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Abstract. In this paper we study the conjugate locus in convex manifolds. Our

main tool is Jacobi fields, which we use to define a special coordinate system

on the unit sphere of the tangent space; this provides a natural coordinate
system to study and classify the singularities of the conjugate locus. We pay

particular attention to 3-dimensional manifolds, and describe a novel method

for determining conjugate points. We then make a study of a special case: the
3-dimensional (quadraxial) ellipsoid. We emphasise the similarities with the

focal sets of 2-dimensional ellipsoids.

1. Introduction

The conjugate locus is a classical topic in global differential geometry, and one
of the driving open problems has been the ‘last geometric statement of Jacobi’:
that the conjugate locus of a generic point on a triaxial ellipsoid has four cusps
[20]. The question was settled recently by Itoh and Kiyohara, who also showed
the statement extends to the broader class of surfaces known as Liouville surfaces
[15, 17]. It seems natural to ask how these results extend to higher dimensions, and
indeed Itoh and Kiyohara in [16, 18] have considered the cut and the conjugate
loci in n-dimensional ellipsoids and Liouville manifolds. Naturally their analysis
relies heavily on the integrability of the geodesic flow in these manifolds, however
integrability is the exception rather than the norm; see [37, 36, 9] for example. A
guiding principle in this and other works of the authors is to develop methods for
studying the conjugate locus in manifolds without relying on integrability.

The conjugate locus and its cousin, the cut locus, have been studied by some
of the giants of mathematics: Jacobi [20], Poincaré [27] and Arnol’d [2] to name
a few. As well as investigations related to the Jacobi statement (see for example
[29, 32, 33, 31, 30]) and a testbed for developments in Hamiltonian dynamics
(see for example [24, 25]), there is also interest in the application to problems
in optimal control (see for example [6, 8, 5, 4, 7, 3]). Previous work of the first
author showed how the number of cusps can spontaneously change as the base point
is dragged around in the surface [38], and the connection between the number of
cusps and the rotation index [35]. However (aside from [18, 24] mentioned above
and perhaps [34]) there is very little in the literature regarding the conjugate locus
in dimensions three or higher; a notable exception being Ardoy [1] which showed
the generic singularities of the exponential map in 3-manifolds come in five varieties:
fold, edge, swallowtail, elliptic and hyperbolic umbilic. We note that these are also
the five generic singularities of the normal map, i.e. the envelope of normals to
surfaces in R3 (also known as the evolute or focal set). There is much more in
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the literature about these focal sets, in particular see [28, 19], and the focal sets
of surfaces are typically made up of two sheets of focal points. A classic example
would be the focal sets of the triaxial ellipsoid (or 2-ellipsoid as we will refer to
it), whose picture is strangely absent from the literature (except see [21]). We
present in this work for the first time global images of the conjugate locus in the
3-ellipsoid, and the similarities with the focal sets of the 2-ellipsoid are striking;
indeed a recurring theme in this paper (and others of the first author [35]) would
be the similarity between the focal set on one hand and the conjugate locus on
the other. This is continuing the train of thought in Jacobi’s work, who originally
framed his famous statement by saying the conjugate locus on the triaxial ellipsoid
has “die gestalt der evolute der ellipse” [20]. We suggest the following extension to
Jacobi’s statement:

Suppose p is a point in an n-dimensional ellipsoid with principal curvatures k1, . . . , kn.
Then the conjugate locus of p has the same form as the focal sets of the (n − 1)-
dimensional ellipsoid with semi-axes k1, . . . , kn.

This conjecture was presented by the first author at Laboratoire Dieudonné,
Nice, in January 2019, several months before the publication of [18], and we hope
the current work complements [18] while extending our understanding of this most
important of example manifolds. We note that by “the same form” we mean the
same number of components, the same singularity structure, even the same topology
in the sense of rotation index. For example when n = 2 we know the conjugate
locus of an umbilic point in the triaxial ellipsoid is a point (as is the evolute of a
circle), and the conjugate locus of a generic point is a single curve with 4 cusps and
rotation index 1 (as is the evolute of an ellipse).

As well as making a study of the 3-ellipsoid, the main contribution of this pa-
per lies in developing methods for studying the conjugate locus in convex smooth
3-dimensional Riemannian manifolds in general (note we make the restriction of
convexity, by which we mean positive sectional curvatures in all directions every-
where, so that conjugate points exist in all directions; however this restriction is
too strong if we simply want a non-empty conjugate locus, as the spherical har-
monic surfaces of [38] demonstrate). Other authors relied on integrability [18] or
contact [28] however for convex 3-manifolds in general we cannot rely on either
of those things, and so we describe a novel approach in Sections 2 and 3: Sec-
tion 2 using Jacobi fields to define a new coordinate system on the unit sphere in
TpM, and Section 3 describing a novel approach to detecting conjugate points. We
feel the additional understanding gained justifies our choice of Jacobi fields as the
main tool rather than the marching fronts of [34] or bifurcations of a Hamiltonian
boundary value problem in [25]. In Section 4 we make a detailed case study of the
3-dimensional ellipsoid, and we finish with some conclusions and suggestions for
future work.

We follow the conventions of do Carmo [11], and we let t be arc-length parameter
and let ′ denote d/dt. We are most interested in 3-dimensional manifolds, but in
Section 2 we begin with n-dimensions.
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2. The Jacobi Coordinate System

Let p be a point in the n-dimensional smooth Riemannian manifold M and split
TpM as R+ × Sn−1

1 . Let U be a coordinate patch on Sn−1
1 and let vi (where from

now on i, j will run from 1 to n− 1) parameterize U ; we will assume U is ‘generic’
in the sense to be clarified below. We define the exponential map at p as (it is
convenient to use “X” rather than “exp”)

X : R+ × U → M : X(t, vi) = γ(t)

where γ(t) is the geodesic through p whose tangent vector at p is the point in U
with coordinates vi (see Figure 1 below).

Conjugate points are where the exponential map is singular, but since ∂X/∂t =
γ′(t) the co-rank of DX is at most n− 1. We define the Jacobi fields Yi as ∂X/∂vi,
and since we are interested in conjugate points we will from now on only consider
Jacobi fields which meet the following conditions: all Yi have Yi(t = 0) = 0, and
Y ′
i (t = 0) (what distinguishes one Jacobi field from another) is taken from the

orthogonal complement of γ′(0). As we follow a radial geodesic emanating from p
we may reach points where a non-trivial Jacobi field vanishes for the first time (by
which we mean this is the first time since t = 0 that that particular Jacobi field has
vanished), and these are the ‘first conjugate points’; the set of all first conjugate
points is the ‘first conjugate locus’ which may have many sheets as we will see. We
will assume for the time being that M is such that for all radial geodesics in U , all
the conjugate points occur at distinct values of t; this is what we meant by ‘generic’
above (this is equivalent to saying that all singularities of X over U are co-rank 1,
or Σ1 to use the notation of [21]).

We will now use these conjugate points to define a special set of coordinates on
U . Let R1, R2, . . . , Rn−1 be the ordered distance along a radial geodesic until a
first conjugate point. Since they are distinct, each corresponds to the vanishing of
a distinct member of a set of n − 1 linearly independent Jacobi fields, which we
denote Ji, distinguished by n − 1 linearly independent choices of J ′

i(t = 0), which
span the orthogonal complement of γ′(t = 0). We now let ui be the coordinate on
U whose coordinate lines have tangent vector J ′

i(t = 0) (see Figure 1). This is a
smooth parameterization of U : if U is generic then at every point in U there are
n− 1 linearly independent J ′

i(0) tangent to Sn−1
1 (the ui coordinate lines are their

integral curves), and for smoothness we note that by definition Ji(t = Ri(u), u) = 0
and differentiating w.r.t. uj we find

J ′
i

∂Ri

∂uj
= − ∂Ji

∂uj
.

The right hand side is smooth w.r.t. u since Jacobi fields are the solutions of ODE’s
whose coefficients depend smoothly on u; therefore the left hand side is also smooth
w.r.t. u. These special coordinates, which we will refer to as ‘Jacobi coordinates’,
parameterize both the patch U on the unit sphere in TpM and the conjugate locus
itself, and provide a natural coordinate system in which to describe the structure
of the conjugate locus; some results are collected as Lemmas:

Lemma 1. The first conjugate locus is regular except for points where the dis-
tance to the i-th first conjugate point is stationary with respect to the i-th Jacobi
coordinate.
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Figure 1. The Jacobi coordinates in the case that M is 3 dimen-
sional. The u1 coordinate line (u2 = constant) and u2 coordinate
line (u1 = constant) are shown dotted and dashed respectively.

Proof. We define the i-th sheet of the first conjugate locus as

ci = X(t = Ri(u), u).

The Jacobian of the i-th sheet has rows

∂ci
∂uj

=
∂X

∂t

∂Ri

∂uj
+
∂X

∂uj
= γ′

∂Ri

∂uj
+ Jj(t = Ri). (1)

Since γ′ and Jj are linearly independent, we see that each sheet of the conjugate
locus is regular in general, however if j = i then since Ji(t = Ri) = 0 we see the
rank of the Jacobian of ci will be non-maximal if ∂Ri/∂ui = 0. We will refer to
these Σ1,1 singularities (when restricted to U) as ‘ridges’ and their image under X
as ‘ribs’, in analogy with the Euclidean case described in the introduction. □

The most intuitive case (see Sections 3 and 4 below for examples) is when the
manifold M has dimension 3; then the ridge points form lines on the unit 2-sphere
in TpM. For the rest of this paper we will suppose n = 3.

Lemma 2. The ribs on the sheets of the conjugate locus are ordinary cuspidal
edges.

Proof. If we label the two Jacobi coordinates u1 = u and u2 = v, with correspond-
ing Jacobi fields Ju and Jv, then the first sheet of the first conjugate locus is given
by c1 = X(t = R1(u, v), u, v). The image under X of the ridge line R1,u = 0 will
be an ordinary cuspidal edge if (see [28])

c1,u = 0, {c1,uu, c1,uuu, c1,v} linearly independent.



THE CONJUGATE LOCUS IN CONVEX 3-MANIFOLDS 21

We have already seen that at a ridge point c1,u = 0, and under the same condition
we find

c1,uu = R1,uuX,t = R1,uuγ
′,

c1,uuu = 2R1,uuX,tu +R1,uuuX,t = 2R1,uuJ
′
u +R1,uuuγ

′,

c1,v = R1,vX,t +X,v = R1,vγ
′ + Jv

where everything is evaluated on t = R1. Since the Jacobi fields and their deriva-
tives lie in the orthogonal complement of γ′, and since Jv(t = R1) ̸= 0 in a generic
coordinate patch, then assuming higher derivatives of R1 do not vanish simultane-
ously with the first we see these three vectors will be linearly independent if J ′

u and
Jv are linearly independent on t = R1. This is certainly the case if M = S3 (indeed
they are orthogonal), but in general we would need to show linear independence.
Both vector fields are non-zero: we already know Jv cannot vanish on t = R1, but
also J ′

u cannot vanish on t = R1 since Ju satisfies a second order homogeneous
ODE and we already have Ju(t = R1) = 0. Finally we must show that:

J ′
u and Jv are not multiples of each other. (2)

We will see in the next section (see (9)) how the method we describe for detecting
conjugate points answers this question very naturally. □

Lemma 3. Away from ridge points, the image of the Jacobi coordinate lines under
the exponential map are geodesics of the corresponding sheet of the conjugate locus.

Proof. If we take the first sheet for example, then using (1) the line element for
c1 is

ds2 = R2
1,udu

2 + 2R1,uR1,vdudv + (R2
1,v + |J2(t = R1)|2)dv2,

or (using dR1 = R1,udu+R1,vdv) we can write this as

ds2 = dR2
1 + |J2(t = R1)|2dv2.

Now it is standard to show that the lines v = constant (the image under X of the u
Jacobi coordinate lines) are geodesics of the first sheet of the conjugate locus. □

Previously we assumed U only contained points defining directions along which
the distances to first conjugate points were distinct, but if we consider all directions
on the unit sphere in TpM there will be some directions whereR1 = R2, and we refer
to these Σ2 singularities as ‘umbilic directions’, again in analogy with the Euclidean
case. That these umbilic directions must exist follows from the definition of the
Jacobi coordinate system: if there were no umbilic directions then we would be able
to cover the 2-sphere in a single coordinate system which we know is not possible (it
seems natural to suppose an extension of the Caratheodory conjecture [13] in this
context). We are starting to see the general picture emerge: the Jacobi coordinate
system covers the unit sphere except at degenerate umbilic directions; R1 and R2

are functions over the sphere which must therefore have stationary points through
which pass the ridge lines; if the Jacobi coordinate curves are closed then R1 or R2

restricted to them must have stationary points which correspond to ridge lines of
different types, and so on.

There are many ways to view the objects described in this section: in Section 4
we show plots of the first conjugate locus in the 3-ellipsoid, but another option is
to plot the ‘distance spheres’, i.e. the polar surfaces r = R1 and r = R2 in TpM;
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these would sit one inside the other, and touch along the umbilic directions. It is
the image of these distance spheres under the exponential map which give the first
conjugate locus, however it is difficult to see the ridges on these distance spheres
(unlike the vertices of the distance curves when n = 2, see for example [26],[38]).
Another possibility is to define on the unit sphere of TpM the function 1/(R1R2),
a sort of ‘global Gauss curvature’. Finally, as the point p is dragged around in M
we would expect the ridge lines on the unit sphere in TpM (see Fig 4 for example)
to deform and perhaps undergo spontaneous transformations, of the type described
in [38] for n = 2 and [28],[14] for the Euclidean setting; but for now we turn our
attention to detecting conjugate points and hence the Jacobi coordinates and ridge
lines described in this section.

3. Detecting Conjugate Points

The key question in this section is: how do we detect conjugate points along
a unit speed geodesic γ emanating from some point p in M? This question is
reasonably straightforward in dimension 2: we simply solve the following initial
value problem

ξ′′ +K|γ ξ = 0, ξ(0) = 0, ξ′(0) = 1

(where K is the Gauss curvature) until ξ = 0; in a convex manifold this is guar-
anteed to happen within t ≤ π/

√
Kmin. However the complication in manifolds of

dimension 3 is that there is now enough ‘room’ for neighbouring geodesics to pass
behind γ (conjugate points are typically defined as we have above in terms of the
vanishing of Jacobi fields, but the more intuitive picture of intersecting neighbour-
ing geodesics can be made formal in the variational framework [12]). Our problem
is that not all orthogonal Jacobi fields will vanish at a conjugate point, and we do
not know a priori which Jacobi fields to track. What we seek is some scalar along
γ that vanishes (or even better changes sign) at a conjugate point. We emphasise
that the methods we wish to develop are to apply to convex 3-manifolds in general,
without assuming integrability or symmetry for example.

Let γ be a unit speed geodesic emanating from p ∈ M and let {γ′ = T,N,B} be
an orthonormal triple parallel transported along γ (in general there is no a priori
choice for N and B since γ′ is an arbitrary direction in TpM). We write a Jacobi
field along γ as

J = βT + ξN + ηB.

All Jacobi fields along γ satisfy the same Jacobi equation

D2J

dt2
+R(γ′(t), J)γ′(t) = 0, (3)

what distinguishes one Jacobi field from another is the initial conditions; as we are
interested in detecting points conjugate to p we set β ≡ 0. This leads to the linear
system (

ξ′′

η′′

)
= −

(
(T,N, T,N) (T,N, T,B)
(T,N, T,B) (T,B, T,B)

)(
ξ
η

)
(4)

where (A,B,C,D) = ⟨R(A,B)C,D⟩. This symmetric time-dependent matrix has
sectional curvatures on the diagonal and contractions of the Ricci tensor on the
off-diagonal.
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We now distinguish solutions to (4) by their initial conditions. The constraint
of J(0) = 0 implies that ξ(0) = η(0) = 0, leaving us with a 2-d space of initial
conditions in which to search for conjugate points. Due to the linearity of (4) we
are able to rescale the (ξ′(0), η′(0)) initial conditions to lie on the unit circle, to
arrive at a 1-parameter space of admissible Jacobi fields. To realise this we define
two linearly independent Jacobi Fields, Jξ and Jη, whose initial conditions are given
by

{ξ(0) = η(0) = 0, ξ′(0) = 1, η′(0) = 0}, (5)

{ξ(0) = η(0) = 0, ξ′(0) = 0, η′(0) = 1} (6)

respectively, and the following linear combination captures the family of Jacobi field
of interest:

Jα = Jξ cosα+ Jη sinα, α ∈ [0, 2π]. (7)

For any value of t, Jα is an ellipse in the {N,B} plane, with each point on the
ellipse corresponding to a specific Jacobi field, growing and shrinking and rotating
as we move along γ. When we reach a conjugate point a Jacobi field vanishes,
meaning that Jα collapses to a line segment at that value of t. If Jξ = ξ1N + η1B
and Jη = ξ2N + η2B, then we define

[Jξ, Jη] =

∣∣∣∣ξ1 ξ2
η1 η2

∣∣∣∣ . (8)

The area of the ellipse in the {N,B} plane is proportional to [Jξ, Jη] which vanishes
at a conjugate point. Thus, plotting this scalar versus t allows us to find the values
of t = R1 and t = R2. Even better, the ellipse must pass through itself (or change
orientation) as we pass a conjugate point and so this scalar will change sign, which
makes detecting zeroes easier. This is because conjugate points must be simple
zeroes of Jacobi fields (we cannot have a non-trivial J which satisfies both J = 0
and J ′ = 0 at some point), and so the vanishing Jacobi field must change sign at a
conjugate point and thus the ellipse changes orientation: the area of the ellipse has
a simple zero at a conjugate point (the exception to this is at an umbilic direction).
This is made more clear if we derive an equation for the area of the ellipse as follows:
if J1 and J2 are arbitrary Jacobi fields then

d

dt
[J1, J2] = [J ′

1, J2] + [J1, J
′
2], (9)

d2

dt2
[J1, J2] = −Tr(M)[J1, J2] + 2[J ′

1, J
′
2] (10)

where M is the matrix in (4) and Tr(M) = 2Ricγ(γ
′). Unfortunately due to the

inhomogeneous term in (10) we cannot simply solve this scalar equation instead
of (4), however it is also this term we gives non-trivial solutions given the trivial
initial data [J1, J2](0) = d

dt [J1, J2](0) = 0. Nonetheless we can use (9) to answer
the question posed in (2) in the previous section regarding J ′

u and Jv when showing
the ridges lift to ordinary cuspidal edges: if J1 = Ju and J2 = Jv then evaluating
(9) at t = R1 (assumed distinct from R2) we see

d

dt
[Ju, Jv]

∣∣∣∣
t=R1

= ([J ′
u, Jv] + [Ju, J

′
v])

∣∣∣∣
t=R1

= [J ′
u, Jv]

∣∣∣∣
t=R1

̸= 0 (11)
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since the area of the ellipse has a simple zero at a non-umbilic conjugate point and
therefore J ′

u and Jv are linearly independent at t = R1.
WhenM = S3r then the area of the ellipse is a multiple of sin2(t/r), with a double

root at t = πr, and this double root is the case for umbilic directions. However
when we perturb away from the sphere then generically the graph of [Jξ, Jη] will
dip below the axis giving two distinct roots, and these are the values t = R1 and
t = R2. Now we know the locations of conjugate points along a specific geodesic
emanating from p, we simply do the same for a spread of directions over the unit
sphere in TpM, and we can then plot the sheets of the first conjugate locus c1 and
c2; see the next section for some examples.

Now we know the distance functions R1, R2 we can draw the Jacobi coordinate
system as follows: for a particular geodesic emanating from p, we find the value
of α where |Jα(R1)| = 0, say α1, and this gives J ′

u(0) = cosα1N(0) + sinα1B(0).
We then follow this tangent vector field across the unit sphere to give a Jacobi
coordinate line; a similar process for J ′

v(0) = cosα2N(0) + sinα2B(0) where α2 is
the value of α where |Jα(R2)| = 0. Finally for the ridge points we simply evaluate
R1 (or R2) along the J ′

u(0) (or J ′
v(0)) Jacobi coordinate line just described, and

pick out stationary values. In the next section we will implement the methods
described in an important example: the 3-dimensional ellipsoid.

4. Case Study - 3d Ellipsoid

Our previous analysis was for convex 3-manifolds in general, and now we would

like to consider a particular case: the 3-ellipsoid given by
x2
1

a2 +
x2
2

b2 +
x2
3

c2 +
x2
4

d2 = 1 with
a, b, c, d ∈ R (also known as the quadraxial ellipsoid). This manifold has been stud-
ied in several works, for example [22] describe lines of umbilic points, [21] describe
the the focal sets in R4, and [10] study the integrability of the geodesic flow in the
case of equal middle semi-axes. An immediate question is what parameterization
to use; in [10] (and [18]) the ellipsoidal/elliptic coordinate system is used, in [21]
the ambient coordinates are used, and in [22] a combination of spherical polar and
elliptic coordinates are used depending on the symmetry class of the ellipsoid. For
this current work we will use the following spherical polar type parameterization

(a sin θ sinϕ cosψ, b sin θ sinϕ sinψ, c sin θ cosϕ, d cos θ),

with θ, ϕ ∈ (0, π), ψ ∈ (0, 2π).
To detect conjugate points along a geodesic we need to simultaneously solve

the geodesic equations, the parallel transport equations for N,B, and the Jacobi
equations in (4) and for these we need the components of the Riemann curvature.
In this parameterization there is essentially one term:

R1212 =

(
sin2(ϕ)

(
cos2(ψ)

a2
+

sin2(ψ)

b2

)
+

cos2(ϕ)

c2
+

cot2(θ)

d2

)−1

,

and from this we have

R1313 = R1212 sin
2 ϕ, R2323 = R1212 sin

2 θ sin2 ϕ

and the other non-zero terms come from the symmetries of the Riemann curvature.
All other terms are zero, and this markedly reduces computational time.
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Figure 2. The blue curve on the left (close up on the right)
depicts the area of Jα plotted against t for the initial condi-
tions (θ̇, ϕ̇, ψ̇) = (−0.730, 0.425,−0.774) and looks like a perturbed
sin2(t), as expected. The red curve depicts the area of Jα given by

the initial conditions (θ̇, ϕ̇, ψ̇) = (0.36, 0.694, 0.997), which touches
the t-axis at a double-root.

For demonstration purposes we will set the semi-axes to be (a, b, c, d) = (0.9, 1.05,
1.15, 1.2) and the base point p to be (θ, ϕ, ψ) = (π3 , 2.3,−

π
5 ). If we choose the tan-

gent vector for a geodesic through p from the unit sphere in TpM, we then choose
N(0), B(0) orthonormal to it and solve the geodesic equations, parallel transport
equations and Jacobi equations (4) twice with the initial conditions given in (5),(6)
to find Jξ and Jη, and hence Jα. Some example plots of (8) against t are given in

Figure 2. We see that these curves have the approximate form of sin2(t) which dips
down below the axis to give two roots as expected from the previous section; these
two roots t = R1 and t = R2 are the first conjugate points corresponding to the
vanishing of two distinct Jacobi fields. We note there are some directions for which
the function in Figure 2 touches the axis at a double root, these are the ‘umbilic
directions’ mentioned in the previous section.

With the values of R1 and R2 found, we may recover the (θ, ϕ, ψ) coordinates
of these two first conjugate points along the geodesic emanating from p, and we
do the same for a sphere’s worth of directions in TpM; finally we may plot the
two sheets of the conjugate locus in the coordinate space, see Figure 3. Firstly we
observe the two sheets intersect one another in a complex way, so in Figure 3(a)
we plot the sheets with low opacity so we can see inside. In Figure 3(b) and (c) we
show the first sheet by itself, so we can more easily see the singularity structure:
there is a closed rib that encircles the sheet, and two partial ribs that smooth out
at either end. The second sheet is the same: one closed rib and two partial ribs.
When the sheets are put together, we see the four partial ribs join to form a third
closed rib, shared between the two sheets; the points where the partial ribs meet
correspond to umbilic directions. We note that the base point p chosen previously
has three distinct principal curvatures, and that the picture in Figure 3(a) mirrors
the form of the focal sets of a 2-ellipsoid with three distinct semi-axes, as claimed
in the Introduction.

We now construct the previously described Jacobi coordinate system on the unit
tangent-sphere given by the integral curves defined by the directions of collapsing
Jacobi fields. At t = 0 these directions are the initial velocity vectors of the van-
ishing Jacobi fields which correspond to the first and second conjugate points. As t
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(a) (b)

(c)

Figure 3. The first conjugate locus in the quadraxial ellipsoid,
for the semi-axes and base point given in the text. In (a) we see
both sheets of the conjugate locus together (low-opacity). Shown
thick are the 4 quarter-ribs of both sheets joining to form a closed
curve, along with the complete rib from each sheet, and the umbilic
directions shown in purple. In (b) and (c) we show the first sheet
of the conjugate locus from two different angles; note the closed
rib and two partial ribs.
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Figure 4. On the left the Jacobi coordinate lines on the unit
tangent-sphere. The integral curves of the velocity vector of the
first collapsing Jacobi fields are shown in red, those of the second
are shown in blue. On the right are the ridge lines: we see two
closed curves corresponding to the closed ribs on each sheet of the
conjugate locus, and four partial ridges, corresponding to the four
partial ribs, which meet at the umbilic directions to form a closed
curve.

increases Jα grows and shrinks in these two directions, collapsing to a line segment
at t = R1 and t = R2. To recover the corresponding α-values, denoted α1 and α2,
for which

|Jα(t = Ri)| = 0, i = 1, 2

we compute the norm of Jα at both t = R1 and t = R2 over α ∈ [0, 2π] and extract
the roots. Hence, we may now construct the integral curves of J ′

u(0) and J
′
v(0) to

give us the previously described Jacobi Coordinate system, shown in Figure 4 on
the left, for the base point mentioned previously (we let red and blue denote the u
and v coordinate lines respectively). We note the similarity between these Jacobi
coordinate lines on the tangent-sphere and the curvature lines of the 2-ellipsoid, in
particular we observe the coordinate lines as typically closed curves with a lemon
structure at (hyperbolic) umbilic directions.

Finally we find the ridge lines (the curves on the unit tangent-sphere which lift
to the ribs under X), by detecting stationary points of R1 and R2 along the u and
v coordinate lines respectively. That these ridge points must exist is immediate
since for the Jacobi coordinate lines which are closed curves, the functions R1 and
R2 restricted to them will generically have stationary points; as many maxima as
minima and at least one of each. Again we let red and blue denote R1,u = 0 and
R2,v = 0 ridge lines respectively. We observe two closed ridge lines, one red and one
blue, and one ridge line that passes from red to blue at the umbilic directions. These
stationary points may be further separated into maxima and minima, allowing us to
see some of the structure more clearly: the closed red ridge line represents minima
of R1, the closed blue line maxima of R2. The broken line has maxima of R1

meeting minima of R2 at umbilic directions.
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While the plots shown seem quite complex, nonetheless we conjecture that the
rib structure on the quadraxial ellipsoid is the simplest possible, that is (in analogy
with the 4 vertex theorem or vierspitzensatz) the conjugate locus of a generic base
point in a compact convex 3-manifold must have at least three ribs.

5. Conclusions

In this paper we have constructed a special coordinate system on the unit tangent
sphere which we claim is a natural choice for studying the geometry and singular
structures of the conjugate locus; it enables us to view the preimages of the ribs
of the conjugate locus, observe the local structure surrounding umbilic directions,
and view the similarities between this Jacobi coordinate system and the curvature
lines of lower dimensional manifolds. Building on this approach we then developed
a novel formalism for detecting conjugate points by tracking the area of the ellipse
generated by a family of Jacobi fields around a central geodesic, before investi-
gating the 3-ellipsoid as a case study to demonstrate the results and methodology
described.

Further experimentation with the simulations described in this paper would be of
interest: choosing different basepoints (including non-generic and umbilic points)
to see how the structure of the conjugate locus is affected and test further the
conjecture of the Introduction relating to ellipsoids; but also to broaden the study
to manifolds other than ellipsoids, such as 3-d versions of the spherical harmonics
mentioned in [37, 38]. Also alluded to previously, it would be interesting to see how
the conjugate locus transforms as the base point is dragged around in the manifold,
especially in terms of the bifurcations of the ridges and ribs (see [28]).

We also note the symmetric coefficient matrix of (4). While there is much
known about constant symmetric matrices and normal modes, there is not much
in the literature about time-dependent symmetric matrices (but see for example
[23]); perhaps the eigenvectors of this matrix might provide a natural choice for
N(0), B(0). We also observe how the rotation of the Jα ellipse in the {N,B} plane,
or lack thereof, might be worth further attention.

Finally, the method for detecting conjugate points extends very naturally to
higher dimensions; for example if n = 4 we will now have an ellipsoid in the orthog-
onal complement of γ′ which collapses to a disc at conjugate points, but provides
still an oriented volume that changes sign (like a perturbed sin3 t). The potential
limitations here come with trying to visualize the results since now the coordinate
space will be of dimension 4, but sections might be the way forward (see [21]).
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