ϕ(γ0γ1, γ2) = γ0 ·ϕ(γ1, γ2) +ϕ(γ0, γ1γ2)
for all (γ0, γ1), (γ1, γ2) ∈ G(2), and ϕ(γ, u) = ϕ(u, γ) = 0u for all γ ∈ A(u) and
u ∈ G(0). Then the extension Σϕ of G by A determined by ϕ is obtained by giving
the fibered product A∗G the groupoid structure where (a1, γ1)(a2, γ2) = (a1 + γ1 ·
a2 + ϕ(γ1, γ2), γ1γ2) if (γ1, γ2) ∈ G(2) and (a, γ)−1 = (−γ−1 · a − ϕ(γ−1, γ), γ−1).
We exhibit Σϕ as an extension of G by A via i(a) = (a, pA(a)) and p(a, γ) = γ.

Example 3.13. If A = G(0) × A is the trivial bundle (with trivial action), then an
A-valued cocycle is given by a continuous A-valued 2-cocycle σ on G via the formula
ϕ(γ1, γ2) = (σ(γ1, γ2), r(γ1)).

Example 3.14. Let ϕ be a continuous normalized T-valued 2-cocycle and let Σϕ be
the T-twist associated to ϕ. Then by Proposition 3.7 and Remark 3.8, and the fact
that Σϕn ∼= n∗(Σϕ) for all n ∈ Z, we have

C∗(Σϕ) ∼=
⊕
n∈Z

C∗(G; Σϕn).

This recovers [BaH14, Theorem 3.2].

Example 3.15 (Transformation groupoids). Let G be a groupoid acting on the right
of a locally compact Hausdorff space X. Recall that the transformation groupoid
X o G is obtained by endowing the fibered product X ∗ G with the groupoid oper-
ations (x, γ1)(x · γ1, γ2) = (x, γ1γ2) if (γ1, γ2) ∈ G(2) and (x, γ)−1 = (x · γ, γ−1).
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Assume that ϕ : G(2) → A is a 2-cocycle as above. Then one can define a natural
2-cocycle ϕ̃ : (X o G)(2) → X ∗ A via ϕ̃((x, γ1), (x · γ1, γ2)) = (x, ϕ(γ1, γ2)). The
extension Σϕ̃ of X o G defined by ϕ̃ is isomorphic to the extension X o Σϕ, where
Σϕ is the extension of G defined by ϕ. To see this, note that Σϕ̃ = {

(
(x, a), (x, γ)

)
:

x ∈ X, a ∈ Ax, γ ∈ Gx } with the operations(
(x, a1), (x, γ1)

)(
(x · γ1, a2), (x · γ1, γ2)

)
=
(
(x, a1 + γ1a2 + ϕ(γ1, γ2)), (x, γ1γ2)

)
and (

(x, a), (x, γ)
)−1

=
(
(x · γ,−γ−1a− ϕ(γ−1, γ)), (x · γ, γ−1)

)
.

On the other hand, X o Σϕ = { (x, (a, γ)) : x ∈ X, a ∈ Ax, γ ∈ Gx } with the
operations

(x, (a1, γ1))(x · γ1, (a2, γ2)) = (x, (a1 + γ1a2 + ϕ(γ1, γ2), γ1γ2))

and
(x, (a, γ))−1 = (x · γ, (−γ−1 · a− ϕ(γ−1, γ), γ−1)).

Therefore the map V : Σϕ̃ → X o Σϕ defined by V
(
(x, a), (x, γ)

)
= (x, (a, γ)) is a

groupoid isomorphism.

Suppose that pB : B → G(0) is another abelian G-bundle and that f : A →
B is an equivariant map such that f |A(u) : A(u) → B(u) is a continuous group

homomorphism for all u ∈ G(0). There is a B-valued 2-cocycle f∗(ϕ) : G(2) → B
given by f∗(ϕ)(γ1, γ2) = f(ϕ(γ1, γ2)).

Lemma 3.16. Let Σf∗(ϕ) be the extension of G by B determined by f∗(ϕ). Then
f∗Σϕ is properly isomorphic to Σf∗(ϕ).

Proof. Define g : Σϕ → Σf∗ϕ by g(a, γ) = (f(a), γ). The diagram

A Σϕ

G

B Σf∗(ϕ)

f

i

g

p

i

p

commutes. Therefore the lemma follows from Theorem 1.5. �

3.3. The T-groupoid defined by a 2-cocycle. We continue to assume the
setting from Section 3.2: A is an abelian G-bundle, ϕ : G(2) → A is a 2-cocycle, and
Σϕ is the extension defined by ϕ. Then, as in Example 3.15 there is a 2-cocycle

ϕ̃ : (Âo G)(2) → Â ∗ A
defined by

ϕ̃
(
(χ, γ1), (χ · γ1, γ2)

)
=
(
χ, ϕ(γ1, γ2)

)
(3.4)

if (γ1, γ2) ∈ G(2). Therefore we can identify ÂoΣϕ with Σϕ̃, the extension of ÂoG
determined by ϕ̃. Consider the 2-cocycle ϕ̂ := f∗ϕ̃ : (Â o G)(2) → Â × T defined
via

ϕ̂
(
(χ, γ1), (χ, γ2)

)
=
(
χ, χ(ϕ(γ1, γ2))

)
.

Lemma 3.16 and Theorem 3.2 imply that Σ̃ϕ is isomorphic to the T-groupoid

defined by ϕ̂ and C∗(Σϕ) is isomorphic to C∗(Âo G; Σϕ̂).
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Example 3.17. The following example was studied in [IKSW19]. Let X be a second-
countable locally compact Hausdorff space, and G a second-countable locally com-
pact abelian group. Let G denote the sheaf of germs of continuous G-valued func-
tions on X, and let c ∈ Z2(U ,G ) be a normalized Čech two cocycle for some locally
finite cover U = {Ui}i∈I of X by precompact open sets. The blow-up groupoid
GU with respect to the natural map from

⊔
i Ui into X is

GU = {(i, x, j) : x ∈ Uij := Ui ∩ Uj}
with (i, x, j)(j, x, k) = (i, x, k) and (i, x, j)−1 = (j, x, i). As noted in [IKSW19,

Remark 3.3], the Čech 2-cocycle c defines a groupoid 2-cocycle ϕc : G(2)
U → G via

ϕc
(
(i, x, j), (j, x, k)

)
= cijk(x).

Let Σc be the extension of GU by the 2-cocycle ϕc. Define

ϕ̂ :
(
(Ĝ×

⊔
i

Ui) o GU

)(2) → T× Ĝ×
⊔
i

Ui

by

ϕ̂
(
(τ, (i, x, j)), (τ, (j, x, k))

)
=
(
τ(cijk(x)), τ

)
for τ ∈ Ĝ and

(
(i, x, j), (j, x, k)

)
∈ (GU )(2). Then ϕ̂ is a groupoid 2-cocycle, and

the pushout groupoid Σ̃ is isomorphic to the T-groupoid that is the extension of
(Ĝ×

⊔
i Ui) o GU defined by ϕ̂.

Let V = {Ĝ× Ui}i∈I be the locally finite cover of Ĝ×X, let S be the sheaf of
germs of continuous T-valued functions, and define νc = { νcijk } ∈ Z2(V ,S ) by

νc
(
(τ, (i, x, j)), (τ, (j, x, k))

)
= τ(cijk(x)).

Then the 2-cocycle ϕ̂ is defined by the Čech 2-cocycle νc ∈ Z2(V ,S ).
That is, νc is the normalized 2-cocycle considered in [IKSW19, Equation (3.4)].

Hence the generalized Raeburn–Taylor C∗-algebra A(ν) studied in [IKSW19] is
isomorphic to the restricted C∗-algebra of the T-groupoid defined by the 2-cocycle
νc.

By [IKSW19, Lemma 5.2], A(ν) is a continuous-trace C∗-algebra with spectrum

Ĝ×X with Dixmier–Douady invariant δ(A(ν)) = [νc]. For a concrete example, let
G = Z and choose a Čech 2-cocycle c associated to any line bundle.

Example 3.18. This example is an expansion of [IKR+21, Example 4.10]. Let Γ = Z
act on T via rotation by α ∈ Q: z ·k := ze2πikα. If α = m/n with m and n relatively
prime, then nZ fixes the action. We have a short exact sequence of groups

nZ Z Zn.
p

(3.5)

The action on T leads to an extension of groupoids

nZ×T T o Z T o Zn.
i π (3.6)

Thus, using the notation from the previous section, A = T× nZ, Σ = T o Z, and
G = T o Zn. The C∗-algebra C∗(T o Z) is the rational rotation C∗-algebra Aα
(see, for example, [DB84]). The groupoid D is the cartesian product T × Tn ×
T× Z, where Tn = T/Zn is the dual of nZ. The extension Σ̃ is the quotient of D
where we identify (ω, χ, z, nl+k) with (ω, χnl, z, k). Therefore the rational rotation
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algebra Aα is the completion of continuous functions F on T ×Tn × Z such that
F (ω, χ, nl + k) = χnlF (ω, χ, k) for all l ∈ Z.

The extension Σ̃ is properly isomorphic to the one defined by a 2-cocycle. Indeed,
let σ = e2πiα ∈ T and view σ as a character on Z. Thus we can identify Zn with
σ(Z) and then the map p in the short exact sequence (3.5) equals σ. Choose s ∈ Z
such that sm = 1 (mod n). Then the map τ : Zn → Z defined by τ(k) = sk
defines a cross-section of σ. In particular, Z is properly isomorphic to the extension
nZ ×ω Zn by a two cocycle ω : Zn × Zn → nZ defined by τ . Using the proof
of [IKSW19, Proposition A.6], ω(k̇1, k̇2) = τ(k̇1) + τ(k̇2) − τ(k̇1 + k̇2). A quick
computation shows that

ω(k̇1, k̇2) =

{
0 if k̇1 + k̇2 < n

ns if k̇1 + k̇2 ≥ n,

which recovers the 2-cocycle used in Step 2 of the proof of [DB84, Proposition 1].
The map τ : T o Zn → T o Z defined by τ(z, k) = (z, τ(k)) is a cross-

section of the extension of the groupoids (3.6). Hence T o Z is properly isomor-
phic to the extension given by the 2-cocycle ϕ ∈ Z2(T o Zn,T × nZ) defined

by ϕ
(
(w, k̇1), (w · k̇1, k̇2)

)
= (w,ω(k̇1, k̇2)). The extension of the 2-cocycle ϕ is

Σϕ = T × nZ × Zn with operations (w, nl1, k̇1)(w · k̇1, nl2, k̇2) = (w, nl1 + nl2 +

ω(k̇1, k̇2), k̇1 + k̇2) and (w, nl, k̇)−1 = (w,−nl − ω(−k̇, k̇),−k̇). Following the proof
of [IKSW19, Proposition A.6] the isomorphism between Σϕ and T o Z is given by

(w, nl, k̇) 7→ (w, nl + τ(k̇)).

We have that Â ' Tn × T and Â ∗ A ' Tn × T × nZ. The action of G =
T o Zn on Â is given via (χ,w) · (w, k̇) = (χ,w · k) = (χ,wσk). Therefore we

can identify Â o G with Tn × T o Zn := {(χ,w, k̇) ∈ Tn × T × Zn}, where

(χ,w, k̇1) · (χ,w · k1, k̇2) = (χ,w, k̇1 + k̇2) and (χ,w, k̇)−1 = (χ,w · k,−k̇). Thus the

2-cocycle ϕ̃ :
(
Tn ×T o Zn

)(2) → Tn ×T× nZ of (3.4) is defined by

ϕ̃
(
(χ,w, k̇1), (χ,w · k̇1, k̇2)

)
=
(
χ,w, ω(k̇1, k̇2)

)
.

By Lemma 3.16, Σ̃ is properly isomorphic to the extension by the 2-cocycle ϕ̂ which

is the pushout of ϕ̃. Therefore ϕ̂ :
(
Tn ×T o Zn

)(2) → Tn ×T×T is defined by

ϕ̂((χ,w, k̇1), (χ,w · k̇1, k̇2)) = (χ,w, χω(k̇1,k̇2)).

Hence the rotation algebra Aα is isomorphic to C∗(Tn×ToZn; Σϕ̂). For χ ∈ Tn,

define χ∗(ϕ) : (T o Zn)(2) → T by

χ∗(ϕ)((w, k̇1), (w · k̇1, k̇2) = (w,χω(k̇1,k̇2)).

Then Proposition 3.6 implies that Aα is the section algebra of an upper-semicon-
tinuous C∗-bundle over Tn with fiber at χ ∈ Tn isomorphic to C∗(ToZn; Σχ∗(ϕ)).
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Appendix A. Bundles of Twists

Let Σ be a twist over G. Alternatively, Σ is a T-groupoid so that we have the
following diagram

G(0) ×T Σ G,

G(0)

i j

where as usual we have identified Σ(0) and G(0). In particular, if F ⊂ G(0) is
G-invariant, then it is Σ-invariant and the reduction Σ|F is also a twist over the
reduction G|F .

Suppose that p : G(0) → T is a continuous map such that p ◦ r = r ◦ s. Then we
say that Σ is a groupoid bundle over T .1 Then p−1(t) is invariant for all t ∈ T . We
write Σ(t) and G(t) for the restrictions to p−1(t), respectively. Then Σ(t) is a twist
over G(t).

Proposition A.1. Suppose that G is a second countable locally compact Hausdorff
groupoid with a Haar system and that Σ is a twist over G. If p : G(0) → T is a
continuous map such that p ◦ r = p ◦ s, then C∗(G; Σ) is a C0(T )-algebra. Let Σ(t)
be the twist over G(t) defined above. Then C∗(G; Σ) is (isomorphic to) the section
algebra of an upper-semicontinuous C∗-bundle over T . The fibre C∗(G; Σ)(t) is
isomorphic to C∗(G(t); Σ(t)).

Proof. Recall that C∗(G; Σ) is the C∗-algebra C∗(G,B) of a Fell bundle q : B → G
as described in [MW08, Example 2.9]. Similarly, C∗(G(t); Σ(t)) is the C∗-algebra
C∗(G(t),B) of q|q−1(G(t)). Let U(t) = G(0) \ p−1(t). Using [IW12, Theorem 3.7] (as
in [SW13, Lemma 9]), we obtain a short exact sequence

0 C∗(G|U(t),B) C∗(G,B) C∗(G(t),B) 0i j

where i identifies C∗(G|U(t),B) with the completion in C∗(G,B) of the ideal of
sections in Γc(G,B) that vanish off G|U(t), and j is given on Γc(G,B) by restriction

to p−1(t). Now exactly as in [Wil19, Proposition 5.37], we see that C∗(G,B) is a
C0(T )-algebra with fibres C∗(G,B)(t) identified with C∗(G(t),B). �
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