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Abstract. We give a systematic treatment of caloric measure null sets on the
essential boundary ∂eE of an arbitrary open set E in Rn+1. We discuss two

characterisations of such sets and present some basic properties. We investigate

the dependence of caloric measure null sets on the open set E. Thus, if D is an
open subset of E and Z ⊆ ∂eE ∩ ∂eD, we show that Z is caloric measure null

for D if it is caloric measure null for E. We also give conditions on E and Z

which imply that the reverse implication is true. We know from [10] that any
polar subset of ∂eD is caloric measure null for D, but the reverse implication

is not generally true. In our final result we show that, for subsets of a certain

component of ∂eD, caloric measure null sets are necessarily polar.

1. Introduction

Caloric measure is sometimes called parabolic measure, sometimes harmonic
measure for the heat equation. Its null sets have been studied by several authors
for particular boundaries, for example in [3, 4, 5, 6, 7, 14, 15]. However, to my
knowledge they have never been given a systematic treatment for arbitrary open
sets. In this paper we give such a treatment, partly guided by the treatments for
Laplace’s equation given in [1, 2], but also including results that have no known
analogue in the classical case.

Our terminology will follow [11], where further details can be found. We work
in Rn+1 = {(x, t) : x ∈ Rn, t ∈ R}, and denote a typical point by p or (x, t) as
convenient. The characteristic function of a set A is denoted by χA.

Given an open set E in Rn+1, a function u ∈ C2,1(E) that satisfies the standard
heat equation

∑n
i=1(∂2u/∂x2

i )− (∂u/∂t) = 0 on E is called a temperature. If

W (x, t) =

{
(4πt)−

n
2 exp

(
− |x|

2

4t

)
if t > 0,

0 if t ≤ 0.

then W is a temperature on Rn+1\{0}. For any point (x0, t0) ∈ Rn+1 and any
positive number c, the set

Ω(x0, t0; c) = {(y, s) ∈ Rn+1 : W (x0 − y, t0 − s) > (4πc)−
n
2 }

is called the heat ball with centre (x0, t0) and radius c. Temperatures can be
characterized in terms of mean values over heat balls, in that a function u ∈ C2,1(E)
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is a temperature if and only if

u(x0, t0) = (4πc)−
n
2

∫ ∫
Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2
u(x, t) dx dt

whenever Ω(x0, t0; c) ⊆ E.
An extended real-valued function v on E is called a supertemperature on E if it

satisfies the following four conditions:
(δ1): −∞ < v(p) ≤ +∞ for all p ∈ E.
(δ2): v is lower semicontinuous on E.
(δ3): v is finite on a dense subset of E.
(δ4): Given any point (x0, t0) ∈ E and positive number ε, there is a positive

number c < ε such that the closed heat ball Ω(x0, t0; c) ⊆ E and the inequality

v(x0, t0) ≥ (4πc)−
n
2

∫ ∫
Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2
u(x, t) dx dt

holds.

An extended real-valued function v on E is called a hypertemperature on E if it
satisfies the conditions (δ1), (δ2) and (δ4) above.

We require a classification of the boundary points of an arbitrary open set E.
Here, and below, we use the following notations for the upper and lower half-balls.
Given a point p0 = (x0, t0) ∈ Rn+1 and r > 0, we denote by H(p0, r) the open
lower half-ball {(x, t) : |x−x0|2 + (t− t0)2 < r2, t < t0}, and by H∗(p0, r) the open
upper half-ball {(x, t) : |x− x0|2 + (t− t0)2 < r2, t > t0}.

Definitions. Let q be a boundary point of the open set E. We call q a normal
boundary point if either

(a) q is the point at infinity, or
(b) q ∈ Rn+1, and for every r > 0 we have H(q, r)\E 6= ∅.
Otherwise, we call q an abnormal boundary point; in this case, there is some

r0 > 0 such that H(q, r0) ⊆ E. The abnormal boundary points are of two kinds,
according to whether they can be approached from above by points in E. If there
is some r1 < r0 such that H∗(q, r1) ∩ E = ∅, then q is called a singular boundary
point. On the other hand if, for every r < r0, we have H∗(q, r) ∩ E 6= ∅, then q is
called a semi-singular boundary point.

The set of all normal boundary points of E is denoted by ∂nE, that of all
abnormal points by ∂aE, that of all singular points by ∂sE, and that of all semi-
singular points by ∂ssE. Thus ∂E = ∂nE ∪ ∂aE and ∂aE = ∂sE ∪ ∂ssE. The
essential boundary ∂eE is defined by

∂eE = ∂nE ∪ ∂ssE = ∂E\∂sE.
We also use the concept of an abnormal boundary point relative to the adjoint

equation
∑n
i=1(∂2u/∂x2

i ) + (∂u/∂t) = 0. If q is such a point, then there is some
r0 > 0 such that H∗(q, r0) ⊆ E. The set of all such points is denoted by ∂∗aE.

Let f be an extended real-valued function defined on ∂eE. For any lower bounded
hypertemperature v on E, we put v in the class UEf if and only if both

lim inf
p→q

v(p) ≥ f(q) for all q ∈ ∂nE,
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and

lim inf
p→q+

v(p) ≥ f(q) for all q ∈ ∂ssE,

where the notation lim infp→q+ v(p) means lim inf(x,t)→(y,s+) v(x, t). We then put

UEf = inf{v : v ∈ UEf }, and call it the upper solution for f on E. The lower solution

LEf can be defined by the formula LEf = −UE−f . This is the same as in [9, 11].

If LEf = UEf and is a temperature on E, we denote it by SEf , call it the PWB

solution for f on E, and say that f is resolutive for E. Every function f ∈ C(∂eE)
is resolutive, a result first proved in [9]. For any point p ∈ E there is a unique
nonnegative Borel measure µEp on ∂eE such that SEf (p) =

∫
∂eE

f dµEp holds for

every f ∈ C(∂eE). The completion of this measure is called the caloric measure
relative to E and p; it is also denoted by µEp . If f is resolutive for E, then SEf has

the representation SEf (p) =
∫
∂eE

f dµEp for all p ∈ E. A point q ∈ ∂nE is called

regular if limp→q S
E
f (p) = f(q) for all f ∈ C(∂eE). A point q ∈ ∂ssE is called

regular if limp→q+ S
E
f (p) = f(q) for all f ∈ C(∂eE). The set E is called regular if

every point of ∂eE is regular, and quasi-regular if every point of ∂eE outside some
polar set is regular.

Given a point p0 ∈ E, we denote by Λ(p0;E) the set of points q ∈ E that are
lower than p0 relative to E, in the sense that there is a polygonal path γ ⊆ E
joining p0 to q along which the temporal variable t is strictly decreasing. We also
denote by Λ∗(p0;E) the set of points q ∈ E for which there is a polygonal path
γ ⊆ E joining p0 to q along which t is strictly increasing. Clearly p ∈ Λ(q;E) if
and only if q ∈ Λ∗(p;E).

We recall from [10] that a subset Z of ∂eE is a caloric measure null set for E if
µEp (Z) = 0 for all p ∈ E. An equivalent condition is that UEχZ

= 0 on E, and χZ is
resolutive.

In Section 2 we amend the characterization of caloric measure null sets given in
[10], and give a new characterization which relates the null sets of E to those of
Λ(q;E) for points q ∈ E. We also present some basic properties of caloric measure
null sets. All of these results are analogues of known results for harmonic measure
null sets.

In Section 3 we look at the dependence of caloric measure null sets on the set
E. Let D and E be open sets such that D ⊆ E. If q ∈ D, and Z is a subset
of ∂eE ∩ ∂eD which is µEq -measurable, we know from [12, Theorem 10] that Z is

also µDq -measurable with µDq (Z) ≤ µEq (Z). It is easy to deduce from this that Z
is caloric measure null for D if it is caloric measure null for E. We prove, under
certain conditions on E and Z, that the reverse implication is also true. These
results are also analogues of known results for harmonic measure null sets.

Although a polar subset of ∂eD is always caloric measure null for D, the opposite
implication is only rarely true. Indeed, as shown in [13, Example 5], a caloric
measure null set can have positive (n+1)-dimensional Lebesgue measure. In Section
4 we show that a subset Z of ∂∗aD is caloric measure null for D if and only if it
is polar. Note that if q ∈ ∂∗aD there is an upper half-ball H∗(q, r) ⊆ D, so that
q /∈ ∂sD and hence q ∈ ∂eD.
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2. Characterizations and General Properties

We need the characterization of caloric measure null sets given in [10, Theorem
5.2]. In the proof of that result, it was implicitly assumed that ∂eE is always equal
to
⋃
p∈E ∂eΛ(p;E), which is not the case. Certainly [10, Lemma 2.9] shows that we

always have
⋃
p∈E ∂eΛ(p;E) ⊆ ∂eE, but the reverse inclusion may not hold. This

oversight is easy to fix, because the set difference is always caloric measure null for
E, as we shall show. Here is a corrected statement of the theorem.

Theorem 1. Let E be an open set.
(a) The set

T = ∂eE\
⋃
p∈E

∂eΛ(p;E)

is caloric measure null for E.
(b) If Z ⊆

⋃
p∈E ∂eΛ(p;E), then Z is caloric measure null for E if and only if

the following condition is satisfied.
For each point p0 ∈ E, there is a nonnegative supertemperature u on Λ(p0;E)

such that limp→q u(p) = +∞ for all q ∈ Z ∩ ∂nΛ(p0;E), and limp→q+ u(p) = +∞
for all q ∈ Z ∩ ∂ssΛ(p0;E).

Proof. (a) Given any point p ∈ E, we put Λ = Λ(p;E). The function χ = χT
is identically zero on ∂eΛ, so that UΛ

χ = 0 on Λ. By [10, Lemma 3.4], UΛ
χ is the

restriction to Λ of UEχ , so that UEχ = 0 on Λ. Since p is arbitrary, UEχ = 0 on E.
(b) See the proof of [10, Theorem 5.2]. �

Here is a different characterization of caloric measure null sets. This result is
analogous to one for harmonic measure given in [1, Lemma 6.5.3], where Λ(q;E) is
replaced by the component of E that contains q, and ∂e by ∂∞.

Theorem 2. Let E be an open set, and let Z ⊆ ∂eE.
(a) If Z is caloric measure null for E, then given any p ∈ E and q ∈ Λ∗(p;E),

we have

µΛ(q;E)
p (Z ∩ ∂eΛ(q;E)) = 0.

(b) Conversely, if {pj} is a sequence in E such that
⋃∞
j=1 Λ(pj ;E) = E, and for

each j there is a point qj ∈ Λ∗(pj ;E) such that

µΛ(qj ;E)
pj (Z ∩ ∂eΛ(qj ;E)) = 0,

then Z is a caloric measure null set for E.

Proof. (a) Given any points p ∈ E and q ∈ Λ∗(p;E), the set Y = Z ∩ ∂eΛ(q;E) is
caloric measure null for E and hence µEp -measurable. Therefore [12, Theorem 10]

shows that Y is also µ
Λ(q;E)
p -measurable with µ

Λ(q;E)
p (Y ) = 0.

(b) For each j, we denote by χj the characteristic function of Z ∩ ∂eΛ(qj ;E). If

µ
Λ(qj ;E)
pj (Z ∩ ∂eΛ(qj ;E)) = 0, then

∫
∂eΛ(qj ;E)

χj dµ
Λ(qj ;E)
pj exists so that, in view of

[10, Theorem 4.6(a)],

UΛ(qj ;E)
χj

(pj) =

∫
∂eΛ(qj ;E)

χj dµ
Λ(qj ;E)
pj = µΛ(qj ;E)

pj (Z ∩ ∂eΛ(qj ;E)) = 0.
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Since the values of U
Λ(qj ;E)
χj all lie in the interval [0, 1], it is a temperature on

Λ(p; Λ(qj ;E)) for all p ∈ Λ(qj ;E), by [10, Lemma 3.6], and hence on Λ(qj ;E)

itself. It therefore follows from the minimum principle that U
Λ(qj ;E)
χj = 0 on the

set Λ(pj ; Λ(qj ;E)) = Λ(pj ;E). Since χj is the restriction to ∂eΛ(qj ;E) of χZ , it
follows from [10, Lemma 3.4] that UEχZ

= 0 on Λ(pj ;E). Our hypothesis on {pj}
now implies that UEχZ

= 0 on E, so that Z is caloric measure null for E. �

Theorem 3. Let E be an open set.
(a) If f is a function on ∂eE such that UEf < +∞ on E, then the set Z of points

p where f(p) = +∞ is caloric measure null for E.
(b) If {Zi} is a sequence of caloric measure null subsets of ∂eE, then

⋃∞
i=1 Zi is

also caloric measure null for E.
(c) If f is a nonnegative function on ∂eE such that UEf = 0 on E, then the set

Z of points p where f(p) > 0 is caloric measure null for E.
(d) If Z is a relatively open subset of ∂eE that is caloric measure null for E,

then every point of Z is irregular and Z is semipolar.

Proof. (a) Let f and Z be as in the statement. By Theorem 1(a), we may suppose
that Z ⊆

⋃
p∈E ∂eΛ(p;E), and so we can use the criterion in Theorem 1(b). Let

p0 ∈ E. Since UEf (p0) < +∞, we can find a hypertemperature u ∈ UEf such

that u(p0) < +∞, which implies that u is a supertemperature on Λ(p0;E) by
[11, Corollary 3.55]. The function u is lower bounded on E, and satisfies both
limp→q u(p) = +∞ for all q ∈ Z ∩ ∂nE and limp→q+ u(p) = +∞ for all q ∈
Z∩∂ssE. We put v = u− infE u on E, so that v is a nonnegative supertemperature
on Λ(p0;E). We also put Λ = Λ(p0;E). By [11, Lemma 8.4], ∂eΛ ⊆ ∂eE and
∂ssΛ ⊆ ∂ssE; but is it not in general true that ∂nΛ ⊆ ∂nE. Hence we immediately
deduce that

lim
p→q+

v(p) = +∞ for all q ∈ Z ∩ ∂ssΛ ⊆ Z ∩ ∂ssE,

but the corresponding result for normal boundary points needs a bit more. Clearly

lim
p→q

v(p) = +∞ for all q ∈ Z ∩ ∂nΛ ∩ ∂nE.

On the other hand, if q ∈ Z ∩ ∂nΛ ∩ ∂ssE, there is an open half-ball H(q, r) ⊆ E
such that H(q, r) ∩ Λ = ∅, by [11, Lemma 8.4]. Therefore

lim
p→q,p∈Λ

v(p) = lim
p→q+,p∈E

v(p) = +∞.

It now follows from Theorem 1(b) that Z is caloric measure null for E.
(b) Let {Zi} be a sequence of caloric measure null subsets of ∂eE. For any point

p ∈ E we have µEp (Zi) = 0 for all i, so that µEp (
⋃∞
i=1 Zi) = 0 also. Since p is

arbitrary, that union is caloric measure null for E.
(c) Let f be a nonnegative function on ∂eE such that UEf = 0 on E. For each

k ∈ N, we denote by χk the characteristic function of the set Zk of points p where
f(p) > 1/k. Then 0 = kUEf = UEkf ≥ UEχk

≥ 0 on E, so that each Zk is caloric

measure null for E. It now follows from (b) that the set Z =
⋃∞
k=1 Zk is also caloric

measure null for E.
(d) Let Z be a relatively open subset of ∂eE that is caloric measure null for E.

Given any point q ∈ Z, we choose a continuous function f : ∂eE 7→ [0, 1] such that
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f = 0 on ∂eE\Z and f(q) = 1. Then 0 ≤ SEf ≤ SEχZ
= 0 on E because Z is caloric

measure null for E, so that q is irregular. It now follows from [11, Corollary 9.47]
that Z is semipolar. �

The results in Theorem 3 are analogous to results for harmonic measure null
sets, parts (a), (b) and (c) given in [2, p.108], part (d) in [1, Corollary 6.6.9].

The proofs of Theorems 5 and 7 require the following elementary lemma.

Lemma 4. Let D be an open set, and let Z be a subset of ∂eD which is caloric
measure null for D. Then there is a Borel subset B of ∂eD which contains Z and
is also caloric measure null for D.

Proof. We take a sequence {pj} of points in D such that
⋃∞
j=1 Λ(pj ;D) = D. Since

Z is caloric measure null for D, given any j we have µDpj (Z) = 0 so that, since µDpj
is a completed Borel measure, there is a Borel set Bj ⊇ Z such that µDpj (Bj) = 0.

We denote by χj the characteristic function of Bj . By [10, Corollary 4.7], the fact
that 0 ≤ LDχj

≤ UDχj
≤ 1 implies that χj is resolutive for D and

SDχj
(p) =

∫
∂eD

χj dµ
D
p = µDp (Bj)

for all p ∈ D. In particular SDχj
(pj) = 0, so that the temperature SDχj

is zero on

Λ(pj ;D) by the minimum principle. We now put B =
⋂∞
j=1Bj , so that B is a Borel

superset of Z and µDpj (B) = 0 for all j. By [10, Corollary 4.7], χB is resolutive for
D and

SDχB
(p) =

∫
∂eD

χB dµ
D
p = µDp (B)

for all p ∈ D. Thus SDχB
(pj) = 0 for all j, and so the minimum principle implies

that SDχB
= 0 on

⋃∞
j=1 Λ(pj ;D) = D. Hence B is caloric measure null for D. �

3. Dependence on the Open Set

Theorem 5 below is a partial analogue of [1, Theorem 6.6.10]. In part (b) we
assume that E is quasi-regular, a hypothesis not necessary in the harmonic case
because there every open set has this property. Thus, as is often the case, the
situation for the heat equation is more complicated and less satisfactory than that
for Laplace’s equation. However, the hypothesis of quasi-regularity is not very
restrictive, and examples of open sets which do not satisfy it are always non-trivial.
Some examples can be found in [8].

Theorem 5. Let D and E be open sets such that D ⊆ E, and let Z ⊆ ∂eD ∩ ∂eE.
(a) If Z is caloric measure null for E, then it is also caloric measure null for D.

(b) Conversely, if E is quasi-regular, Z ⊆ ∂eE\(E\D), and Z is caloric measure
null for D, then it is also caloric measure null for E.

Proof. (a) If Z is caloric measure null for E, then for all q ∈ E the set Z is
µEq -measurable with µEq (Z) = 0. Therefore, by [12, Theorem 10], for every point

q ∈ D, the set Z is µDq -measurable with 0 ≤ µDq (Z) ≤ µEq (Z) = 0. Hence Z is
caloric measure null for D.

(b) For the converse, if Z is contained in the relatively open subset ∂eE\(E\D)
of ∂eE, we can write Z =

⋃∞
i=1 Zi, where each Zi is bounded and has its closure in
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∂eE\(E\D). If we prove that each Zi is caloric measure null for E, the result for
Z will follow from Theorem 3(b). We can therefore assume that Z is bounded and

that Z ⊆ ∂eE\(E\D). Furthermore, if Z is caloric measure null for D, Lemma 4
shows that there is a Borel set B such that Z ⊆ B ⊆ ∂eD and which is also caloric
measure null for D. The set X = B∩(∂eE\(E\D)) is also a Borel superset of Z, and
satisfies the same conditions as Z. If we were to prove the result with Z replaced
by X, then the result for Z would follow immediately. We may therefore assume
that Z is a Borel set. With this assumption, the inequalities 0 ≤ LEχZ

≤ UEχZ
≤ 1

on E imply that χZ is resolutive for E, by [10, Corollary 4.7].
We now define

w =

{
χZ on ∂E,

SEχZ
on E.

Then
lim

p→q, p∈E
w(p) = 0 (1)

for every point q ∈ ∂nE\Z that is regular for E, and

lim
p→q+, p∈E

w(p) = 0 (2)

for every point q ∈ ∂ssE\Z that is regular for E. Hence either (1) or (2) holds, as
appropriate, for all q ∈ ∂eE\Z outside some polar set, since E is quasi-regular by
hypothesis. Moreover, for all p ∈ D we have w(p) = SEχZ

(p) = SDw (p), in view of
[12, Theorem 11, Corollary].

We now split ∂eD into three disjoint sets, and write

U = ∂eD ∩ E ⊆ E\D, V = ∂eD ∩ ∂eE ⊇ Z, Y = ∂eD ∩ ∂sE.
Since Z ⊆ ∂eE we have w = 0 on ∂sE, so that

w = w(χU + χV + χY ) = wχU + χZ

on ∂eD. Therefore, for all p ∈ D we have

w(p) = SDw (p) = SDwχU
(p) + SDχZ

(p) = SDwχU
(p),

because Z is caloric measure null for D. Furthermore, because the compact set Z
does not meet E\D, there is a positive distance between them. It follows that, for
every point q ∈ Z ∩ ∂nD that is regular for D,

lim
p→q, p∈E

w(p) = lim
p→q, p∈D

w(p) = lim
p→q

SDwχU
(p) = 0 (3)

since Z ∩ U = ∅, and for every point q ∈ Z ∩ ∂ssD that is regular for D,

lim
p→q+, p∈E

w(p) = lim
p→q+, p∈D

w(p) = lim
p→q+

SDwχU
(p) = 0. (4)

We know from [11, Corollary 8.47] that any point of ∂nD ∩ ∂nE, or of ∂ssD(⊆
∂ssE), that is regular for E is also regular for D. Moreover, there are no points

in ∂nD ∩ ∂ssE outside E\D; for if q ∈ ∂ssE there is a half-ball H(q, r0) ⊆ E, so

that if q ∈ ∂nD and r ≤ r0 then H(q, r)\D 6= ∅, and hence q ∈ E\D. Since E
is quasi-regular, it now follows that either (3) or (4) holds, as appropriate, for all
q ∈ Z outside some polar set. Therefore either (1) or (2) holds, as appropriate, for
all q ∈ ∂eE outside some polar set. If E is unbounded then the point at infinity
is regular, by [11, Theorem 8.46(b)], and since Z is bounded we have χZ = 0 in a



36 N. A. WATSON

neighbourhood of infinity, so that w(p) → 0 as p approaches infinity also. It now
follows from the boundedness of w and the maximum principle in [11, Theorem
8.2], that w = 0 on E. Hence Z is caloric measure null for E. �

4. Polarity

We know from [10, p. 405] that any polar subset of ∂eD is caloric measure null
for D. In this section we show that a subset Z of ∂∗aD is caloric measure null for
D only if it is polar. The following lemma plays a crucial role in this.

Lemma 6. Let D be an open set, let c ∈ R, and let Ec = Rn× ]c,+∞[. If

Z ⊆ (∂eD ∩ (Rn × {c}))\(Ec\D), (5)

then Z is caloric measure null for D only if Z is polar.

Proof. Suppose that Z is caloric measure null for D. We first consider the case
where D ⊆ Ec. Since Ec is a regular open set and (5) holds, it follows from Theorem
5(b) that Z is caloric measure null for Ec. The caloric measure of Z relative to Ec
and any point (x, t) therein, is given by

µEc

(x,t)(Z) =

∫
Z

W (x− y, t− c) dy

[2, p. 332], which is zero if and only if the n-dimensional Lebesgue measure of Z is
zero. By [11, Theorem 7.55], this happens if and only if the thermal capacity of Z
relative to Rn+1 is zero, which holds if and only if Z is polar [11, Theorem 7.46].

We now consider the general case, and put C = D ∩Ec. We note that condition
(5) implies that Z ⊆ ∂nC; for if q ∈ ∂eD ∩ (Rn × {c}), then either (i) for all r > 0
we have H∗(q, r) ∩D 6= ∅, in which case q ∈ ∂nC, or (ii) there is ε > 0 such that

H∗(q, ε) ∩D = ∅, in which case q ∈ Ec\D. Thus Z ⊆ ∂eC ∩ ∂eD, and we can use
Theorem 5(a) to show that Z is caloric measure null for C. Since Ec\C = Ec\D,
condition (5) holds with D replaced by C throughout. Therefore we can use the
case proved above to show that Z is polar. �

Lemma 7. If A is an analytic set whose every compact subset is polar, then A
itself is polar.

Proof. Let K be any compact subset of A. Since K is polar it has thermal capacity
C(K) = 0 [11, p.175]. Therefore the inner thermal capacity of A, namely [11,
Definition 7.40]

C−(A) = sup{C(K) : K is a compact subset of A},
is also zero. Since A is analytic it is thermal capacitable, by [11, Theorem 7.51],
with thermal capacity C(A) = C−(A) = 0 [11, Definition 7.43]. Therefore A is
polar, by [11, Theorem 7.46(b)]. �

Theorem 8. Let D be an open set. A subset Z of ∂∗aD is caloric measure null for
D if and only if it is polar.

Proof. Suppose that Z is caloric measure null for D. By Lemma 4, there is a Borel
subset B of ∂eD which contains Z and is also caloric measure null for D. The set
B∩∂∗aD is a Borel set which contains Z and satisfies the same conditions as Z. We
can therefore suppose that Z is Borel.
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By [11, Theorem 8.40], there is a sequence of hyperplanes of the form Rn × {t}
which covers ∂∗aD. We can therefore write Z =

⋃∞
i=1 Zi, where each Zi is either

∅ or a caloric measure null subset of a single such hyperplane. It thus suffices to
prove that any nonempty Zi is polar. So we suppose that ∅ 6= Zi ⊆ Rn × {c},
and take an arbitrary compact subset K of Zi. We put Ec = Rn× ]c,+∞[ with
a view to using Lemma 6. For each point q ∈ K, we can find rq > 0 such that
H∗(q, rq) ⊆ D because q ∈ ∂∗aD, and also B(q, rq) ∩ (Rn × {c}) ⊆ ∂∗aD because
∂∗aD is relatively open in ∂D. The compactness of K ensures that there is ε > 0
such that H∗(q, ε) ⊆ D and B(q, ε) ∩ (Rn × {c}) ⊆ ∂∗aD for all q ∈ K. Thus

the distance between K and Ec\D is positive, so that K ∩ (Ec\D) = ∅. Hence

K ⊆ ∂eD ∩ (Rn × {c})\(Ec\D), and Lemma 6 shows that K is polar. If Z is a
Borel set then each Zi is too, so that Zi is analytic by [11, Lemma 7.49(b)]. Hence
the arbitrariness of K and Lemma 7 show that Zi is polar. �

References

[1] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-
Verlag, London, 2001.

[2] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart,
Grundlehren der mathematischen Wissenschaften 262, Springer-Verlag, New
York, 1984.

[3] E. Fabes and S. Salsa, Estimates of caloric measure and the initial-Dirichlet
problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc.
279 (1983), 635–650.

[4] Y. Heurteaux, Mésure harmonique et l’équation de la chaleur, Ark. Mat. 34
(1996), 119–139.

[5] R. Kaufman and J. Wu, Parabolic potential theory, J. Differ. Equations 43
(1982), 204–234.

[6] R. Kaufman and J.-M. Wu, Dirichlet problem of heat equation for C2 domains,
J. Differ. Equations 80 (1989), 14–31.

[7] J. L. Lewis and J. Silver, Parabolic measure and the Dirichlet problem for
the heat equation in two dimensions, Indiana Univ. Math. J. 37 (4) (1988),
801–839.

[8] S. J. Taylor and N. A. Watson, A Hausdorff measure classification of polar
sets for the heat equation, Math. Proc. Camb. Philos. Soc. 97 (1985), 325–344.

[9] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the
heat equation, Proc. Lond. Math. Soc. Ser. III 33 (1976), 251–298.

[10] N. A. Watson, Caloric measure for arbitrary open sets, J. Aust. Math. Soc. 92
(3) (2012), 391–407.

[11] N. A. Watson, Introduction to Heat Potential Theory, Mathematical Surveys
and Monographs 182, Amer. Math. Soc., Providence, 2012.

[12] N. A. Watson, The two versions of the Dirichlet problem for the heat equation,
New Zealand J. Math. 45 (2015), 89–110.

[13] N. A. Watson, Uniqueness of extendable temperatures, Bull. Aust. Math. Soc.
103 (2) (2021), 311–317.

[14] J.-M. G. Wu, On parabolic measures and subparabolic functions, Trans. Amer.
Math. Soc. 251 (1979), 171–185; Erratum, ibidem 259 (1980), 636.



38 N. A. WATSON

[15] J.-M. Wu, An example on null sets of parabolic measures, Proc. Amer. Math.
Soc. 107 (4) (1989), 949–961.

Neil A. Watson

School of Mathematics and Statistics,
University of Canterbury,

Private Bag 4800, Christchurch,

New Zealand 8140

neil.watson@canterbury.ac.nz


