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Abstract. Let X be a space equipped with n topologies 71, ..., 7, which are
pairwise comparable and saturated, and for each 1 < ¢ < n let k; and f; be
the associated topological closure and frontier operators, respectively. Inspired
by the closure-complement theorem of Kuratowski, we prove that the monoid
of set operators KF, generated by {k;, fi : 1 <i <n}U{c} (where ¢ denotes

the set complement operator) has cardinality no more than 2p(n) where p(n) =

%n‘l + %nS + %nQ + %n + 2. The bound is sharp in the following sense:

for each n there exists a saturated polytopological space (X, 71,...,7,) and a
subset A C X such that repeated application of the operators k;, fi,c to A
will yield exactly 2p(n) distinct sets. In particular, following the tradition for
Kuratowski-type problems, we exhibit an explicit initial set in R, equipped
with the usual and Sorgenfrey topologies, which yields 2p(2) = 120 distinct
sets under the action of the monoid KCFs.

1. Introduction

In his 1922 thesis [8], Kuratowski posed and solved the following problem: given
a topological space (X, 7), what is the largest number of distinct subsets that can
be obtained by starting from an initial set A C X, and applying the topological
closure and complement operators, in any order, as often as desired? The answer
is 14. This result, now widely known as Kuratowski’s closure-complement theorem,
is both thought-provoking and amusing, and has inspired a substantial number of
authors to study generalizations, variants, and elaborations of the original closure-
complement problem. We recommend consulting the admirable survey of Gardner
and Jackson [6], or visiting Bowron’s website Kuratowski’s Closure-Complement
Cornucopia [3] for an indexed list of all relevant literature.

Shallit and Willard [10] considered a natural extension of Kuratowski’s problem.
If we equip a space X with not one but two distinct topologies 7, and 7o, how many
distinct subsets may be obtained by starting with an initial set, and applying each
of the two associated closure operators k1, ko, and the set complement operator ¢, in
any order, as often as desired? The authors construct an example of a bitopological
space (X, 1, 72) where it is possible to obtain infinitely many subsets from a certain
initial set. Consequently, the monoid Kq of set operators generated by {k1, k2, c}
may have infinitely many elements in general. In their example, the topologies 7y
and 7y are incomparable, which suggests that the monoid may yet be finite in case
T1 :_) T2.

In [1], Banakh, Chervak, Martynyuk, Pylypovych, Ravsky, and Simkiv verify this
last possibility, and generalize the closure-complement theorem to polytopological
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spaces, i.e. sets X equipped with families of topologies 7 in which the topologies
are linearly ordered by inclusion. If the family is a finite set T = {7, ..., 7, }, they
give an explicit formula for the maximal cardinality of the monoid C,, generated
by {k; : 1 < j < n}U{c}. This maximal cardinality is of course 14 when n = 1,
and grows exponentially as n — oo.

The authors of [I] also consider the special case where the topologies involved
are saturated, i.e., for any 1 < j,¢ < n, if a nonempty set U is 7;-open, then U has
nonempty 7y-interior. In the saturated case, the cardinality bound on the monoid
is given by #K,, < 12n + 2. The most natural example is the case of the real line
R equipped with 7 = the usual topology and 7 = the Sorgenfrey topology. Then
one may obtain no more than 12 -2 + 2 = 26 distinct sets by applying k1, k2, ¢ to
any particular initial set, and indeed this upper bound is obtainable in (R, 71, 72),
as demonstrated explicitly in [I].

In [5], Gaida and Eremenko solved a closure-complement-frontier problem by
showing that in any topological space (X, 7), the monoid KXF generated by {k, f, c}
(where f is the frontier operator, or topological boundary operator) has cardinality
< 34; moreover there are examples of spaces in which it is possible to obtain 34
distinct subsets by applying the operators to a single initial set. This problem also
appeared as Problem E3144 in American Mathematical Monthly [2]. The purpose
of this paper is to study the extension of Gaida and Eremenko’s problem to the
setting of saturated polytopological spaces as in [1].

To state our result, we consider a polytopological space (X, 7y, ...,7,), and we
denote by KF, = KF,(X,71,...,7) the monoid of set operators generated by
{kj, fj - 1 < j < n}u{ch We alsolet KFy = KF2(X,71,..., ) denote the
monoid generated by {k;,i;, f; : 1 < j < n}, where i; is the interior operator asso-
ciated to 7;. Since i; = ck;c, we have that IC]-"?I C KF,, and in fact, in Section 2
we observe that

KF, = KF) UcKF,

so that IC]-'?L comprises the submonoid of even operators of KJF,,, and

HKF, =2 - #KF°.

Our main theorem follows.

Theorem 1.1. Let (X, 7, ...,7,) be a saturated polytopological space. Then #IC]-'(T)L <
p(n) and #KF, =2 - #KF° < 2p(n), where
p(n) = Znt 4+ 3Ip3 + Bp2 4 Wy 4 2,

Thus for n = 1 we recover Gaida-Eremenko’s result with p(n) = 17 and 2p(n) =
34. The next few upper bounds are p(2) = 60, p(3) = 157, p(4) = 339, and
p(5) = 642.

We also demonstrate that the bound p(n) is sharp.

Theorem 1.2. For every n > 1, there exists a saturated polytopological space
(X, 71,0y Tn) in which #KF° = p(n) and #KF, = 2p(n). In fact, there is an
initial set A C X such that #{0A :0€ KF,} = 2p(n).
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The explicit examples we give are natural and easy to understand (disjoint unions
of copies of R equipped with combinations of the Sorgenfrey and Euclidean topolo-
gies), but not finite. By the results of [9] (see [6] Theorem 4.1 and surrounding
remarks), we deduce abstractly that there must exist a finite polytopological space
(X, 71, ..., 7n) on which #KCF° = p(n), but we do not know how many points are
necessary.

Question 1.3. What is the minimal cardinality of a polytopological space
(X, 71, ..., ) for which #KF° = p(n) exactly? What is the minimal cardinality of
a space in which one can find an initial set A with #{0A:0 € KF,} = 2p(n)?

It would be interesting to know the answer even for n = 2. It is known that
the minimal number of points needed for a space to contain a Kuratowski 14-set is
7; see [7]. During the preparation of this article, Bowron has communicated to us
that if n = 1, then the minimal number of points needed for #XF? = 17 is four,
while the minimal number of points needed to contain a 34-set is 8.

Another interesting question that remains open is to solve the closure-complement-
frontier problem for polytopological spaces which are not necessarily saturated.

Question 1.4. Let (X, 7, ..., 7,) be a polytopological space which is not necessarily
saturated. What is the maximal cardinality of the monoid KF, generated by

{kj, fj:1<j<n}u{cy?

Finally, it would be interesting to study some of the variants described in Sec-
tion 4 of [6] in the larger context of polytopological spaces. For example, it was
shown independently by Gardner and Jackson [6] and by Sherman [11] that in any
topological space (X, 7), the greatest number of sets one may obtain from an initial
set A C X by applying the set operators {k,i,U,N} is 35.

Question 1.5. Let (X,7,...,7,) be a (saturated?) polytopological space. What
is the largest number of sets one may obtain from an initial set A C X by applying
the set operators kj, i; (1 < j <n), U, and N in any order, as often as desired?

2. Preliminaries and Notation

Recall from the introduction that a polytopological space is a set X equipped
with a family of topologies 7 which is linearly ordered by the inclusion relation.
In this paper we will work only with finite families 7 = {7y, ..., 7,} and assume
T1 2 ... 2 Tp,. In this case we refer to (X, 11, ..., 7,) as an n-topological space.

For each topology 7;, we permanently associate the closure operator k;, the inte-
rior operator ij, and the frontier operator f;. We use c to denote the set complement
operator. The operators k; and 7; are idempotent, so k;k; = k; and i;i; = ¢, and
the operator ¢ is an involution, so cc = Id, where Id denotes the identity operator.
For each set A C X we have f; A = k;ANkjcA; we summarize this symbolically by
writing

fj :kj/\ij:ijCij.

From the identity above, we see that

ijij~
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We permanently denote by KF,, = KF,(X, 1, ..., Tn) the smallest monoid of set
operators which contains k;, f; (1 < j < n) and ¢. We also denote by IC]—'?L =
/C]-'?L(X, Ti,...,Tp) the smallest monoid of set operators which contains k;, i;, and
f; (1 <j <n). By DeMorgan’s laws, we have ckjc = i, and thus it is immediate
that KF2 C KF,.

Since we are requiring that KCF 2 be a monoid, it contains the identity operator
Id. Tt also contains the zero operator 0, i.e. the set operator for which 0A = ), for
every A C X. This follows from the work of Gaida and Eremenko [5], who observed
that

ilflkl =0.

We also define the one operator by the rule 1 = ¢0, so 1A = X for every A C X
and 1 € KF,.

Proposition 2.1. The sets IC]-"?L and CIC]-"% are disjoint and ICF,, is equal to their
UNLON.

n?
col) = X for any operator o € KF". Therefore, CF° and ¢KF° are disjoint.

To see that KLF,, C IC]-'% U CIC}'g, we can argue by induction on word length of
elements of KF,,. Let W,,, C KF,, be the set of operators which can be written as
a word of length < m in the generators kj, f;,c. Assume that W, C KFo UcKFo
(which is certainly true if m = 1). Then W,,11 is the union of sets of the form
kEiWm, fijWm, and cW,,. But by invoking DeMorgan’s laws and the identity
fjc = f;, the inductive hypothesis implies the following inclusions:

Proof. By examining the generators k;,%;, f; of KFO, it is clear that o) = () and

kWi C kjKFY Uk;cKFY
= k;KFo Uci;KF, = KFo U cKFy;

[iWm C fiKF2 U ficKF
= [iKF) U fiKF), = KFy;

Wy € KFD UccKFY) = KFY U cKFY;

which concludes the inductive step and the proof. O

By the previous proposition, we are now justified in referring to the elements
of lC]-'?l as the even operators, and those in ch]-'?L as the odd operators. By direct
algebraic manipulation, it is easy to see that any operator in ICF,, may be rewritten
as a word in which the generator ¢ appears either zero times (the even case) or
exactly one time (the odd case). For example kyciicckicfrkic = kiiy fii1.

Corollary 2.2. #KF, =2 - #KF°.
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In the special case n = 1, the results of Gaida-Eremenko [5] imply that KCF9
consists of no more than 17 distinct even operators, which may be listed explicitly
as below:

KFY = {Id, k1, i1, kviy, ink, inkvin, kvinks, fi, fufa, fiks, i fi,
kiiyf1,0, fikiin, frinks, fiinfi}

Adding c to the left of each operator above yields the odd operators, for a total
of #KF,, < 34. The operators are indeed distinct when, for instance, X = R and
71 is the usual topology on the reals, and in this case we get #/KCF,, = 34.

We are ready to state some elementary algebraic identities in ICF 2, which are

easily proven. The first one is prominent in the solution to Kuratowski’s original
closure-complement problem.

Lemma 2.3. In any n-topological space (X, T1,...,Tn),
(1) (Kuratowski) for each 1 < x < mn,

| kyinkaia = kaiy | and ] iakpinky = szm‘
2) for each 1 <z,y<n
(2) f Yy <m,
ka:ky = kmax(m,y) ‘ and
3) for each1 <z,y<n
(3) [ sy <n,

gty = tmax(x,y)7s

‘ifxgythenszy:fy.‘

Recall that an n-topological space (X, 71,...,7,) is saturated if whenever 1 <
z,y <n and U is a nonempty 7,-open set, then i, U # (. For the remainder of the
paper, we assume that our space (X, 71,...,7,) is saturated. The most basic and
important identity, which we use extensively, is proven in [I]:

Lemma 2.4 (Banakh, Chervak, Martynyuk, Pylypovych, Ravsky, Simkiv). Let
(X, 71, ..., Tn) be a saturated n-topological space. For each 1 < x,y < n, kyiy = kyiy
and igky = ixky.

This identity means that, assuming saturation, the second index in a word of
the form k,i, or i,k, is irrelevant in determining the action of the operator. For
this reason, we find it convenient to adopt a star notation, and simply write

for each 1 <,y < n, | kyiy = kois | and | ipky = i2k..

We employ this notation in the following lemma.

Lemma 2.5 (IF Lemma). Let (X, 1, ..., Tn) be a saturated n-topological space. For

each 1 <z,y <n,

Proof. Since interiors distribute over intersections, by Lemma @ we have i, f, =
ipky Nigkyc = izke Nigkic =iy f.

For other types of words, as below, it turns out that the value of y is irrelevant
if y < x, but may matter if y > x.
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Lemma 2.6 (FK Lemma). Let (X,71,...,7n) be a saturated n-topological space.
For each 1 < z,y <mn,

fﬂcky = fwkmax(z,y)' ‘

Proof. If y > z then the statement is trivial. Otherwise y < z, and we compute
using Lemmas and that fiky = koky A cigky = ki A cighkse = foke =
kamax(w,y)- U

For many of our algebraic lemmas involving k, or i,, we may use DeMorgan’s
law to instantly deduce a “dual” corollary.

Lemma 2.7 (FI Lemma). Let (X, 71,...,7n) be a saturated n-topological space. For
each 1 <z, y <n,

friy = Frimax(o)-|

Proof. By duality: fui, = feckye = fokyc = fokmax(@,y)¢ = [eClmax(z,y) =
fﬁimax(z,y)- O

Lemma 2.8 (FKF Lemma). Let (X, 71,...,7,) be a saturated n-topological space.
Then for each 1 < z,y,z <mn,

i y < max(z, 2), then fok, f. = fuf.

Proof. If y < z then k, f. = f. by Lemma [2.3] Otherwise y < x, in which case we
compute

fakyfo = koky fo A cigky f.
= ko f. Ncigkyf-
=kofz Ncigf. = fofe
[l

Lemma 2.9 (FIKI/FKIK/FKIF Lemma). Let (X,71,...,7,) be a saturated n-
topological space. For each 1 < x,y <mn,

o [ify <u, then fuiyk.i, = kaﬂ\
o |ify <z, then frkyisk. = frizks.

o |ify <a then fokyicf. = fricf..
Proof. For the first item, by Lemmas [2.3] and compute

Frighaiv = kyiskaie A kycCiykai,
= ki A Cigiy ki
= kykyie A Cigkyis
= fokai.
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The second item follows from the first by duality. The third follows from the
second, by observing that fokyi.fe = fokyiskefe = foizkefe = foizfa U

The next lemma is a generalization of Gaida-Eremenko’s observation, together
with its dual statement.

Lemma 2.10 (IFK/IFT Lemma). Let (X,71,...,7n) be a saturated n-topological
space.

o Foranyl <z,y,z<n,

Proof. It suffices to prove that i, f k. = 0, for if there existed a set A C X with
iz fykzA # (0, then by saturation, we would have i, f k. A = ini, fyk.A # 0, which
would contradict i, fyk, = 0.

We can use Lemma, to rewrite iy, fyk. = in fik: = infnk.. Then use Lemma

to write in fyk. = infnkn = 0. 0

Lemma 2.11 (FFK/FFI/FFF Lemma). Let (X, 71, ...,7,) be a saturated n-topological
space. For each 1 < x,y,z < n, the following hold.

o | falyhe = ko fyk..
qngyﬁmnﬁﬁmzhm.
) ‘]fx <y, then fofyi. = fyi..
|
|

f:rfyfz = szyfz

o |Ifx <y, then facfyfz = fyfz
Proof. It suffices to prove the first statement, as the second follows immediately;
the third and fourth follow from duality; and the fifth and sixth follow from the

observation that f,f,f. = fafyk-f-.
Using Lemma [2.10] we compute

Tofyks = kafyke N kecfyk.
= ky fyk: A ciafyk.
= ko fyks A O
=kyfyk: N1 =k f k..
O

Lemma 2.12 (FKFK/FKFI Lemma). Let (X, 71, ...,T,) be a saturated n-topological
space.

e For any 1< z,Y,2,w < n, ka;yfzkw = kmax(a:,y)fzkw- ‘

e Foranyl<umzy,z,w<mn, kayfzi'w = kmax(:my)fziw-
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Proof. Using Lemma [2.10] again,

Jaky fobw = koky fokw A cizky fok
= Emax(z,y) fokw A Cioka fokw
= Fmax(a,y) fzkw A ciz fokw
= Funa(o.g) ok A €0
= Fmax(z,y) fkw A1 = Fnax(z,y) f-Fw-

3. The Case of Two Topologies

In this section we look closely at the special case where n = 2, and solve the
closure-complement-frontier problem for a saturated 2-topological space. The pro-
totypical example is (R, 75, 7,) where 74, = the Sorgenfrey topology (in which basic
open neighborhoods have the form [a,b) = {x € R: a < z < b}) and 7, = the usual
Euclidean topology.

It is instructive to use Lemmas[2.3|through [2:12]to write out the distinct elements
of KF 3 explicitly. There turn out to be at most 60 of them. This is an enjoyable
computation and we postpone the details until the more general case of Section 4,
where n is arbitrary. The reader may verify the truth of the following proposition
by observing that applying any of the generators ky, i, or f, (x =1,2) to the left
of any of the 60 words listed below will always simply produce another word on the
list, and thus the entire monoid KCFy is accounted for.

Proposition 3.1. The monoid leg consists of at most 60 elements, which are
listed in the table below. Consequently, the monoid KFo consists of at most 120
elements.

Word Length | Operators Count
0 1d 1
1 7:172.27 klak27 f17f2 6
2 kli*,kzi*, 7;1]{*77;2]{*7 f1i17f1i27f2i27 17

i1 fas 92 fes Jiki, fika, foka,
kafi, fifu, fifa, fafis fafo
3 11 Ksts, 1okty, kiisky, Kotk f1k1is, f1koiy, fokaiy, 283
frivks, frioks, foiok,, 0, ko friv, ko fria,
k1is fu, k2t fa, ko fiki, ko fik, fikaf1,
ko f1f1, k2 f1fo, fri1f«, friafe, foiafu

4 friokyiy, fikais k., ko frkiis, ko fikats, 10
ka fritks, ko frioks, Jikatis fe,
ko fii1 fs, kafria f, ko f1ka f1
5 ko f1koi k., ko friok.iy, ka f1kais [« 3

It is also straightforward to check, on a case-by-case basis, that the 60 operators
in IC]:g are distinct, in the sense that for any w;,ws as in the table above with
w1 # we, there exists a subset A“*2 of some 2-topological space (X, 71, 72) for
which wq A¥1%2 £ g A¥1w2,
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Combining this observation with the simple lemma below, we obtain the stronger

fact that there exists a 2-topological space with an initial subset A which distin-
guishes all of the operators in KF9 simultaneously.
Lemma 3.2. Suppose that for any distinct pair of operators wy,ws € IC]:E)“ there
exists a saturated n-topological space X“1%2 and a subset A“t*2 C X“1“2 jn which
wy A¥W2 £ o AY2 - Then there exist a saturated m-topological space X and a
sub%et A C X such that w1 A # wo A, for each pair of distinct operators wi,ws €
KF,-

Proof. If the assumption is true, then we can construct the n-topological disjoint

union X = U X“1%2 and form the initial set A = U A“1%2  Then for
wi,w2 ELFO w1 Fwa
w1 Fwa

any operators wy # ws in IC]-"%, we have (w1 A)A(waA) D (w1 A 92)A(wg A¥1¥2) £
) (where A denotes the symmetric difference), and therefore wy A # wy A. O

Despite the preceding, we would like to follow the tradition of the closure-
complement theorem by exhibiting an explicit initial set A C R which simulta-
neously distinguishes the operators in KFs.

Example 3.3 (An Initial Set For KF5 in the Usual/Sorgenfrey Line). We con-
sider the 2-topological space (R, 71, 72) where 71 = 7, is the Sorgenfrey topology
and 75 = 7, is the usual Euclidean topology. We define

> 1 1 > 1 1

0 __ 1_

5" = U <32k+1’32k> 50 = U [32k+1’32k>’
k=0 k=0
> 1 1 > 1 1

2 *

5% = U {32“1’3%] S U <32k+17 321@}
k=0 k=0
o0 1 o0

0 _

= U <32k’32k> U [ 32k>

= 1

k=
o0 1 o0
T2 = U |:32k’32k:| ’ U <32k’32k:| ’

k=1 k=1

and we take the following initial set:

A=(SNQUT'U((2-5)NQ)U(2—T°) U((2,3)NQ)U{4} U (5,6)U(6,7)

UU<<2n+2 8—>mQ> ©<2n1+252+10—21n)u(10,11).

n=0

It is possible to verify by hand that applying the 60 operators of the monoid
ng to A yields 60 distinct sets. The results of such a computation appear in
a previous draft of this paper (posted August 3, 2019) accessible via arXiV.org.
Bowron, in private communication, has also provided us with an elegant and brief
computer-assisted verification. Rather than presenting such a verification here, we
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will turn to a stronger result, by first considering the natural partial order on the
monoid CFY.

The partial order is defined as follows: for every 01,02 € /C}"?”

01 < 09 if and only if 01A C 09A for every A C X.

The partial orderings on K9, KFY (see Figure 1), and other related monoids
have been diagrammed by various authors; see especially [6] and [4]. It is clear
that KF, has a minimal element 0 and a maximal element k,,, and that 0 <14, <
<y <Id <k €. < k. It is also clear that for any set operator o we have
150 < o < kjo.

By the definition, for any operators 01,02, 03, if 07 < 02 then o103 < 0503,
so order is preserved by multiplication on the right. The operators i; and k;
(1 < j < n) are also left order-preserving in the sense that if 01 < o9, then
ijo1 <4500 and kjo; < kjop. On the other hand, f; is not left order-preserving in
general.

Example 3.4 (Exhibiting the Partial Order on KF3). We will now show there
exists a set A in a 2-topological space with the property that 0y < op if and only if
01A C 09 A, for each 01,09 € IC}"g. In particular, the 60 operators of IC]-'(Q) applied
to A yield 60 distinct sets.

FIGURE 1. The partial ordering on the 17 operators of ICF ?, which
was computed by Gaida and Eremenko but did not appear in the
printed version of their article [5]; see also [4]. Subscripts are
omitted from the notation since only one topology is involved.
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We first present a list of apparently non-obvious inequalities in the partially
ordered set CFy.

Proposition 3.5. The following relations hold in any saturated 2-topological space
(X, 7—177—2):

(a) frir < friz and fiky < fika;

(b) flkli* < leQk*Z* and flilk* < f1k27;*k*;‘

(c) fifi < fikafi;

(d) fikafi < fifor

(e) fikaivks < fiko and frisk.is < fris;

(f) fike < fifo.

Proof. For (a), we have f1i1 = k1ix A iy = k1ix A k1c < ki A kac = kyis A cig =
f172, and the second statement follows in a dual way, because we can multiply the
first inequality on the right by ¢, and get fik1 = fii1c < frisc = frko.

For (b), we have

flkli* = klkli* A\ klckli* = kll* A\ kli*k*c.
fligk*i* = k‘ll*k)*l* A klcigk‘*i* = k?li* A k‘gi*k‘*c.

The second statement follows dually.

For (c), we compute fif1 = fiAciifi and fikafi = kafi Aciitk. fi = kaf1 Aciy fi,
so the inequality f1f1 < fikof1 follows from fi; < ko f1.

For (d), Compute f1f1 = f1 A Cilfl and flkgfl = kgfl A Cilk*fl = k2fl A Cilfl,
so the inequality fi1f1 < fiksf1 follows from f; < ko f7.

For (e), compute f1koi k. = k1koisks Ak1ckotiky = koiski Ak1ivc < ko Akicks =
Jiko.

Lastly, for (), note that k1i. < k1 < ko. Hence f1ka = k1kaAk1cks = kaAkyive =
k‘g A\ (kgC A kli*c) S [(kg A k'QC) A kli*c] \Y [(kQ A kQC) A\ kli*] = (kg N kQC) A\ (kli*c \Y
k‘l’L*) = fg/\(klck*\/klck*c) = fg/\kl(ck'g \/Ck‘QC) = klfQ/\le(kQ/\sz) = flfg. [l

Using the inequalities in the proposition, together with the facts that closure
and interior are left order-preserving, and all operators are right order-preserving,
we obtain the diagram of the partially ordered set ICF. 3 depicted in Figure 2.

To show that no further inequalities hold in general, we define a partition P =
{Py,..., P12} of RT such that for each inequality 0; < 05 (01,09 € IC}"g) not implied
by Figure 2, there exist integers 0 < a3 < -+ < ay, < 12 (1 < n < 12) satisfying
01(Pay U~ UP,,) L 03(Pay U---UP, ) in (RY,7,72) where 7y = 75 is the
Sorgenfrey topology and 1o = 7, is the usual Euclidean topology.

The partition {my,...,ms} of (0,1] is defined as follows:

w5 =Unoy {31}

6 = Unti (zm=r, 37=2) N Q
mr=Unls (=t 37=2) \ Q
ms = {1}.

m=Uli{z} m=Ul{z}
o0 o0

T2 = Un:l (32%’ %) T4 = Un:l (32%’ 32’%)
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R fakaiy ———> fais faizke —> foks

> k2f1k22* /Y
fikain > L s
Eo fikrin > k2frisk.d, ———> ka f1ia

frigkyis
Z <)
frkuis \l
VT ki —> Kafikick, — '
. / ko frizk.

ke frink. —

friafs ¥
frkais fu

fria
/ > =
fritk. "ﬁ“ sz”lf*» ka frkai. fu

0 —> frivf \ \ ( fofa
I fikafi {
fifa ko fy
—

iofo ———> i1 f / Kotk \ x
k.
i f. /

ki, ——> igky Id

F1GURE 2. The partial ordering on IC}'S. The blue operators are
operators that can be built using exclusively the 7; topology. The
red operators are operators built using the topology 7 that cannot
also be built using 7. The black operators are those built using a
combination of both topologies.

)
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For 1 <j <8, let P; = UZOZO (1 — 2% + ﬁﬂ'j). Thus

P1U"‘UP8:(Oa%]u(%,g]u(%v%]u”'

To complete the definition of P, set

Pp={1-2%:n=12..} Py = {1} P =(1,00)NQ

Po=(hHuE Hul hHuy... Py = (1,00)\ Q.
Then each of the following equations holds in (RT, 7{, 75):

kiPo =Py ke Py = Py U Pro

kiPp=PyUP koPy = PyU Py U Py

k1P, =PyUP,UPy koPy = PyUP; UP,U P3U Py

kiP3 = PyUPs koP3 = PyU P3 U Py

kiPy = PyUP3UP, koPy = PyUP3 U PyU Ps U Py

k1 Ps = Py U Ps koPs = Py U Ps U Py

kiPr=PyUPsUP;UP; koPr=PFPyUPLUPsUPFP;UP;UPyU Py

ki Ps = Py koPs = Py U Py
kiPy = PsU P,y koPy = Py U Py U Py U Py
k1Pip = Pio kaPio = Pio

k1P1y = PioU P U Pia koP1y = PigU Py U Pra
k1Pi2 = PioU P11 U Pia koPig = PigU Py U Pra.

Using these equations, all inclusions not implied by Figure 2 may be eliminated
computationally. Bowron has written the following C program and Python script
which verify the eliminations:

https://github.com/mathematrucker/polytopological-spaces/blob/master/
figure_2.c
https://github.com/mathematrucker/polytopological-spaces/blob/master,
figure_2.py

/

Following Lemma we may take the disjoint union of all possible sets of the
form P,,U---UP,, to obtain an initial set A with the property that if 01,02 € IC]-'g
and 01 £ 09, then 01 A Z 05 A. Consequently, 0; < os if and only if 01 A C 09 A, for
all 01,09 € IC]:g.

4. The General Case

We are ready to solve the closure-complement-frontier problem in the general
setting of a saturated n-topological space where n is arbitrary. The surprising fact
which underlies our computation is that every reduced word in KF2 has length
< 5, and in fact has the same form as one of the reduced words which we already
computed in Section 3 for KFY.

In order to prove this observation we define the following subsets of KF0:


https://github.com/mathematrucker/polytopological-spaces/blob/master/figure_2.c
https://github.com/mathematrucker/polytopological-spaces/blob/master/figure_2.c
https://github.com/mathematrucker/polytopological-spaces/blob/master/figure_2.py
https://github.com/mathematrucker/polytopological-spaces/blob/master/figure_2.py
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K={kj:1<j<n}
I={i;:1<j<n}
F={fj:1<j<n}

We also allow the formation of product sets in KF? in the usual way, so we may
write, for example, KFI = {kfi: k€ K,i € I,f € F}. Soif n = 2, we could
explicitly write

KFI = {fii1, fria, ka fri1, k2 friz, fais}.

We will now adopt a notational convention which will not lead to ambiguity in
the context of this paper, and which will help us clearly delineate word types in
IC]-'%. Suppose F is a set which is the n-times product of the sets K, I, and F (in
any order). Then we denote by (F), the set of all reduced words w € E, i.e. those
which do not admit any representation as a word of length < n. So, under this
convention, if n = 2 we would have

(KFI), = {kafri1, k2 friz}.

We are now ready to prove our main Theorem which is a consequence of the
more detailed theorem below.

Theorem 4.1. Let (X, 7,...,7,) be a saturated n-topological space. Then IC]-"?L 18
contained in the union of the sets in the left-hand column of the table below. The
number of distinct elements in each such set is at most as listed in the right-hand
column.

Word-Type | Number of Words Word-Type | Number of Words
{14} 1 FKI n+(3)
IFK = {0} 1 (KF), (%)
I n (KFK), 2("H)

K n (KFI), 2("
IK n (KFF), 5) - m
K1 n (FKF), () +2(3)
IKI n (FIKI), ()
KIK n (FKIK), @)
F n (FKIF), (2)
IF n (KFIK), 2(™H)
FF n? (KFKI), 2("h)
FI n+(3) (KFIF), 2("3")
FK n+(3) (KEKF), | (3)+5(3) +5(3)
FIF n+ (5) (KFIKI), (5) +2(3)
KIF n (KFKIK), (M) +2(%)
FIK n+ (5 (KFKIF), (5) +2(3)
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Consequently, the number of elements of IC]:% s at most

p(n) = 5<Z> + 10(”; 1) + 13(;’) +(n+ 14)(2) 02+ 14n + 2

= 3n4—|—£n3—|—9712—&—&71—&—2
24 12 24 12

and the number of elements of KF,, is at most 2p(n).

Proof. Let X be the union of all of the sets in the table above, so we want to prove
KFY C X. For this, it suffices to check that (A) for each set E listed in the table
above, and for each 1 < z < n, we have k. FE,i, E, f, E C X. Our second goal (B)
is to establish the listed upper bound for the cardinality of each set.

We can begin the verification by making these observations:

e Every 0- and 1-letter word type in KF° (i.e. the elements of {Id}, K, I, and
F) is accounted for in the table.

o There are 32 = 9 possible 2-letter word types. By Lemma we have I =1
and KK = K, and the other seven possible types are accounted for on the
table. So all elements of KF which admit a word representation of length
< 2 are contained in X.

e There are 3% = 27 possible 3-letter word types. Ten of these reduce to 2-letter
words using I = I and KK = K, which by the previous bullet point, are
already accounted for in the table. At most seventeen types remain, and among
these, we know that JFK = IFI = 0 by Lemma [2.10] while FFK = KFK,
FFI = KFI,and FFF = KFF by Lemmal2.11] Also IKF = IF by Lemmas
and and since F C KF, we have [FF C IFKF C {0}F C {0}. This
leaves eleven other possible 3-letter word types, each of which is listed in the
table. Therefore, all elements of KF" which admit a word representation of
length < 3 are already contained in a subset listed in the table.

By the last bullet point above, we see that whenever E consists of < 2-letter
words, then indeed we have k. F, i, F, f, E C X for each 1 < x < n, which estab-
lishes (A) for the sets {Id}, K, I, IK, KI, F,IF FF, FI, FK, and (KF),. (A)
is also immediate for the set {0}.

The cardinality bounds (B) are immediate for the sets {Id}, {0}, K, I, IK, K1,
F,and FF. By Lemma the set IF consists of words of the form i, f, (1 < <
n), of which there are n many. The set (K'F), consists of elements of the form k, f,
which do not reduce to 1-letter representations; by Lemma[23] it is necessary that
x > y. There are (g) many pairs (z,y) with > y, so #(KF), < (g) Lastly, by
Lemma the set F'K consists of words of the form f,k, where 1 <z <y < n;
there are n + (g) many such pairs (z,y), and thus FK consists of no more than
n+ (g) elements. A similar argument yields the same number for F'I.

So to finish the proof, it remains only to check (A) and (B) for those sets E
which consist of words of length > 3.

The sets IKT and KIK. By Lemma [2.4] every element of K has the form
iyk+is for some 1 < y < n, and thus #IKI < n, establishing (B). Note that for any
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1 <z <n, we have kyiyk.i. = kyiskiis = kyi. by Lemma 2.3} so k, /KT C KI C
X. Also iziykiis = imax(a,y)kxis DY Lemma@ so i . IKI CIKI C X. The word
fatyk«is either reduces to a < 3-letter word, in which case it is a member of &’ by
our previous remarks; or it does not reduce, in which case fyiyk.i. € (FIKI), C X.
This establishes (A), and the arguments are similar for KTK.

The set FIF. By Lemma every element of FIF has the form fyi.f., so
FIF C FIf;. Therefore (B) #FIF < #FI < n+ (;‘) For 1 < z < n, we
have either ky fyi,f. € (KFIF), or kyfyi.f« reduces to a shorter word; in either
case we obtain kyfyi.f. € X and hence k,FIF C X. By Lemma we see
iofyizf« = 0fs =0 € X, and by Lemma 2.11] we see fo fyi.f« = ko fyi-fo € X,
establishing (A).

The set KIF. By Lemmas and every element of KIF has the form
kyiife, where 1 < y < n, so (B) holds. For any 1 < x < n, kykyi.fe =
Fanax(eg)isfs € KIF C X, and iykyivfo = igkviskefo = isk.f. € IKF C X.
The word fyky i, f. either reduces to a < 3-letter word or else lies in (FKIF),; in
either case it lies in X, establishing (A).

The sets F'IK and FKI. Elements of FIK have the form fyi.k., so FIK =
FIky, and (B) #FIK < #FI <n+ (}). For (A), note that for any , the word
ky fyizke = fzfyizks either reduces to a < 3 letter word or else lies in (KFIK),, so
it lies in X', while i, FIK = {0}K = {0} C X as well. The arguments are similar
for FKI.

The sets (KFK), and (KFI),. Elements of (K FK), have the form k, f.k,,. To
establish (A), we note that for 1 < x < n, we have k.kyf-kw = Emax(z,y)f-kw
by Lemma iwky fokw = izksf2kw = izf2ky, by Lemma and foky f.ky =
Fmax(a,y) fzkw DY Lemma Then all three words admit representations of length
< 3, and therefore lie in X.

For (B), since k, f,k,, cannot be written with < 2 letters, by Lemma it is
necessary that y > z. Also, by Lemma [2.6] we may assume that w > z. The
number of triples (y, z,w) with ¥ > z and z < w may be found by the following
reasoning: either z = w or z # w. If z = w, we find (g) many triples (y, z, z) with
y > z. If z# w, either w=y or w # y. If w=y we again obtain (g‘) many triples
(y,2,9). If w # y, then there are (;) many sets of distinct numbers {y, z, w} where
z is minimal; these each yield two choices of ordered triples (y, z,w) or (w,z,y).
So the cardinality of (KFK), is no more than (3) + (5) +2(3) = 2(";‘1). The
arguments are similar for (KFI),.

The set (KFF),. Elements of (KFF), have the form k,f.f,, which can be
rewritten as ky f,kw fuw; thus the arguments to establish (A) are exactly analogous
to those given for the case of (K FK),. For (B), we note that since k, f f,, cannot
be written as a word of length < 2, it must be the case that k, f, € (KF),. There-
fore #(KFF), < #(KF), - #F = (g) - n.
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The set (FKF),. Elements of (FKF), have the form f,k, f,. To establish (A),
note that for 1 < z < n, we have k, f k. fi, = fufyk.fw by Lemma @ and this
word either admits a word representation of length < 3 and therefore lies in X, or
else it lies in (KFKF), C X. Also iy fyk.fw =0f, =0€ X.

For (B), since fyk. f, cannot be written with < 2 letters, by Lemma it is
necessary that z > y and z > w. We have either y = w or y # w. If y = w we
are looking for triples of the form (y, z,y) with z > y, of which there (%) many. If
y # w, we find (g) many sets {y, z, w} of distinct numbers where z is maximal; each
of these yields two choices of ordered triples (y, z,w) or (w, z,y). So the cardinality
of (FKF), is no more than (%) +2(5).

At this point, we pause to observe the following: combining all the arguments in
the previous parts, we have shown that if o € KF 2 admits any representation as a
word of length < 3, then for every 1 < z < n, we have k;o0,1i,0, fro € X. All words
of length < 4 have this form, so put in other words, we have now shown:

o All elements of IC}"% which admit a word representation of length < 4 are
already contained in a subset listed in the table.

The sets (FIKI),, (FKIK),, and (FKIF),. Elements of (FIKI), have the
form fyi.k.i., where y < z by Lemma There are (Z) many such pairs (y, 2),
so (B) #(FIKI), < (3). For (A), note that for any z, the word kg fyi.k.i. =
fofyizkais either reduces to a < 4 letter word or else lies in (KFIKI),, so it lies
in X; while ¢, FIKI = {0}KI = {0} C X as well. The arguments are similar for

(FKIK), and (FKIF),.

The sets (KFIK),, (KFKI),, and (KFIF),. All elements of (KFIK), have
the form k, f.i, k. where y > z and z < w, which implies (KFIK), C (KFI).k;
and therefore #(KFIK), < #(KFI), < 2(”;1), establishing (B). For 1 <
r < n, we have kpky friwke = Fnax(e,y) fziwks by Lemma and izky foiwk
loke friwks = izfriwks by Lemma and  foky friwkse = Fmax(e,y)fzlwks Dy
Lemma[2.12] Each of these words has a representation of length < 4, and therefore
lies in X, establishing (A). The arguments are similar for (K FKI), and (KFIF),.

The set (KFKF),. For 1 < z < n, we have k, KFKF C KFKF C X by
Lemma@ 1. KFKF CIFKF C X by Lemma@ and [, KFKF C KFKF CX
by Lemma [2.12] so (A) holds.

To establish (B), we observe that every element of (KFKF), has the form
ks fyk- fuw, and because this cannot be shortened to a word of length < 3, we must
have x > y by Lemma and y < z, z > w by Lemma So we are looking
for ordered quadruples (z,y, z, w) which alternate in magnitude with > y, y < z,
z > w. There are (5) many such quadruples if z = z and y = w; there are 2(})
many if x = z but y # w; and there are 2(2) many if y = w but x # z. If z = w,
then necessarily y < x and z > x, which yields an additional (g) possible quadru-
ples. If all of x,y, z, w are distinct, then either x or z is maximal. If z is maximal
then the choice of minimality for y or w determines the quadruple, yielding 2(2’)
quadruples. If z is maximal then either y or w is minimal; if w is minimal the
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quadruple is determined, whereas if y is minimal then there are 2 ways to assign
x and w. This gives another (1 + 2)(}) quadruples where z is maximal. Thus we
compute a bound of #(KFKF), < (5)+(2+2+1)(5)+(2+1+2)(}}), as in the table.

At this point, our computations up to this point have shown:
e All elements of IC}'?L which admit a word representation of length < 5 are
already contained in a subset listed in the table.

The sets (KFIKI),, (KFKIK),, and (KFKIF),.Every element of (KFIKI),
has the form kyf.iwk«is, and for any 1 < = < n, we have kykyf inkiie =
Jaky friwksis = kmax(z,y) fiwk«ix by Lemmas @ and @ while izky friwkeis =
Toks friwksis = tzfoiwksis by Lemma In all three cases we find representa-
tions of length < 5, 50 ky (K FIKI),, ip(KFIKI),, f(KFIKI), C X and we have
proven (A).

For (B), we note that since ky f,i,, ki« does not reduce to a word of length < 4,
we must have y > z by Lemma [2.3] and by Lemma [2.9] we have w > z. Thus we
are looking for triples (y, z,w) with y > z and z < w. By arguments analogous to
those in the case of (FKF),, we compute that #(KFIKI), < (3) 4+ 2(}). The
arguments for (KFKIK), and (KFKIF), are similar.

This completes the proof. ([l

Example 4.2 (Separating KFKF Words). In [1I], the authors show that #K,, <
12n+ 2 for a saturated n-topological space, so we expect the size of the Kuratowski
monoid to grow linearly with n. Our corresponding formula p(n) in Theorem [1.1
implies quartic growth for the Kuratowski-Gaida-Eremenko monoid ICF,. As is
evident from the proof, the sole reason for this is that the set of reduced words
(KFKF), =A{kyfyk.fw iz >y,y < z,2>w,1 < z,y,2z,w < n} is expected to
contain (5) +5(5) +5()}) elements.

It is interesting to see a natural example of a saturated 4-topological space in
which the elements of (KFKF), are distinct. Consider (R?, 71,72, 73,74), where
T| = Tg X Tg X Tg, To = Tg X Tg X Ty, T3 = Tg X Ty X Ty, and 74 = T, X Ty, X Ty. Define
B =1((1,2) x (0,2) x (0,2)) U((0,2) x (1,2) x (0,2)) U ((0,2) x (0,2) x (1,2)), and
let {C), : n € N} be a countably infinite collection of pairwise disjoint 74-closed
sub-cubes of (0,1) x (0,1) x (0,1) with the property that if C' = (J,, .y Cn, then
the set of 74-derived points of C' is exactly C' = k,C\C = ({1} x [0,1] x [0,1]) U
([0,1] x {1} x [0,1]) U ([0, 1] x [0,1] x {1}). We denote By = BN (Q x Q x Q), and
we take for our initial set A = Bg U (U, ey i4C).

We also consider the particular open cube i4Cy C A, say i4Cy = (g, 21) X
(Yo, Y1) X (z0,21), and we label the following sets:

¢ = (x0,21) X (Yo,41) X {21} = the upper face of Cp;
P = (x0,21) X {y1} X (20,21) = the forward face of Cpy;
qg=1(0,1) x {1} x (0,1) = the inner rear face of B;
r={1} x (0,1) x (0,1) = the inner left face of B;
Q =1(0,2) x {2} x (0,2) = the forward face of B;
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R ={2} x(0,2) x (0,2) = the right face of B;
U=1[((1,2) x (0,2)) U((0,2) x (1,2))] x {0} = the outer lower face of B;
V =1((1,2) x {0} x (0,2)) U ((0,2) x {0} x (1,2)) = the outer rear face of B.

Then by direct computation, one may verify the following properties about the
sets kg fyk. fuwA, which differentiate all possible ordered quadruples (z,y, z, w) sat-
isfying x > v,y < 2,2 > w:

(1) (a) If w=1 then ¢, are disjoint from k; f k. f, A.
(b) If w =2 then ¢ C ky fyk. fuA but ¥ N kg fyk. fuA = 0.
(c) If w= 3 then ¢,v C k; fyk. fuA.

)
)
)
(2) (a) If z =2 then @, R are disjoint from k, f k. f, A.
(b) If z = 3 then Q C ky fyk. fwA but RNk, fyk. fuA=0.
(c) If z=4then Q, R C kyfyk. fuA.
(3) (a) If y =1 then U,V are disjoint from k; fyk. fu A.
(b) If y = 2 then U C ky fyk. fwA but V Nk, fyk. fu, = 0.
(c) If y =3 then U,V C ky,f k. fuA.
(4) (a) If x = 2 then g, r are disjoint from k; f k. f, A.
(b) If & = 3 then q C kyfyks fud but r 0 kyfy k. fud = 0.

(c) If x =4 then q,r C kg fyk. fuA.

From the above, distinct quadruples (z,y, z, w) yield distinct sets k, fyk. fuA,
and therefore

FIGURE 3. From left to right: the set Cy and its faces; the set B
and its faces; typical basic open neighborhoods in 7y, 7o, 73.

-7
,r_ i A 7-neighborhood of a point.
-
-7
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— 11 A 73-neighborhood of a point.
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A 7y-neighborhood of a point.
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#(KFKF), [Al = #{ko fykfuA: 1 <z,y,z2<nx>y,y<zz>w}=
(5) +5(5) +5(;) =31

5. Separating Kuratowski-Gaida-Eremenko Words

The goal of this section is to prove that our upper bound p(n) is sharp for every
n. Guided by the results of the previous section, we introduce the following defi-
nition: a word in the generators {k;,i,, fz : 1 < 2 < n} (formally, an element of
the free semigroup on 3n letters) will be called a Kuratowski-Gaida-Eremenko
word, or KGE-word, if it has one of the following forms:

Id or 0 = 44 fuks,

kg, iz, Toke, kpis, iokais, kgleky, fz, imf*, or kxl*f*y

faly,

kg fy where z >y,

fatykatn, fokyisks, or fokyi. fo where z <y,

friya fzkya frzyf*a Jziyks, or fmkyl* where z < y,

ko fyf. where x >y,

fakyf. where x <y and y < z,

ko fyks, kzfyiz, ko fylzke, ko fyk.is, or kg fyi. fr where z >y and y < 2,
ko fyizkats, kg fykaisks, or kg fyk.is fi where >y and y < 2,
kg fyk. fw where x >y, y < z, and z > w.

We understand the x-notation as imposing an equivalence relation on the KGE-
words: for example, although strictly speaking i1 f1 k1 and ¢; f1k5 are distinct words
in the free semigroup, we regard them here as merely two representations of the
same KGE-word 0; on the other hand f; f; and fi f2 are distinct KGE-words. With
this understanding in place, the number of KGE-words is p(n). For convenience,
we allow words and operators to be used interchangeably when the precise meaning
is clear. So each KGE-word corresponds to at most one element of ICF,,, whereas
a priori an element of ICF, may be represented by more than one KGE-word.

We note that in any monoid IC}'?” by Lemmas through we have the
following set inclusions:

(KF), U

(KFK )UFK
(KFI), UFT;
(KFIF), UFIF;
KFKIF D (KFKIF), U (FKIF),;
(KFIK), UFIK;
(KFKIK), U (FKIK),;

(KFKI), UFKI;

O (KFIKI), U (FIKI),;

KFKF D (KFKF), U (KFF), U(FKF), UFF.

Therefore the following holds.

NNwﬁjNNﬁj
|u U 1V U U U U 1Y

KFKI
KFKI

=
!
~
=
~
U
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Proposition 5.1. Fach KGE-word belongs to at least one of the following sets in
KFO:

{Id} or {0};

K,I,IK, KI, KIK, IKI, IF, KIF;

KF, KFK, KFI;

KFKF; or

KFIFUKFKIF, KFIKUKFKIK, KFKIUKFIKI.

For the reader’s convenience, we note that the 17 sets above correspond to the
17 distinct even operators which comprise the monoid KXF9 from [5].

Theorem For every n > 1, there exists a saturated polytopological space
(X, 71,0y Tn) in which #KF° = p(n) and #KF, = 2p(n). In fact, there is an
initial set A C X such that #{oA:0¢€ KF,} = 2p(n).

Proof. Applying Lemma [3.2] it suffices to demonstrate the following: For any pair
of distinct KGE-words wy,ws € KF,,, there exists a saturated n-topological space
X“1%2 and a subset AYtw2 C X“192 in which wy AYY%2 #£ wy A¥1%2. We verify the
claim for w; # ws by using the cases delineated in Proposition [5.1

Case 1: wy € Fy and wy € Fy, where E7 and Es are distinct subsets from Proposition
Il Then we may take for our separating space (R, 71, ...,7,) where 74 = ... =1, =
Ty, and take for our initial set A the example exhibited by Gaida-Eremenko in
[6]. In this case, because all topologies are equal, the monoid IC]-"% is actually
equal to IC]:(lJ and we get the following reductions: KFIF U KFKIF = FIF,
KFIKUKFKIK = FIK, KFKIUKFIKI = FKI, KFKF =FF, KF = F,
KFK =FK, KFI = FI. But elements wi,ws taken from distinct word types will
produce different sets w; A # wy A, as demonstrated by Gaida and Eremenko.

Case 2: wi,ws € E where E=K, I, IK, KI, KIK, IKI, IF, or KIF. Assume
that, for example, that wi,ws € KIK. We have wy = kg, .k, and wy = kg, 0.k,
where 1 < z1,22 < n, and since w; # we, we have ;1 # xz. Assume without
loss of generality that x; < x4, and take for a separating space (R, 71, ..., 7,) where
L = .. =Ty = Ts and 75,41 = ... = 7, = T,,. Take the initial set A from Ex-
ample [3.3] Then w1 A = kii kA # knicksA = waA. The proofs for the other sets
FE = K, I,... etc. are similar because words in these sets £ depend on only one
index, and we leave them to the reader.

Case 3: wy,wy € KF. If wy,wy € KF, then we have wy = kg, fy, and wy = ky, fy,
where 1 < x1,91,22,y2 < n, 1 > y1, and 2 > yo. Assuming (z1,y1) # (2,¥2),
we have either 1 # x5 or Y1 # .

Sub-Case (a): Suppose y1 # y2; without loss of generality assume y; < ys.

Then take for a separating space (R,71,..,7,) where 7, = ... = 7,, = 7, and
Tyr41 = ... = Ty, = Ty, and take for an initial set A as in Example Then we

have wy = kg, fy, = Kz, f1, which is equal to either f; or &, f1 depending on the value
of z1. On the other hand since z2 > y2 > 31, we have wy = kz, fy, = knfrn = fn.
Since f1A # k,f1A # frA, we conclude wy A # wo A as desired.
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Sub-Case (b): Suppose y; = y2 but x1 # x2; without loss of generality assume
x1 < x9. Take for a separating space (R,7y,..,7,) where 74 = ... = 7,,, = 75 and
Tog41 = -« = Tn = Tu, and take the usual initial set A as in Example @ Then
since y1 < x1, we have wy = kg, fy, = k1f1 = f1, while since y2 = y1 < 21, we have
wo = Ky fys = knf1. So w1 A # we A as in Example

Case 4: wy,ws € KFK. The idea of this proof is the same as in Case 3. Suppose
that wi,wy € KFK, then we have wy = kg, fy, k., and wy = kg, fy, k., where
1 < @,y1,21,%2,Y2,22 < my 21 > Y1, 1 < 21, T2 > Y2, Y2 < z2. We have
(z1,11,21) # (x2,Y2, 22), and therefore x1 # xa, Y1 # Y2 Or 21 # 20.

Sub-Case (a): Suppose z1 # z2, so without loss of generality z; < z2. Take for
a separating space (R, 7y, ..,7,) where 71 = ... = 75, = 75 and T, 41 = ... = Ty, = Tu,,
and take for an initial set A as in Example [3:3] Then since y; < 21, we have
w1 = kg, fy k2 = kg, fiki, which is equal to either fik; or k,fik: depending
on the value of z;. On the other hand wy = ky, fy,kn, so wa is equal to either
kifikn = fikn, knfikn, or knfnk, = fnkn, depending on the values of xs,ys.
These five distinct possibilities yield five distinct sets when applied to A, so we
conclude wy A # ws A as desired.

Sub-Case (b): Suppose z; = z3 but y; < yo. Take for a separating space
(R,71,..,7) where 7y = ... = 7,, = 75 and Ty, 41 = ... = T, = Ty, and take the
usual initial set A as in Example Then, considering all possible values of x1, 21,
we compute that wy = ky, fik., € {fik1, frkn, knf1k1, knfikn}. On the other hand
since X2, 29 > Yo > Y1, we have wo = ky, fnky = fukn. So w1 A # woA.

Sub-Case (c): Suppose z; = z3 and y; = yo but &1 < zo. Take for a sep-
arating space (R,7y,..,7,) where 7y = ... = 7, = 75 and 7,41 = ... = T, = Ty,
and take the usual initial set A as in Example We compute wi = kg, fy, k2 =
kifik., € {fiki, fikn}, and wy = ko, fokey = Enfyskzy € {Enfiky, knfikn, fakn},
SO w1 A # wo A.

Case 5: wy,wy € KFI. In this case take the same separating space as in Case 4,
but for an initial set take cA where A is the initial set from Case 4. We are done if
w1cA # wycA, and this follows from Case 4 because both wic and wyc are elements
of KFK. (To verify this, write wy = kg, fy, 42, where 1 < z1,y1,21 < n, 1 > y1,
and y; < z1. Then wic = kg, fy, ckz, = ky, fy, k2, € KFK, and similarly for wy.)

Case 6: wi,ws € KFKF. We proceed similarly to Cases 3 and 4. We have w, =
ko fy bz for and wa = kg, fy, k2, fw, Where 1 < 21,91, 21, w1, T2, Y2, 22, w2 < M,
T Z Y1, 1 S 21, 21 2 Wi, T2 > Y2, Y2 < 22, and 2o > wa. We also know
(z1,y1, 21, w1) # (T2, Y2, 22, ws), which gives us four sub-cases.

Sub-Case (a): Suppose w; # we, so without loss of generality w; < ws.
We consider (R, 71,...,7,) with 71 = ... = 7, = 75 and Tyy4+1 = .. = T = Tu-
Considering all possible values of z1,y1, 21, Z2, Y2, 22, we compute that

w1 = kwlfylkzlfl S {flfhfnf17f1knf17knf1f1;knflknfl}
Wo = kngygszfn S {flfnvfnfnaknflfn}
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from which we conclude wy A # wo A, where A is the initial set from Example

Sub-Case (b): Suppose wi = wsy but z; < 29, and consider (R, 71, ..., 7,,) where
T] = . =Ty =Ts and 7,41 = ... = T, = Ty Since wi,y; < 21, we get wy =
ko, frkifi € {fifi, knfif1} whereas wo = Ky, fu.knf1 € {fiknf1, Enfiknf1, fufi},
S0 w1 A # wo A where A is as in Example

Sub-Case (c¢): Suppose now w; = ws, 21 = 23 but y1 < ya2, and consider
(R, 7y,...,T) where 7y = ... = 7, = T, and Ty, 41 = ... = T, = T,. Since z; =
z2 > y2, we get w1 = Ky, fiknfu, € {fiknfi,knfiknfy, fifn, knfifa}, whereas
since xa, zo > Yo, we have wo = ky, frkn fuw, € {fnf1, fafn}, 50 w1 A # we A where A
is as in Example

Sub-Case (d): Suppose wy = ws, 21 = 22, y1 = Y2 but 1 < x2, and consider
(R,71,...,7,) where 71 = ... = 7, = 75 and Ty 41 = ... = Tp, = Ty. Since y; <
x1, we get w1 = ki fik., fu, € {flflaflfn,flknfl} whereas wy = knfy2k22fw2 S
{knfif1, knfifn, knfiknfi, fuf1}, so w1 A # we A where A is as in Example O

Case 7: wy,ws € KFIFUKFKIF. We proceed similarly to Cases 3, 4, and 6.
Observe that we may write

w1 = kxlfylazlilf*

with 1 > y1, y1 < z1, where either 0,, = i,, € I (in case w1y € KFIF) or
, =k, € K where z; > y; (in case wy € KFKIF\KFIF). Similarly, we may
write wo as

W = sznyPzQilf*

where o > ya, Y2 < 29, and either p,, = i, or else p,, = k,, and 23 > y». Since
w1 # we, there are four sub-cases: either z; # z9; or 21 = 22 but 0, # p,,; or
Y1 # Y2; or x1 # xo. In each of the four sub-cases below, we denote o1 = i; and
op = 1ip if 0, = i,,; and 01 = k1 and o, = k, if 0,, = k,,. Similarly we allow
p1, pn to denote either i1,4, or ki, k, respectively as implied by the value of p.,.

Sub-Case (a): Suppose z1 < z3. Consider the separating space (R, 7, ..., 7,)
where 7 = ... =7, =7, and 7,41 = ... = T, = T,. Since y; < z1, we have
w1 = kg, fro1i1fs = kg frinfs, 50 wi = fiigfy or wy = ky f1i1 fi, depending on
the value of 1. On the other hand, considering all possible values of x2, y2, and
Pz = Pn, WE cOmpute

Wo = szfyzpnilf* € {flinf*7flkni*f*vfninf*,knflkni*f*aknflinf*}'

It follows that wi A # we A, where A is the initial set from Example [3.3]

Sub-Case (b): Suppose z1 = z9, but 0,, = k,, with z; > y1, while p., = i.,.
We take the separating space (R, 71,...,7,) where 7y = ... =7, = 7, and 7,41 =

=T, = Ty. We have wy = ky, fiknirfu € {f1knisfs, knfi1knisf«}, while since

zo = 21 > Y1, we have wo = Ky, fyoinit fo = kuy fuainfe € {frinfe, fuinfe, knfrinfs}.
So w1 A # wy A, taking A from Example [3.3]

Sub-Case (c): Suppose y1 < y2, and take the separating space (R, 7, ...,7,)
where 7y = ... =1y, =7, and 7y, 41 = ... = 7, = 7,,. We have

w1 = kxlfla'zlilf* € {flilf*aflinf*vflkni*f*aknflilf*aknflinf*aknflkni*f*}a
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whereas since zo > ys, we have wy = Ky, fapniife = kayfoinfe = fainfe. So
w1 A # wo A, taking A from Example [3.3]

Sub-Case (d): Suppose y; = ys2, but 1 < o, and take the separating space
(R,71,...;7,) where 4 = ... = 7, = 75 and 7,41 = ... = T, = T, with the
initial set A from Example Since y1 = yo < x1, we have wy = ki fio,,01f €
{flilf*7 frinfs, flknl*f*} and wy = knflpnilf* S {k'nflilfm kn frin fs knflk'nl*f*}a
SO W1 A # woA.

Case 8: wy,wy € KFIKUKFKIK. In this case take the same separating space
as in Case 7, but for an initial set take f, A where A is the initial set from
Case 7. We are done if wqf,A # wsfrA; but this follows from Case 7 because
wy fn,wafn € KFIFUKFKIF.

Case 9: wy,wy € KFKIUKFIKI. Take the same separating space as in Cases 7
and 8, and for an initial set take cA where A is the initial set from Case 8. Then
since wic,wsc € KFIK UKFKIK, we have wicA # wacA by Case 8.
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