
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 52 (2021), 585–604
https://doi.org/10.53733/148

VAUGHAN JONES, KOLMOGOROV COMPLEXITY, AND THE

NEW COMPLEXITY LANDSCAPE AROUND CIRCUIT

MINIMIZATION

Eric Allender
(Received 31 July, 2021)

Abstract. We survey recent developments related to the Minimum Circuit Size

Problem and time-bounded Kolmogorov Complexity.

1. Introduction

When listing the many accomplishments of Vaughan Jones, the obituaries did
not mention the fact that he is indirectly responsible for much of the modern devel-
opment of the study of Algorithmic Information Theory, also known as Kolmogorov
Complexity. This is because much of this modern development was spurred on by
Rod Downey and Denis Hirschfeldt, who wrote, in the preface and acknowledgments
for their influential book [22]:

At the time, neither of us knew much about Kolmogorov com-
plexity, but we had a distinct interest in it after Lance Fortnow’s
illuminating lectures at Kaikoura in January 2000. . . . As men-
tioned in the preface, our early interest in Kolmogorov complexity
was stimulated by a talk given by Lance Fortnow at a conference
in Kaikoura . . .

The conference in Kaikoura in January, 2000 was organized by the New Zealand
Mathematical Research Institute (NZMRI), which owes its existence to the efforts
of Vaughan Jones. I was also a participant in the 2000 Kaikoura conference, and
that was the first time I met Vaughan. It was indeed a stimulating conference, and
it led to other research-related visits to New Zealand.

One of those visits included participation in a meeting held to celebrate a signifi-
cant birthday for Rod Downey, and I wrote a contribution to the Festschrift survey-
ing the connections between Kolmogorov complexity and computational complexity
theory [1]. Three years later, that survey was already out of date, with several of
the open questions that were mentioned in [1] newly resolved, and some of the con-
jectures mentioned in [1] consigned to the scrap heap. (In particular, recent work
[29] shows that these conjectures are extremely unlikely to be true.) Thus, when I
was invited to give a keynote address at a conference in Milan in 2020 (which was
postponed to the fall of 2021 due to COVID) I wrote a survey article [2] entitled
“The New Complexity Landscape around Circuit Minimization” (emphasis added),
where by “New” I signaled my intent to avoid repeating too many of the observa-
tions that were made in [1]. (It turns out that the studies of Circuit Minimization
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and Kolmogorov Complexity are closely related.) That survey began with these
paragraphs:

Over the past few years, there has been an explosion of interest in
the Minimum Circuit Size Problem (MCSP) and related problems.
Thus the time seemed right to provide a survey, describing the new
landscape and offering a guidebook so that one can easily reach the
new frontiers of research in this area.

It turns out that this landscape is extremely unstable, with new
features arising at an alarming rate. Although this makes it a
scientifically-exciting time, it also means that this survey is doomed
to be obsolete before it appears. It also means that the survey is
going to take the form of an “annotated bibliography” with the in-
tent to provide many pointers to the relevant literature, along with
a bit of context.

As predicted, that survey, which was written for a conference that has not yet
even taken place (due to the pandemic), is indeed already obsolete, with several
important advances being announced in just the past year. Also, some unfortunate
typographical errors and at least one misstatement wormed their way into [2]. Thus
I offer this updated survey.

2. Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The
focus of meta-complexity is to determine how hard it is to determine how hard
problems are. Some of the most exciting recent developments in complexity theory
have been the result of meta-complexity-theoretic investigations.

The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of
determining the circuit complexity of functions. The input consists of a pair (f, i),
where f is a bit string of length N = 2n representing the truth-table of a Boolean
function, and i ∈ N, and the problem is to determine if f has a circuit of size at
most i.1 The study of the complexity of MCSP is therefore the canonical meta-
complexity-theoretic question. Complexity theoreticians are fond of complaining
that the problems they confront (showing that computational problems are hard to
compute) are notoriously difficult. But is this really true? Is it hard to show that
a particular function is difficult to compute? This question can be made precise by
asking about the computational complexity of MCSP. (See also [55] for a different
approach.)

A small circuit is a short description of a large truth-table f ; thus it is no
surprise that investigations of MCSP have made use of the tools and terminology
of Kolmogorov complexity. In order to discuss some of the recent developments,
it will be necessary to review some of the different notions, and to establish the
notation that will be used throughout the rest of the article.

1The terms “circuit” and “size” are intentionally left undefined here. There are many reasonable
choices (such as “size” being the number of gates, or the number of wires, or the length of an
encoding of the circuit description, or “circuits” consisting only of NAND gates, or allowing
threshold gates, etc.) It is conceivable – although seemingly unlikely – that these variants have

very different complexity. No reductions among these variants are known.
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Let U be a Turing machine. We define KU (x) to be min{|d| : U(d) = x}. Those
readers who are familiar with Kolmogorov complexity2 will notice that the defini-
tion here is for what is sometimes called “plain” Kolmogorov complexity, although
the notation KU (x) is more commonly used to denote what is called “prefix-free”
Kolmogorov complexity. This is intentional. In this survey, the distinctions be-
tween these two notions will be blurred, in order to keep the discussion on a high
level. Some of the theorems that will be mentioned below are only known to hold
for the prefix-free variant, but the reader is encouraged to ignore these finer dis-
tinctions here, and seek the more detailed information in the cited references. For
some Turing machines U , KU (x) will not be defined for some x, and the values
of KU (x) and KU ′(x) can be very different, for different machines U and U ′. But
the beauty of Kolmogorov complexity (and the applicability of the theory it gives
rise to) derives from the fact that if U and U ′ are universal Turing machines, then
KU (x) and KU ′(x) differ by at most O(1). By convention, we select one particular
universal machine U and define K(x) to be equal to KU (x).

The function K is not computable. The simplest way to obtain a computable
function that shares many of the properties of K is to simply impose a time bound,
leading to the definition Kt(x) := min{|d| : U(d) = x in time t(|x|)} where t is a
computable function. Although it is useful in many contexts, Kt(x) does not appear
to be closely connected to the circuit size of x (where x is viewed as the truth-table
of a function). Thus we will frequently refer to two additional resource-bounded
Kolmogorov complexity measures, Kt and KT.

Levin defined Kt(x) to be min{|d| + log t : U(d) = x in time t} [41]; it has the
nice property that it can be used to define the optimal search strategy to use, in
searching for accepting computations on a nondeterministic Turing machine. Kt(x)
also corresponds to the circuit size of the function x, but not on “normal” circuits.
As is shown in [4], Kt(x) is roughly the same as the size of the smallest oracle circuit
that computes x, where the oracle is a complete set for EXP. (An oracle circuit has
“oracle gates” in addition to the usual AND, OR, and NOT gates; an oracle gate
for oracle A has k wires leading into it, and if those k wires encode a bitstring y of
length k where y is in A, then the gate outputs 1, otherwise it outputs 0.)

It is clearly desirable to have a version of Kolmogorov complexity that is more
closely related to “ordinary” circuit size, instead of oracle circuit size. This is
accomplished by defining KT(x) to be min{|d|+ t : U(d, i) = xi in time t}. (More
precise definitions can be found in [4, 14].)

We have now presented a number of different measures Kµ ∈ {K,Kt,Kt,KT}.
In order to connect the problem of computing these measures to the framework of
complexity classes, it is useful to define corresponding decision problems, as follows:
By analogy with MCSP, we can study Kµ in place of the “circuit size” measure,
and thus obtain various problems of the form MKµP = {(x, i) : Kµ(x) ≤ i}, such

as MKTP, MKtP and MKtP. If t(n) = nO(1), then MKtP is in NP, and several
theorems about MKTP yield corollaries about MKtP in this case. (See, e.g. [4]).
Similarly, if t(n) = 2n

c

for some c > 0, then MKtP is in EXP, and several theorems
about MKtP yield corollaries about MKtP for t in this range [4].

2If the reader is not familiar with Kolmogorov complexity, then we recommend some excellent

books on this topic [43, 22].
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Table 1. List of the main complexity measures and decision prob-
lems dealing with Kolmogorov complexity considered here.

Complexity Measure Definition Decision Problem
K min{|d| : U(d) = x} MKP
Kt min{|d| : U(d) = x in time t(|x|)} MKtP
Kt min{|d|+ log t : U(d) = x in time t} MKtP
KT min{|d|+ t : U(d, i) = xi in time t} MKTP

In order to highlight some of the recent developments, let us introduce some
notation that is somewhat imprecise and which is not used anywhere else, but
which will be convenient for our purposes. Let Kpoly serve as a shorthand for Kt

whenever t = nO(1), and similarly let Kexp serve as a shorthand for Kt whenever
t = 2n

c

for some c > 0. We will thus be referring to MKpolyP and MKexpP. Doing
so will enable us to avoid some confusing notation surrounding the name MinKT,
which was introduced by Ko [40] to denote the set

MinKT = {(x, 1t, 1i) : ∃d [U(d) = x in at most t steps and |d| ≤ i]}.

That is, (x, i) ∈ MKpolyP iff (x, 1n
c

, i) ∈ MinKT (where the time bound t(n) = nc).
Hence these sets have comparable complexity and results about MinKT can be
rephrased in terms of MKpolyP with only a small loss of accuracy. In particular,
some recent important results [27, 28] are phrased in terms of MinKT, and as such
they deal with Kpoly complexity, and they are not really very closely connected
with the KT measure; the name MinKT was devised more than a decade before
KT was formulated. The reader who is interested in the details should refer to
the original papers for the precise formulation of the theorems. However, the view
presented here is “probably approximately correct”.

Frequently, theorems about MCSP and the various MKµP problems are stated
not in terms of exactly computing the circuit size or the complexity of a string, but
in terms of approximating these values. This is usually presented in terms of two
thresholds θ1 < θ2, where the desired solution is to say yes if the complexity of x
is less than θ1, and to say no if the complexity of x is greater than θ2, and any
answer is allowed if the complexity of x lies in the “gap” between θ1 and θ2. In the
various theorems that have been proved in this setting, the choice of thresholds θ1

and θ2 is usually important, but in this article those details will be suppressed, and
all of these approximation problems will be referred to as GapMCSP, GapMKtP,
GapMKTP, etc.

At this point, the reader’s eyes may be starting to glaze over. It is natural to
wonder if we really need to have all of these different related notions. In particu-
lar, there does not seem to be much difference between MCSP and MKTP. Most
hardness results for MCSP actually hold for GapMCSP, and if the “gap” is large
enough, then MKTP is a solution to GapMCSP (and vice-versa). Furthermore it has
frequently been the case that a theorem about MCSP was first proved for MKTP
and then the result for MCSP was obtained as a corollary. However, there is no
efficient reduction known (in either direction) between MCSP and MKTP, and there
are some theorems that are currently known to hold only for MKTP, although they
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are suspected to hold also for MCSP (e.g., [8, 10, 31, 20]).3 Similarly, some of the
more intriguing recent developments can only be understood by paying attention
to the distinction between different notions of resource-bounded Kolmogorov com-
plexity. Thus it is worth making this investment in defining the various distinct
notions.

3. Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov
complexity were identified soon after computational learning theory emerged as a
field. After all, the goal of computational learning theory is to find a satisfactory
(and hence succinct) explanation of a large body of observed data. For instance,
in the 1980s and 1990s (and even earlier [25]) there was work [56, 57] showing
that it is NP-hard to find “succinct explanations” that have size somewhat close
to the optimal size, if these “explanations” are required to be finite automata or
various other restricted formalisms. Ko studied this in a more general setting,
allowing “explanations” to be efficient programs (in the setting of time-bounded
Kolmogorov complexity).

Thus Ko studied not only the problem of computing Kpoly(x) (where one can
consider x to be a completely-specified Boolean function), but also the problem of
finding the smallest description d such that U(d) agrees with a given list of “yes
instances” Y and a list of “no instances” N (that is, x can be considered as a
partial Boolean function, with many “don’t care” instances). Thus, following [36],
we can call this problem Partial-MKpolyP. In the setting that is most relevant for
computational learning theory, the partial function x is presented compactly as
separate lists Y and N , rather than as a string of length 2n over the alphabet
{0, 1, ∗}.

Ko showed in [40] that relativizing techniques would not suffice, in order to settle
the question of whether MKpolyP and Partial-MKpolyP are NP-complete. That is,
by giving the universal Turing machine U that defines Kolmogorov complexity

access to an oracle A, one obtains the problems MKpolyP
A

and Partial-MKpolyP
A

,
and these sets can either be NPA-complete or not, depending on the choice of A.

Thus it is noteworthy that it has recently been shown that Partial-MCSP is
NP-complete under ≤P

m reductions [36]. (As is usually the case4, the proof also
establishes that Partial-MKTP is NP-complete under ≤P

m reductions.) One lesson
to take from this is that KT and Kpoly complexity differ from each other in signifi-
cant ways, since the result of Ko mentioned in the previous paragraph shows that
Partial-MKpolyP, cannot be shown to be NP-complete using relativizing techniques.
There are other recent examples of related phenomena, which will be discussed
below.

There are other strong connections between MCSP and learning theory that have
come to light recently. Using MCSP as an oracle (or even using a set that shares

3Given the close connection between KT and circuit size, the case can be made that MKTP is a
particularly convenient formulation of MCSP. They are suspected to have equivalent complexity,

but it seems to be easier to prove theorems about MKTP than MCSP.
4In fact, I am not aware of any instance where a theorem has been proved for MCSP and the proof
does not carry over to MKTP. As mentioned in the last paragraph of the preceding section, there

are some theorems that have been proved for MKTP that are not (yet) known to hold for MCSP.
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certain characteristics with MCSP) one can efficiently learn small circuits that do a
good job of explaining the data [15]. For certain restricted classes of circuits, there
are sets in P that one can use in place of MCSP to obtain learning algorithms that
don’t require an oracle [15]. This connection has been explored further [51, 16].

4. Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete
under ≤P

m reductions. In order to discuss other results about the complexity of
MCSP and related problems it is necessary to go into more detail about different
notions of reducibility.

Let C be either a class of functions or a class of circuits. The classes that will
concern us the most are the standard complexity classes L ⊆ P ⊆ NP as well as the
circuit classes (both uniform and nonuniform):

NC0 ( AC0 ( AC0[p] ( NC1 ⊆ P/poly.

We refer the reader to the text by Vollmer [63] for background and more complete
definitions of these standard circuit complexity complexity classes, as well as for a
discussion of uniformity.

We say that A≤CmB if there is a function f ∈ C (or f computed by a circuit family

in C, respectively) such that x ∈ A iff f(x) ∈ B. We will make use of ≤P
m,≤L

m,≤AC0

m ,

≤NC0

m , and ≤proj
m reducibility. This last notion (≤proj

m ), refers to projections, which
are functions computed by NC0 circuits that have only NOT gates. That is, in a
projection, each output bit is either a constant 0 or 1, or is connected by a wire to
an input bit or its negation.

The more powerful notion of Turing reducibility also plays an important role in
this work. Here, C is a complexity class that admits a characterization in terms of
Turing machines or circuits, which can be augmented with an “oracle” mechanism,
either by providing a “query tape” or “oracle gates”. We say that A≤CTB if there
is a oracle machine in C (or a family of oracle circuits in C) accepting A, when

given oracle B. We make use of ≤P/poly
T ,≤RP

T ,≤ZPP
T ,≤BPP

T ,≤P
T,≤L

T, ≤NC1

T and ≤AC0

T

reducibility; instead of writing A≤P/poly
T B or A≤ZPP

T B, we will sometimes write

A ∈ PB/poly or A ∈ ZPPB . Turing reductions that are “nonadaptive” – in the
sense that the list of queries that are posed on input x does not depend on the
answers provided by the oracle – are called truth table reductions. We make use of

≤P
tt and ≤P/poly

tt reducibility.
Once again, the reader may protest that this profusion of different notions of

reducibility is unjustified and unmotivated. We will return to discuss this objection,
after we present some of the hardness and non-hardness results, so that the reader
will be in a better position to understand the motivation.

4.1. Hardness of MCSP. The strongest hardness results that are known for the
MKµP problems in NP remain the results of [6], where it was shown that MCSP,
MKTP, and MKpolyP are all hard for SZK under ≤BPP

T reductions. SZK is the class
of problems that have statistical zero knowledge interactive proofs; SZK contains
most of the problems that are assumed to be intractable, in order to build public-
key cryptosystems. Thus it is widely assumed that MCSP and related problems lie
outside of P/poly, and cryptographers hope that it requires nearly exponential-sized



THE NEW COMPLEXITY LANDSCAPE AROUND CIRCUIT MINIMIZATION 591

circuits. SZK also contains the Graph Isomorphism problem, which is ≤RP
T -reducible

to MCSP and MKTP. In [8], Graph Isomorphism (and several other problems) were
shown to be ≤ZPP

T reducible to MKTP; it remains unknown if this also holds for
MCSP. In fact, there is no interesting example of a problem A that is not known
to be in NP ∩ coNP that has been shown to be ≤ZPP

T reducible to MCSP.
Although it is useful to know that every problem in SZK is “efficiently reducible”

(via a BPP reduction) to MCSP, this does not yield any unconditional lower bounds
on the complexity of MCSP, since it is still open whether BPP = EXP. Thus there
is motivation to consider very restrictive reductions:

Theorem 1. [7] MKTP is hard for co-NISZKL under non-uniform ≤proj
m reductions.

This also holds for MKtP and MKP.

Here, co-NISZKL is a subclass of SZK that – like SZK – contains several problems
that are widely believed to be cryptographically hard. It includes the well-known
complexity classes L and NL, as well as the class known as DET: the class of
problems NC1-Turing-reducible to computing the determinant.

Because projections are so computationally weak, this immediately implies that
MKTP is not in AC0[p] for any prime p. (This was mentioned as an open question
in [1] (see footnote 2 of [1]).) It also implies that MKTP cannot be computed

by THRESHOLD◦MAJORITY circuits of size 2n
o(1)

, by appealing to a lower bound
proved in [23]. It is currently still open whether this latter lower bound holds also
for MCSP.

The AC0[p] lower bound for MKTP was first proved in [10]. It remained open
whether MCSP was in AC0[p] until this was established in [26], by showing that the
problem of computing the determinant of integer matrices is reducible to MCSP

via non-uniform ≤AC0

T reductions. Incidentally, it is no accident that the reductions
presented in [7, 10, 26] are non-uniform. If one can show that MCSP or MKTP

is hard for TC0 under uniform ≤AC0

T reductions, then one will have shown that
NP 6= TC0 [11]. Of course, most researchers would conjecture that NP 6= TC0, and
thus this should not be taken as evidence that non-uniformity is essential – only
that it is essential given our current inability to prove lower bounds.

4.2. Negative hardness results. In the last section, we noted that proving hard-

ness for MKTP under uniform ≤AC0

T reductions will be difficult with our current
understanding. This is just one example of what is by now a large collection of
results, showing either that MCSP is not hard under a class of reductions, or at
least showing that it will be difficult to show that it is hard. Table 2 is an updated
version of a similar table that appeared in my earlier survey [1]. Table 2 presents
information about the consequences that will follow if MCSP is NP-complete (or
even if it is hard for certain subclasses of NP). There is some redundancy in the
table, since some readers will primarily be interested in the consequences that fol-
low if MCSP is NP-complete under ≤P

m reductions, even though that line in the
table follows from the lines dealing with hardness for subclasses of NP under even
more powerful reductions. The “???” entry indicates that no consequences are
known, if MCSP is NP-complete under ≤P

T reductions. The table does not include
results about some restricted versions of ≤P

m reductions, although the theorems of
this type that were proved by Kabanets and Cai [39] were influential in starting off
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this line of research. One thing should jump out at the reader from Table 2: All
of the conditions listed in Column 3 (with the exception of “FALSE”) are widely
believed to be true, although they all seem to be far beyond the reach of current
proof techniques.

It is significant that neither MCSP nor MKTP is NP-complete under ≤n1/3

m reduc-
tions, since SAT and many other well-known problems are complete under this very
restrictive notion of reducibility – but it would be more satisfying to know whether

these problems can be complete under more widely-used reducibilities such as ≤AC0

m .
These sublinear-time reductions are so restrictive, that even the PARITY problem

is not ≤n1/3

m -reducible to MCSP or MKTP.

Table 2. Summary of what is known about the consequences of
MCSP being hard for NP under different types of reducibility. If
MCSP is hard for the class in Column 1 under the reducibility
shown in Column 2, then the consequence in Column 3 follows.

class C reductions R statement S Reference

TC0 ≤n1/3

m FALSE5 [50]

TC0 ≤AC0

m LTH6 6⊆ io-SIZE[2Ω(n)] and P = BPP [11, 50]

TC0 ≤AC0

m NP 6⊆ P/poly [11]

TC0 ≤AC0

T NP 6= TC0 [10]

NC1 ≤AC0

T NP 6= NC [10]

P ≤L
m PSPACE 6= P [11]

ZPP ≤L
T PSPACE 6= ZPP implicit in [24]

ZPP ≤P
tt EXP 6= ZPP [24]

NP ≤AC0

T NP 6= (MA ∩ P/poly) [10]

NP ≤P
m EXP 6= ZPP [50]

NP ≤P
tt EXP 6= ZPP [33]

NP ≤P
T ??? [60]

I suspect that Theorem 1 holds also for MCSP. Let us pause, to consider one
of the obstacles to proving this. The proof of Theorem 1 actually carries over to a
version of GapMKTP where the “gap” is quite small. Thus one avenue for proving
a hardness result for MCSP had seemed to be to improve the hardness result for
MKTP, so that it worked for a much larger “gap”. This avenue was subsequently
blocked, when it was shown that PARITY is not AC0-reducible to GapMCSP (or to
GapMKTP) for a moderate-sized “gap” [12]. Thus, although it is still open whether

MCSP is NP-complete under ≤AC0

m reductions, we now know that GapMCSP is not
NP-complete under this notion of reducibility.

When a much larger “gap” is considered, it was shown in [10] that, if cryp-
tographically-secure one-way functions exist, then GapMCSP and GapMKTP are
NP-intermediate in the sense that neither problem is in P/poly, and neither problem
is complete for NP under P/poly-Turing reductions.

We close this section with a discussion of a very powerful notion of reducibility:
SNP reductions. (Informally A is SNP reducible to B means that A is (NP ∩

5The notation “≤n1/3

m ” refers to “local reductions” computable in time bounded by the cube root

of the input length. This is an important non-hardness result, because SAT and most familiar
NP-complete problems are complete under local reductions computable even in logarithmic time.
6LTH is the linear-time analog of the polynomial hierarchy. Problems in LTH are accepted by

alternating Turing machines that make only O(1) alternations and run for linear time.
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coNP)-reducible to B.) Hitchcock and Pavan have shown, under the very plausible
assumption that NP ∩ coNP contains problems that require large circuits, that if
MCSP is NP-complete (under the usual ≤P

m reductions), then it is also complete
under SNP reductions whose queries avoid asking about very small circuit sizes;
they are able to use this as a tool to derive additional interesting consequences
from the assumption that MCSP is NP-complete [33]. It is interesting to note that,
back in the early 1990’s, Ko explicitly considered the possibility that computing
MKpolyP might be NP-complete under SNP reductions [40].

4.3. Completeness in EXP and other classes. There are problems “similar”
to MCSP that reside in many complexity classes. We can define MCSPA to be
MCSP for oracle circuits with A-oracle gates. That is, MCSPA = {(f, i) : f has

an A-oracle circuit of size at most i}. When A is complete for EXP, then MCSPA

is thought of as being quite similar to MKtP. Both of these problems, along with

MKexpP, are complete for EXP under ≤P/poly
tt and ≤NP

T reductions, and neither is
complete for EXP under ≤P

tt reductions [4].

It is still open whether either of MKtP or MCSPA is in P, and it had been open
if MKtP is in P for “small” exponential functions t such as t(n) = 2n/2. But there
is recent progress:

Theorem 2. [28] MKexpP is complete for EXP under ≤ZPP
T reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].
In contrast to MKtP, we know that MKexpP is not in P. In fact, a much stronger

result holds. Let t be any superpolynomial function. Then the set of Kt-random
strings {x : Kt(x) < |x|} is immune to P (meaning: it has no infinite subset in
P) [28]. The proof does not seem to carry over to Kt complexity, highlighting a
significant difference between Kt and Kexp.

Although it remains open whether MKtP ∈ P, Hirahara [29] does show that
MKtP is not in P-uniform ACC0, and in fact the set of Kt-random strings is immune
to P-uniform ACC0. Furthermore, improved immunity results for the Kt-random
strings are in some sense possible if and only if better algorithms for CircuitSAT
can be devised for larger classes of circuits [28].

Oliveira has defined a randomized version of Kt complexity, which is conjec-
tured to be nearly the same as Kt, but for which he is able to prove unconditional
intractability results [52]. Lu and Oliveira also show that a version of the “cod-
ing theorem” for Kolmogorov complexity holds for this randomized version of Kt,
which is a nice property not known to hold for other versions of resource-bounded
Kolmogorov complexity [48].

MCSPQBF was known to be complete for PSPACE under ≤ZPP
T reductions [4].

In more recent work, for various subclasses C of PSPACE, when A is a suitable
complete problem for C, then MCSPA has been shown to be complete for C under
≤BPP

T reductions [38]. Crucially, the techniques used by [38] (and, indeed, by any

of the authors who had proved hardness results for MCSPA previously for various
A) failed to work for any A in the polynomial hierarchy. We will return to this
issue in the following section.

In related work, it was shown [10] that the question of whether MKTPA is
hard for DET under a type of uniform AC0 reductions is equivalent to the question
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of whether DSPACE(n) contains any sets that require exponential-size A-oracle

circuits. Furthermore, this happens if and only if PARITY reduces to MKTPA. Note
that this condition is more likely to be true if A is easy, than if A is complex; it is
false if A is complete for PSPACE, and it is probably true if A = ∅. Thus, although
MKTPQBF is almost certainly more complex than MKTP (the former is PSPACE-
complete, and the latter is in NP), a reasonably-large subclass of P probably reduces
to MKTP via these uniform AC0 reductions, whereas hardly anything AC0-reduces
to MKTPQBF. The explanation for this is that a uniform AC0 reduction cannot
formulate any useful queries to a complex oracle, whereas it (probably) can do so
for a simpler oracle.

4.4. NP-Hardness. Recall from the previous section that there were no NP-hardness
results known for any problem of the form MCSPA where A is in the polynomial
hierarchy.

This is still true; however, there is some progress to report. Hirahara has shown
that computing the “conditional” complexity Kpoly(x|y) relative to SAT (i.e., given

(x, y), finding the length of the shortest description d such that USAT(d, y) = x in
time nc) is NP-hard under ≤P

tt reductions [28].
It might be more satisfying to remove the SAT oracle, and have a hardness result

for computing Kpoly(x|y) – but Hirahara [29] shows that this can’t be shown to be
hard for NP (or even hard for ZPP) under ≤P

tt reductions without first separating
EXP from ZPP.

In a similar vein, if one were to show that MCSP or MKTP (or MCSPA or MKTPA

for any set A ∈ EXP) is hard for NP under ≤P
tt reductions, then one will have shown

that ZPP 6= EXP [28].
One should be careful how to interpret these results. To illustrate this, let me

restate the result above, and provide additional context, for the particular case
where A is complete for EXP (in which case the proof carries over to MKtP: the
problem of computing Levin’s Kt complexity).
(1) If MKtP is hard for NP under ≤P

tt reductions, then ZPP 6= EXP [28].
(2) If MKtP is hard for ZPP under ≤P

tt reductions, then ZPP 6= EXP (This follows
from the proof given in [24], showing the analogous result where MKtP is
replaced by MCSP.)

(3) If MKtP is hard for NP under ≤P
m reductions, then EXP = NEXP [11].

The second item is a strengthening of the first item; each of the first two items seem
to be saying that we should not expect a proof in the near future, showing that
MKtP is hard for NP (or even for ZPP) under ≤P

m reductions, since this would pro-
vide the long-awaited proof that EXP is not equal to ZPP. But the third item shows
that the “expected” conclusion that ZPP 6= EXP follows because of the extremely
unlikely condition EXP = NEXP. Thus we should certainly not expect that MKtP
is NP-hard under ≤P

m reductions. These results give us no guidance, regarding
whether we should expect that MKtP is hard for ZPP under ≤P

m reductions.7

But let us return to the topic of NP-hardness for conditional versions of Kol-
mogorov complexity.

A different kind of NP-hardness result for conditional Kolmogorov complexity
was proved recently by Ilango [34]. In [4], conditional KT complexity KT(x|y) was

7Of course, under the popular conjecture that ZPP = P, hardness holds trivially.
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studied by making the string y available to the universal Turing machine U as an
“oracle”. Thus it makes sense to consider a “conditional complexity” version of
MCSP by giving a string y available to a circuit via oracle gates. This problem was
formalized and shown to be NP-complete under randomized reductions8[34]. This
proof was adapted [5] to show that McKTP = {(x, y, i) : KT(x|y) ≤ i} is also NP-
complete under randomized reductions. Neither of these problems can be shown
to be hard for NP (or even for ZPP) under ≤P

tt reductions, without first showing
ZPP 6= EXP (by adapting the proof in [24]).

Many of the functions that we compute daily produce more than one bit of
output. Thus it makes sense to study the circuit size that is required in order to
compute such functions. This problem is called Multi-MCSP in [36], where it is
shown to be NP-complete under randomized reductions. It will be interesting to
see how the complexity of this problem varies, as the number of output bits of
the functions under consideration shrinks toward one (at which point it becomes
MCSP).

It has been known since the 1970’s that computing the size of the smallest
DNF expression for a given truth-table is NP-complete. (A simple proof, and a
discussion of the history can be found in [9].) However, it remains unknown what
the complexity is of finding the smallest depth-three circuit for a given truth table.
(Some very weak intractability results for minimizing constant-depth circuits can
be found in [9], giving subexponential reductions from the problem of factoring
Blum integers.) The first real progress on this front was reported in [30], giving an
NP-completeness result (under ≤P

m reductions) for a class of depth three circuits
(with MOD gates on the bottom level). Ilango proved that computing the size of the
smallest depth-d formula for a truth-table lies outside of AC0[p] for any prime p [34],
and he has now followed that up with a proof that computing the size of the smallest
depth-d formula is NP-complete under randomized quasipolynomial-time reductions
[35]. Note that a constant-depth circuit can be transformed into a formula with
only a polynomial blow-up; thus in many situations we are able to ignore the
distinction between circuits and formulas in the constant-depth realm. However,
the techniques employed in [35, 34] are quite sensitive to small perturbations in
the size, and hence the distinction between circuits and formulae is important here.
Still, this is dramatic progress on a front where progress has been very slow.

4.5. Why so many kinds of reducibility? I was pleased to be invited to give a
lecture on Metacomplexity at the 2021 Computational Complexity Conference [3].
One of the questions from the audience after the lecture essentially asked: “Why
do you bother with so many different types of reducibility?” I do not think that
I gave this question a sufficiently clear and compelling answer. Let me try again
here.

Better lower bounds follow from hardness results using less-powerful
forms of reducibility. For instance, the lower bound proved in [7], showing that

MKTP requires large THRESHOLD◦MAJORITY circuits of size 2n
o(1)

would not
follow if we did not have a ≤proj

m reduction from a problem in A ∈ L to MKTP,

8A randomized reduction from A to B is computed by a polynomial-time machine that takes as

input a string x and a string r of random bits, such that, with high probability over the choice of

r, x ∈ A if and only if M(x, r) ∈ B.
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where A is known to require large circuits of this type. (Projections are typically
the most restrictive notion of reducibility that is studied – although even in this
instance we needed to use non-uniform projections, because hardness under uni-
form projections, or even uniform AC0 reductions, cannot be established without
first separating NP from TC0 [11].) Similarly, the argument in [26] showing that

MCSP 6∈ AC0[p] required making use of ≤AC0

T reducibility. Using a more powerful
notion of reducibility would not have yielded the lower bound. And we still don’t
know if hardness under a more restrictive reducibility holds. Thus, even if you don’t
care about restrictive reductions, they can still be used as the means to a desirable
end.

On occasion, more powerful forms of reducibility are required, because
hardness under more restrictive reducibilities fails to hold. The problem
MKtP provides an instructive example. It is useful to know that MKtP is complete
for EXP; but the only “efficient” reducibility for which this is known to hold is

≤P/poly
tt . It is provably not complete under the usual ≤P

m or even ≤P
tt reducibility

[4]. It is a significant open question whether it is complete under ≤P
T reductions.

It is known that MKtP is in ZPP iff EXP = ZPP [4], which is the conclusion one
would obtain if MKtP were hard for EXP under ≤ZPP

T reductions – but we still do
not know if hardness under ≤ZPP

T reductions holds. (This highlights the importance
of Hirahara’s proof that MKexpP is complete for EXP under ≤ZPP

T reductions [28].)
Or consider the conditional KT problem McKTP. It is useful to know that McKTP
is NP-complete under randomized reductions. If it’s complete under ≤P

m reductions,
then EXP 6= ZPP; if it’s not complete under ≤P

m reductions, then P 6= NP. Thus
it seems like we’re unlikely to avoid randomized reductions when considering the
complexity of this problem, until some of the longstanding questions in complexity
are resolved. (There may be reasons to consider whether McKTP is hard under,
say, randomized or nonuniform AC0 reductions, but this requires some extra work,
and thus far there has not been a reason to take this step. In “most” cases, a

problem that is hard under ≤P/poly
m reductions is actually hard under ≤AC0

m or even
≤proj

m reductions, although for MKTP in particular this is an open question [7].)
The general lesson is: It’s better to use more restrictive reducibilities, because

doing so yields stronger conclusions. But more powerful notions of reducibility are
sometimes the only feasible tool available, to draw an important connection about
the complexity of a problem.

5. Average Case Complexity, One-Way Functions, and Cryptography

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [39], in a
paper that was motivated in part by the study of Natural Proofs [58], and which
called attention to the fact that if MCSP is easy, then there are no cryptographically-
secure one-way functions. In the succeeding decades, there has been speculation
about whether the converse implication also holds. That is, can one base cryptog-
raphy on assumptions about the complexity of MCSP?

First, it should be observed that, in some sense, MCSP is very easy “on average”.
For instance the hardness results that we have (such as reducing SZK to MCSP)
show that the “hard instances” of MCSP are the ones where we want to distinguish
between n-ary functions that require circuits of size 2n/n2 (the “NO” instances)
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and those that have circuits of size at most 2n/3 (the “YES” instances). However,
an algorithm that simply says “no” on all inputs will give the correct answer more
than 99% of the time. (We will return to this point later in this section.)

Thus Hirahara and Santhanam [31] chose to study a different notion of heuristics
for MCSP, where algorithms must always give an answer in {Yes, No, I don’t know},
where the algorithm never gives an incorrect answer (“errorless heuristics”), and the
algorithm is said to perform well “on average” if it only seldom answers “I don’t
know”. They were able to show unconditionally that MCSP is hard on average
in this sense for AC0[p] for any prime p, and to show that certain well-studied
hypotheses imply that MCSP is hard on average.

More recently, Santhanam [61] has formulated a conjecture (which would in-
volve too big of a digression to describe more carefully here), which – if true –
would imply that a version of MCSP is hard on average in this sense if and only
if cryptographically-secure one-way functions exist. That is, Santhanam’s conjec-
ture provides a framework for believing that one can base cryptography on the
average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-case
complexity? Hirahara [27] showed that GapMCSP has no solution in BPP if and
only if a version of MCSP is hard on average. A related result stated in terms of
Kpoly appears in the same paper. These results attracted considerable attention,
because prior work had indicated that such worst-case-to-average-case reductions
would be impossible to prove using black-box techniques. Additional work has given
further evidence that the techniques of [27] are inherently non-black-box [32].

A flurry of recent activity has shown that the existence of cryptographically-
secure one-way functions can indeed be characterized in terms of the complexity of
computing time-bounded Kolmogorov complexity.

The initial breakthrough was provided by Liu and Pass, who showed that one-
way functions exist if and only if MKpolyP is hard-on-average [44] (in the sense of
“regular” heuristics, rather than “errorless” heuristics).

Let us digress for a moment, to highlight the significance of this result of Liu
and Pass. Although one-way functions are essential for cryptography, the nomina-
tion of any particular candidate one-way function has largely been guided more by
heuristics, experimentation, and conjecture, instead of a firm theoretical foundation.
There had never been a natural example of a computational problem whose com-
plexity is equivalent to the existence of cryptographically-secure one-way functions.
(There had long been an “unnatural” example, arising from Levin’s “universal one-
way function” [42]. But it is safe to say that this function, although of theoretical
interest, has had little impact on practical cryptography.) In contrast, MKpolyP has
been studied for years, independent of any connection to cryptography. Thus [44]
provided a new window into the theoretical foundations of cryptography. Further-
more, since Hirahara [27] had related the worst-case complexity of MKpolyP to its
average case complexity (albeit only for errorless heuristics), this seems to bring us
closer to the goal of basing one-way functions on a worst-case complexity assump-
tion for a problem where we have strong theoretical justification of intractability.
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The result of [44] relates one-way functions to MKpolyP. What about MKTP?
Ren and Santhanam addressed this question, by showing that MKTP is hard-on-
average if and only if logspace-computable one-way functions exist [59]. Further-
more, this happens if and only if the NP-complete problem McKTP (discussed ear-
lier) is hard-on-average [5]. In addition, if any one-way functions exist (not just
those computable in logspace), then McKTP is “somewhat” hard-on-average [5];
thereby giving the first example of a “natural” NP-complete problem whose average-
case complexity is tightly linked to the existence of cryptographically-secure one-
way functions. Liu and Pass [46] subsequently provided an alternative definition of
conditional time-bounded Kolmogorov complexity (which they also called McKTP),
and showed that (a) it is also NP-complete under randomized reductions, and (b)
it is hard on average if and only if one-way functions exist.

But NP is not the limit! It turns out that cryptographically-secure one-way
functions exist if and only the EXP-complete problem MKtP is hard on average
[59, 47]. Nor do things stop at EXP. Ilango, Ren, and Santhanam subsequently
showed that one-way functions exist if and only if the undecidable problem MKP is
hard on some samplable distribution (and they also provide yet another equivalent
characterization, in terms of the average-case complexity of MCSP on a class of
“locally-samplable” distributions) [37]. This was subsequently generalized again
by Liu and Pass [45].

This connection between complexity-theoretical considerations and undecidable
languages connects well to our next topic:

6. Complexity Classes and Noncomputable Complexity Measures

The title of this section is the same as the title of Section 4 of my earlier survey
[1]. In that section, I described the work that had been done, studying the classes of
sets that are reducible to the (non-computable) set of Kolmogorov-random strings
RK , and to MKP, including the reasons why it seemed reasonable to conjecture that
BPP and NEXP could be characterized in terms of different types of reductions to
the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have been
disproved (barring some extremely unlikely complexity class collapses). Taken to-
gether, the papers [32], [29], and [28] give a much better understanding of the
classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that PSPACE ⊆ PRK , and NEXP ⊆ NPRK . Hirahara

[28] has now shown NEXP ⊆ EXPNP ⊆ PRK .
This same paper also gives a surprising answer to Open Question 4.6 of [1],

in showing that Quasipolynomial-time nonadaptive reductions to RK suffice to
capture NP (and also some other classes in the polynomial hierarchy).

As described in [1], when we consider uniform reductions to MKP (such as ≤P
T or

≤NP
T reductions) that hold regardless of the universal Turing machine that is used

in defining Kolmogorov complexity, only subclasses of EXPSPACE result (and when
≤P

tt reductions are used, one obtains a class between BPP and PSPACE). It is not
clear what the true picture is.

Similarly, when one considers nonuniform reductions to MKP all computably-

enumerable sets are ≤P/poly
tt -reducible to MKP, but no complexity class larger than
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co-NISZKL is known to be ≤AC0

m reducible to MKP [7]. It seems unlikely that this
is is optimal.

7. Magnification

Some of the most important and exciting developments relating to MCSP and
related problems deal with the emerging study of “hardness magnification”. This is
the phenomenon whereby seemingly very modest lower bounds can be “amplified”
or “magnified” and thereby be shown to imply superpolynomial lower bounds. I
was involved in some of the early work in this direction [13] (which did not involve
MCSP), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved
for MCSP that essentially match the strongest lower bounds that we have for
any problems in NP [21]. There is now a significant body of work, showing that
slight improvements to those bounds, or other seemingly-attainable lower bounds
for GapMKtP or GapMCSP or related problems, would yield dramatic complexity
class separations [19, 18, 17, 16, 62, 54, 53, 49].

In particular, I’d like to put a spotlight on two theorems. To state the theorems,
let MCSP[s(n)] denote the set of truth tables f of n-ary Boolean functions that
have circuits of size ≤ s(n). That is MCSP[s(n)] = {f : |f | = N = 2n ∧ (f, s(n)) ∈
MCSP}.
• MCSP[2εn]] requires time more than N1.99 on any one-tape probabilistic Turing

machine [20].
• If MCSP[2δn]] requires time more than N1.01 on any one-tape deterministic

Turing machine, then P 6= NP [49].
If it were not the case that δ < ε, this would yield a proof of P 6= NP.

This would be a good place to survey the field of hardness magnification, except
that an excellent survey already appears in [16]. Igor Carboni Oliveira has also
written some notes entitled “Advances in Hardness Magnification” related to a talk
he gave at the Simons Institute in December, 2019, available on his home page.
These notes and [16] describe in detail the reasons that this approach seems to
avoid the Natural Proofs barrier identified in the work of Razborov and Rudich
[58]. But they also describe some potential obstacles that need to be overcome,
before this approach can truly be used to separate complexity classes.

Acknowledgments

Thanks are due to Rahul Santhanam, for calling attention to some misstatements
in an earlier version of this survey [2]. I also thank Noah Singer and Harsha
Tirumala for helpful discussions.

References

[1] Eric Allender. The complexity of complexity. In Computability and Complexity:
Essays Dedicated to Rodney G. Downey on the Occasion of his 60th Birthday,
volume 10010 of Lecture Notes in Computer Science, pages 79–94. Springer,
2017.

[2] Eric Allender. The new complexity landscape around circuit minimization. In
Proc. 14th International Conference on Language and Automata Theory and



600 ERIC ALLENDER

Applications (LATA), volume 12038 of Lecture Notes in Computer Science,
pages 3–16. Springer, 2020.

[3] Eric Allender. How much information is in the title of this lecture? (invited
lecture). 2021.

[4] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and
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MCSP. In Markus Bläser and Benjamin Monmege, editors, 38th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 187
of LIPIcs, pages 23:1–23:19. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021.

[21] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis.
Circuit lower bounds for MCSP from local pseudorandom generators. ACM
Trans. Comput. Theory, 12(3):21:1–21:27, 2020.

[22] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity.
Springer, 2010.

[23] Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam
Mubarakzjanov, Niels Schmitt, and Hans Ulrich Simon. Relations between
communication complexity, linear arrangements, and computational complex-
ity. In Proc. 21st Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), volume 2245 of Lecture Notes in Computer Science,
pages 171–182. Springer, 2001.

[24] Bin Fu. Hardness of sparse sets and minimal circuit size problem. In Donghyun
Kim, R. N. Uma, Zhipeng Cai, and Dong Hoon Lee, editors, Computing and
Combinatorics - 26th International Conference, (COCOON), volume 12273 of
Lecture Notes in Computer Science, pages 484–495. Springer, 2020.

[25] E. Mark Gold. Complexity of automaton identification from given data. Inf.
Control., 37(3):302–320, 1978.

[26] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets,
Antonina Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via
the coin problem. In 46th International Colloquium on Automata, Languages,
and Programming,(ICALP), volume 132 of LIPIcs, pages 66:1–66:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[27] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within
NP. In 59th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 247–258, 2018.

[28] Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity un-
der uniform reductions. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1038–1051. ACM, 2020.

[29] Shuichi Hirahara. Unexpected power of random strings. In 11th Innovations in
Theoretical Computer Science Conference, ITCS, volume 151 of LIPIcs, pages
41:1–41:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2020.



602 ERIC ALLENDER

[30] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness
of minimum circuit size problem for OR-AND-MOD circuits. In 33rd Confer-
ence on Computational Complexity, CCC, volume 102 of LIPIcs, pages 5:1–
5:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[31] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of
MCSP and its variants. In 32nd Conference on Computational Complexity,
CCC, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017.

[32] Shuichi Hirahara and Osamu Watanabe. On nonadaptive reductions to the
set of random strings and its dense subsets. In Ding-Zhu Du and Jie Wang,
editors, Complexity and Approximation - In Memory of Ker-I Ko, volume
12000 of Lecture Notes in Computer Science, pages 67–79. Springer, 2020.

[33] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum
circuit size problem. In Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS), volume 45 of LIPIcs, pages 236–
245. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[34] Rahul Ilango. Approaching MCSP from above and below: Hardness for a condi-
tional variant and AC0[p]. In 11th Innovations in Theoretical Computer Science
Conference, ITCS, volume 151 of LIPIcs, pages 34:1–34:26. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2020.

[35] Rahul Ilango. Constant depth formula and partial function versions of MCSP
are hard. In 61st IEEE Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 424–433. IEEE, 2020.

[36] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of cir-
cuit minimization for multi-output functions. In Shubhangi Saraf, editor, 35th
Computational Complexity Conference (CCC), volume 169 of LIPIcs, pages
22:1–22:36. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[37] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable
distribution suffices: New characterizations of one-way functions by meta-
complexity. Technical Report TR21-82, Electronic Colloquium on Computa-
tional Complexity (ECCC), 2021.

[38] R. Impagliazzo, V. Kabanets, and I. Volkovich. The power of natural properties
as oracles. In 33rd Conference on Computational Complexity, CCC, volume 102
of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

[39] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In ACM
Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[40] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput.
Sci., 48(3):9–33, 1986.

[41] Leonid A. Levin. Randomness conservation inequalities; information and in-
dependence in mathematical theories. Information and Control, 61(1):15–37,
1984.

[42] Leonid A. Levin. The tale of one-way functions. Probl. Inf. Transm., 39(1):92–
103, 2003.
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