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Abstract. Spherically complete ball spaces provide a simple framework for the
encoding of completeness properties of various spaces and ordered structures.

This allows to prove generic versions of theorems that work with these com-

pleteness properties, such as fixed point theorems and related results. For
the purpose of applying the generic theorems, it is important to have meth-

ods for the construction of new spherically complete ball spaces from existing

ones. Given various ball spaces on the same underlying set, we discuss the
construction of new ball spaces through set theoretic operations on the balls.

A definition of continuity for functions on ball spaces leads to the notion of

quotient spaces. Further, we show the existence of products and coproducts
and use this to derive a topological category associated with ball spaces.

1. Introduction

Ball spaces have been introduced in [6] as a framework for the proof of generic
fixed point theorems for functions which in some way are contracting. Since then,
the development of their theory and their applications has led to several articles
([1, 2, 7, 4, 8, 5]).

A ball space is a pair (X,B) consisting of a nonempty set X and a nonempty
set of distinguished nonempty subsets B of X. If we denote the power set of X by
P(X), this means that

∅ 6= B ⊆ P(X) \ {∅} .
The elements B of B will be called balls, in analogy to the case of metric (or
ultrametric) balls. In analogy to the case of ultrametric spaces, we will call a
nonempty collection N of balls in B a nest of balls (in B) if it is totally ordered
by inclusion. We will say that (X,B) is spherically complete if the intersection⋂
N of each nest N of balls in B is nonempty. The notions of “nest of balls” and

“spherically complete” are taken over from the well developed theory of ultrametric
spaces, valued abelian groups and valued fields, which also inspired the idea of ball
spaces.

Ball spaces can be derived from various settings, such as metric spaces, ultra-
metric spaces, topological spaces (where it is convenient to take the balls to be
the nonempty closed sets), partially ordered sets, lattices. The generic fixed point
theorems that hold in spherically complete ball spaces then allow specializations
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to all of these settings, in which spherically completeness is equivalent to natural
completeness or compactness properties (cf. [1]). Let us mention at this point that
when we associate to an ultrametric space the ball space consisting of all closed
ultrametric balls, then this ball space is spherically complete if and only if the
ultrametric space is (in fact, the notion of spherical completeness for ball spaces
has been taken over from ultrametric spaces). Similarly, when we associate to a
topological space the ball space consisting of all nonempty closed sets, then this
ball space is spherically complete if and only if the topological space is compact.

The general framework of ball spaces allows transfers of concepts and approaches
between these various settings (again, cf. [1]). The standard procedure for this is to
first transfer a concept and associated results from one setting to that of ball spaces
and then specialize from there to another setting. Let us give some examples.

Take a function f from a ball space (X,B) to a ball space (X ′,B′). Under which
conditions does f transfer spherical completeness from one side to the other? This
question has arisen in the setting where X and Y are ultrametric spaces and the
aim was to prove coincidence theorems which for two given functions f, g : X → Y
give conditions under which there exists x ∈ X such that f(x) = g(x). In [11] such
theorems were proven (under the name “common point theorem”) for the case of
ultrametric spaces X = X ′. In [5] this task was then transferred to ball spaces
and two types of generic coincidence theorems are proven: one where (X,B) is
spherically complete, and the other where (X ′,B′) is spherically complete.

In order to answer the above question, it is a good idea to look at classical
properties of functions. The notions of “continuous function” and “closed function”
are commonly defined in metric, or more generally topological, spaces. Transferring
these notions to ball spaces, we call f : X → X ′ ball continuous if the preimage
of every ball in B′ is a ball in B, and ball closed if the image of every ball in B is
a ball in B′. Then the following holds:

Theorem 1. If f is ball continuous and (X,B) is spherically complete, then so is
(X ′,B′). If f is ball closed and finite-to-one, and if (X ′,B′) is spherically complete,
then so is (X,B)

These results are parts a) and e) of Theorem 5 in Section 3, in which we study
further conditions for the transfer of spherical completeness. It provides the nec-
essary background for the definition of the notion of “quotient ball space” in the
same section.

A second example for the transfer of notions is given by the notion of prod-
ucts. Inspired by the celebrated Tychonoff Theorem, we ask the question: is the
product of spherically complete ball spaces again spherically complete (and in fact,
how should the product be defined)? We will deal with these questions in Section 4.
In [1] the ball spaces analogue of the Tychonoff Theorem is transferred to ultra-
metric spaces. The result that (correctly defined) products of spherically complete
ultrametric spaces are again spherically complete has important applications in
multidimensional versions of Hensel’s Lemma as well as multidimensional and even
infinite dimensional Implicit Function Theorems (see [3]).

Having the notion of ball continuity at hand, we define in Section 4 the category
of ball spaces, where the morphisms are the ball continuous functions. Our defini-
tion of products of ball spaces provides the products in this category. We also show
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the existence of coproducts and prove that coproducts of spherically complete ball
spaces are again spherically complete (see Theorem 9).

In many situations the behaviour of ball spaces reminds us of topological spaces,
and indeed, many inspiring examples come from a topological context. Hence in
order to provide topological methods, we derive from the category of ball spaces
the category of augmented ball spaces by adding the full space and the empty set
to the sets of balls. We prove:

Theorem 2. The category of augmented ball spaces is topological.

For definitions and details, see Section 5. Note that this result implies that the
category can be embedded in a cartesian closed topological category, ensuring that
we have more than the weak (pointwise) function spaces at hand, which belong to
the same kind of structure (see e.g. [13]).

Apart from forming quotient spaces and products there are many more proce-
dures to construct a new ball space (X,B) from a given ball space or a set of ball
spaces (Xi,Bi), i ∈ I. We will discuss some of them in this paper. Since most
of the generic fixed point theorems work for spherically complete ball spaces, it is
an important question under which conditions the spaces (Xi,Bi) being spherically
complete implies that so is (X,B) (as is the case for products and coproducts). The
simplest case for this to work is when we take the union of the sets of balls of two
ball spaces on the same set X (see Proposition 11). For certain other operations,
however, we may need the ball spaces to satisfy a stronger form of spherical com-
pleteness; a hierarchy of them will be introduced in Section 2.1. This for instance
happens when we take a single ball space (X,B) and want to replace B by the set
of all finite unions of balls in B (see Theorem 12). We will also study which of
the stronger forms of spherical completeness are preserved under forming products,
coproducts and unions of two ball spaces. For the study of further operations on
the set of balls and the connection with topologies, see [1].

Returning to the case of several ball spaces on a given set X, we will discuss in
Section 6.2 the particularly interesting natural example of ordered abelian groups
and fields. For the case of fields, S. Shelah introduced in [14] the notion of sym-
metrical completeness which means that for every Dedekind cut, the cofinality
of the left cut set is different from the coinitiality of the right cut set (as is the
case in the reals). He showed that arbitrarily large symmetrically complete ordered
fields exist. With a different construction idea, the existence result is reproven in
[8] and generalized to the case of ordered abelian groups and ordered sets. For the
ordered sets, the existence result in fact follows already from the comprehensive
work of Hausdorff. It is also shown in [8] that symmetrical completeness is equiva-
lent to the spherical completeness of the induced order ball space, which is defined
as follows. If (I,≤) is any nonempty totally ordered set, then we take Bo to consist
of all closed bounded intervals [a, b] with a, b ∈ I, a ≤ b. We call (I,Bo) the order
ball space associated with (I,≤).

On the other hand, non-archimedean ordered abelian groups and fields carry
a nontrivial natural valuation (cf. Section 2.3), which induces an ultrametric ball
space (cf. Section 2.2). This ball space is always spherically complete when the
order ball space is, but the two spaces are distinct. It should be noted that the
balls in the ultrametric ball space are precisely all cosets of the principal convex
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subgroups; here a convex subgroup is called principal if it is the smallest among
all convex subgroups containing a fixed element. Note that in any ordered set, a
subset S is called convex if a, b ∈ S and a < c < b imply that c ∈ S.

We can apply Proposition 11 to these two ball spaces, but we cannot apply
Theorem 12 as the order ball space and hence also the union of the two ball spaces
does not satisfy the necessary requirements. However, in Section 6.2 we prove:

Theorem 3. Take a symmetrically complete ordered group or field G and let B be
the set of all convex sets in G that are finite unions of closed bounded intervals and
ultrametric balls. Then (G,B) is spherically complete.

We also show that the convex sets appearing in the theorem can always be repre-
sented as two distinct ultrametric balls connected by a closed interval (hence we
gave them the nickname “bar-bells”).

Open question: Does the theorem also hold if the condition “convex” is removed?

2. Preliminaries

2.1. A hierarchy of ball spaces. In [1] we introduce and study the following
hierarchy of spherical completeness properties:

S1: The intersection of each nest in (X,B) is nonempty.

S2: The intersection of each nest in (X,B) contains a ball.

S3: The intersection of each nest in (X,B) contains maximal balls.

S4: The intersection of each nest in (X,B) contains a largest ball.

S5: The intersection of each nest in (X,B) is a ball.

Sci : The same as Si, but with “centered system” in place of “nest”.

Here, a centered system of balls is a collection of balls such that the intersection
of any finite number of balls in the collection is nonempty.

2.2. Ball spaces associated with ultrametric spaces and valuations. An
ultrametric space is a pair (X,u) where X is a set and u : X ×X → Γ with Γ a
totally ordered set with largest element ∞, such that:

(UM1) u(x, y) =∞ if and only if x = y;
(UM2) u(x, y) = u(y, x);
(UM3) u(x, z) ≥ min{u(x, y), u(y, z)}.
(UM3) is called the ultrametric triangle law. The image

uX := u(X ×X) \ {∞}
is called the value set of u. A generalization of the notion of ultrametric space
works with partially ordered value sets uX in place of totally ordered ones (see
[10, 12, 1, 2]), but we will not need this generalization in the present paper.

One frequent source of ultrametrics are valuations: if v is a valuation on a field
or an abelian group, then one may define u(a, b) := v(a− b). With this definition,
the above axioms are satisfied if v has values in Γ ∪ {∞} and is written as a Krull
valuation, that is, it satisfies the following axioms:

(V1) vx =∞ if and only if x = 0;
(V2) v(x− y) ≥ min{vx, vy} (ultrametric triangle law).
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Note that for valuations on fields we require in addition that Γ is an ordered abelian
group together with ∞ (an element larger than all elements of the group) and the
following axiom holds:

(VH) v(xy) = vx+ vy (homomorphism law).

Take an ultrametric space (X,u). For x ∈ X and γ ∈ uX ∪ {∞}, the set

Bγ(x) := {x ∈ X | u(x, y) ≥ γ}

is called the closed ball of radius γ around x. Further, we define

B(x, y) := Bu(x,y)(x) = Bu(x,y)(y) ,

where the latter equality follows from the fact that in an ultrametric space every
element of a ball is a center. If X is nonempty, then (X,Bu) with

Bu := {B(x, y) | x, y ∈ X}

is a ball space, which we call the ultrametric ball space.
From the ultrametric triangle law it follows that any two balls in Bu are already

comparable by inclusion once they have a nonempty intersection. It follows that
every centered system of balls in Bu is in fact a nest of balls.

2.3. Nonarchimedean orderings and the natural valuation. Take an or-
dered abelian group (G,≤). Two elements a, b ∈ G are called archimedean
equivalent if there is some n ∈ N such that n|a| ≥ |b| and n|b| ≥ |a|. The
ordered abelian group (G,≤) is archimedean ordered if all nonzero elements are
archimedean equivalent. If 0 ≤ a < b and na < b for all n ∈ N, then we say that
“a is infinitesimally smaller than b”. We denote by va the archimedean equivalence
class of a. The set of archimedean equivalence classes can be ordered by setting
va > vb if and only if |a| < |b| and a and b are not archimedean equivalent, that
is, if n|a| < |b| for all n ∈ N. We write ∞ := v0 ; this is the maximal element
in the linearly ordered set of equivalence classes. The function a 7→ va is a group
valuation on G, i.e., it satisfies (V1) and (V2). By definition,

0 ≤ a ≤ b =⇒ va ≥ vb .

The set vG := {vg | 0 6= g ∈ G} is called the value set of the valued abelian group
(G, v).

If (K,≤) is an ordered field, then we consider the natural valuation on its ordered
additive group and define va + vb := v(ab). This turns the set of archimedean
classes into an ordered abelian group, with neutral element 0 := v1 and inverses
−va = v(a−1) . In this way, v becomes a field valuation.

As shown in Section 2.2 above, the natural valuation of an ordered abelian group
or ordered field induces an ultrametric ball space Bu .
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3. Ball Continuity and Quotient Ball Spaces

Take two ball spaces (X,B) and (X ′,B′) and a function f : X → X ′ . We will
call f ball continuous if the preimage of every ball in B′ is a ball in B, that is,

{f−1(B′) | B′ ∈ B′} ⊆ B . (1)

We will call f ball closed if the image of every ball in B is a ball in B′.

Lemma 4. Take three ball spaces (X,BX), (Y,BY ) and (Z,BZ), and functions
f : X → Y and g : Y → Z. Then g ◦ f is ball continuous if f and g are. Likewise,
g ◦ f is ball closed if f and g are.

Proof. For the first assertion, note that for every B ∈ BZ , (g ◦ f)−1(B) =
f−1(g−1(B)). The second assertion is obvious. �

The next theorem gives conditions for functions to preserve spherical complete-
ness in one or the other ditrection.

Theorem 5. Take two ball spaces (X,B) and (X ′,B′), and a function f : X → X ′ .
a) If f is ball continuous and (X,B) is spherically complete, then so is (X ′,B′).
b) Assume that f is surjective and

B ⊆ {f−1(B′) | B′ ∈ B′} . (2)

If (X ′,B′) is spherically complete, then so is (X,B).
c) Assume that f is surjective or (X ′,B′) is an S2 ball space, and that

B = {f−1(B′) | B′ ∈ B′} . (3)

Then (X,B) is spherically complete if and only if (X ′,B′) is.
d) If (3) holds and f is surjective, then

B′ = {f(B) | B ∈ B} (4)

and f induces an isomorphism of the partially ordered sets B and B′.
e) f : X → X ′ is ball closed and finite-to-one, and if (X ′,B′) is spherically

complete, then so is (X,B).

Proof. a) Take a nest N ′ = (B′i)i∈I of balls in (X ′,B′). Set N = (f−1(B′i))i∈I .
By assumption, we have that f−1(B′i) ∈ B for all i ∈ I, For any i, j ∈ I we
have that B′i ⊆ B′j or B′j ⊆ B′i , hence also f−1(B′i) ⊆ f−1(B′j) or f−1(B′j) ⊆
f−1(B′i) . This proves that N is a nest in B. As (X,B) is spherically complete,⋂
N is nonempty. Since f(

⋂
N ) ⊆ B′i for all i ∈ I, it follows that f(

⋂
N ) ⊆⋂

N ′, which shows that the latter is nonempty.
b) Take a nest N = (Bi)i∈I of balls in (X,B). Set N ′ = (f(Bi))i∈I . By as-

sumption, we have that every Bi is the preimage of a ball B′i in B′, hence
Bi = f−1(B′i) for all i ∈ I. For any i, j ∈ I we have that Bi ⊆ Bj or Bj ⊆ Bi ,
hence also f(Bi) ⊆ f(Bj) or f(Bj) ⊆ f(Bi) . This proves that N ′ is a nest in
B′. As (X ′,B′) is spherically complete,

⋂
N ′ is nonempty. Take x′ ∈

⋂
N ′.

Then x′ ∈ B′i for all i ∈ I. Pick some preimage x ∈ X of x′ under f ; this is
possible since f is assumed surjective. Then x ∈ f−1(B′i) = Bi for all i ∈ I.
Hence x ∈

⋂
N , showing that this intersection is nonempty.
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c) If f is surjective, everything follows from assertions a) and b). If f is not
surjective, but (X ′,B′) is an S2 ball space, then we have to modify the previous
proof in order to show that some x′ ∈

⋂
N ′ has a preimage in X. Since

(X ′,B′) is S2 ,
⋂
N ′ contains a ball B′. By (3), f−1(B′) is a ball in B and

hence nonempty. So there is an x′ ∈
⋂
N ′ which has a preimage in X.

d) A surjective function f : X → X ′ induces an inclusion preserving bijection
between all subsets of X ′ and their preimages. Condition (3) implies (4) and
that the restriction of f to B′ is a bijection between B′ and B.

e) Take a nest N = (Bi)i∈I of balls in (X,B). Set N ′ = (f(Bi))i∈I . By assump-
tion, each f(Bi) is a ball in B′, and since f preserves inclusion between balls,
N ′ is a nest. As (X ′,B′) is spherically complete,

⋂
N ′ is nonempty. Take

x′ ∈
⋂
N ′. Then x′ ∈ f(Bi) for all i ∈ I. Among the finitely many preimages

of x′ under f there must be at least one that is contained in all Bi . This
element then lies in

⋂
N , showing that the intersection is nonempty. �

Take any function f : X → X ′. We define functions

ϕf : P(X)→ P(X ′) and ψf : P(X ′)→ P(X)

by setting ϕf (S) := f(S) for each set S ⊆ X and ψf (S′) := f−1(S′) for each set
S′ ⊆ X ′. If S ⊆ P(X) and S ′ ⊆ P(X ′), then in accordance with our general use
for functions, ϕf (S) = {ϕf (S) | S ∈ S} and ψf (S ′) = {ψf (S′) | S′ ∈ S ′}. If (X,B)
is a ball space, then B is just a nonempty subset of P(X) \ {∅}. We observe that
then ϕf (B) is a nonempty subset of P(X ′) \ {∅}. Similarly, if f is surjective, then
∅ 6= ψf (B′) ⊆ P(X) \ {∅}.

Every nest of balls in B is also a ball space on X, but it has the special property
of being totally ordered by inclusion. So we are interested in the question when this
property is preserved by ϕf and ψf . The following is a corollary to the previous
proof.

Corollary 6. Take two ball spaces (X,B) and (X ′,B′) and a function f : X → X ′.
a) If f is ball continuous and N ′ is a nest of balls in B′, then ψf (N ′) is a nest

of balls in B.
b) If f is ball closed and N is a nest of balls in B, then ϕf (N ) is a nest of balls

in B′.

Take two ball spaces (X,B) and (X ′,B′). If there is a surjective function f :
X → X ′ such that (3) holds, then we call (X ′,B′) a quotient ball space of (X,B)
(induced by the function f). Note that B is the coarsest of all ball spaces S on X
such that f is a ball continuous function from (X,S) to (X ′,B′), and that B′ is
the finest of all ball spaces S ′ on X ′ such that f is a ball continuous function from
(X,B) to (X ′,S ′).

4. Products and Coproducts

We define the category of ball spaces to consist of all ball spaces as objects
and the ball continuous functions between them as morphisms. In this section we
show that products and coproducts exist in this category.

Theorem 7. The category of ball spaces admits products and coproducts.
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For the proof of the theorem, we will explicitly construct these objects. Take
ball spaces (Yi,Bi), i ∈ I.

1) Products. We set X =
∏
i∈I Yi and denote by pi : X → Yi the projection

from X to Yi . We set

B :=

{∏
i∈I

Bi

∣∣∣∣∣ for some k ∈ I, Bk ∈ Bk and ∀i 6= k : Bi = Yi

}
. (5)

Since the sets Bi are nonempty, it follows that B 6= ∅, and as no ball in any Bi is
empty, it follows that no member of B is empty. Hence (X,B) is a ball space.

The definition of B yields that all projections are ball continuous. If Yi ∈ Bi for
all i ∈ I, then they are also ball closed.

In order to prove that our definition yields products in the category of ball spaces,
we have to show that for any ball space (Z,BZ) and ball continuous functions
fi : Z → Yi there is a unique ball continuous function g : Z → X such that
pi ◦ g = fi for all i ∈ I. The latter forces g(z) = (fi(z))i∈I for all z ∈ Z; this
ensures uniqueness. It remains to show that g is ball continuous. A ball B ∈ B is
of the form

∏
i∈I Bi as in (5). Then g−1(B) = f−1k (Bk), which is a ball in BZ since

fk is ball continuous. This shows that g is ball continuous.

2) Coproducts. Take ball spaces (Yi,Bi), let X be the disjoint union
⋃̇
i∈IYi and

denote by ιi : Yi → X the canonical embedding of Yi in X. We set

B :=

{⋃
i∈I

ιi(Bi)

∣∣∣∣∣∀i ∈ I : Bi ∈ Bi

}
. (6)

For the same reasons as before, B 6= ∅ and no member of B is empty, hence again,
(X,B) is a ball space.

For all j ∈ I we have that ι−1j (
⋃
i∈I ιi(Bi)) = Bj , so each ιj is ball continuous.

We have to show that for any ball space (Z,BZ) and ball continuous functions
fi : Yi → Z there is a unique ball continuous function g : X → Z such that
g ◦ ιi = fi for all i ∈ I. The latter forces g(x) = fi(y) when y ∈ Yi with x = ιi(y);
this ensures uniqueness. It remains to show that g is ball continuous. Take a ball
B ∈ BZ . Then g−1(B) =

⋃
i∈I ιi(f

−1
i (B)). This is a ball in B because f−1i (B) ∈ Bi

for all i ∈ I as all fi are ball continuous.

Notation: We will denote the product defined above by
∏
i∈I(Yi,Bi), and the

coproduct by
∐
i∈I(Yi,Bi). Further, we may rewrite

⋃
i∈I ιi(Bi) as

⋃̇
i∈IBi .

Theorem 8. Take ball spaces (Yi,Bi), i ∈ I. Then the following assertions hold:
a)
∏
i∈I(Yi,Bi) is spherically complete if and only if all ball spaces (Yi,Bi), i ∈ I,

are spherically complete.
b) If at least one of the ball spaces (Yi,Bi), i ∈ I, is spherically complete, then∐

i∈I(Yi,Bi) is spherically complete.
c) The following are equivalent:

i) all ball spaces (Yi,Bi), i ∈ I, are S2 ,
ii)
∏
i∈I(Yi,Bi) is S2 ,

iii)
∐
i∈I(Yi,Bi) is S2 .

The same holds with S3 , with S4 and with S5 in place of S2 .
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Proof. Let us first observe the following. If I and J are some index sets and Bi,j ,
i ∈ I, j ∈ J are arbitrary sets, then⋂

j∈J

∏
i∈I

Bi,j =
∏
i∈I

⋂
j∈J

Bi,j and
⋂
j∈J

⋃̇
i∈I
Bi,j =

⋃̇
i∈I

⋂
j∈J

Bi,j . (7)

a) First assume that all ball spaces (Yi,Bi), i ∈ I, are spherically complete. Take
a nest (

∏
i∈I Bi,j)j∈J in

∏
i∈I(Yi,Bi). Then there is some k ∈ I such that

Bi,j = Yi for all i ∈ I with i 6= k and all j ∈ J , and (Bk,j)j∈J is a nest
of balls in Bk . Since (Yk,Bk) is spherically complete,

⋂
j∈J Bk,j 6= ∅. As⋂

j∈J Bi,j = Yi for i 6= k, we find that
⋂
j∈J

∏
i∈I Bi,j =

∏
i∈I
⋂
j∈J Bi,j 6= ∅.

This proves that
∏
i∈I(Yi,Bi) is spherically complete.

Now assume that
∏
i∈I(Yi,Bi) is spherically complete. We have already seen

that all projections are ball continuous. Hence it follows from part a) of The-
orem 5 that for every i ∈ I, (Yi,Bi) is spherically complete.

b) Assume that at least one of the ball spaces (Yi,Bi), i ∈ I, is spherically com-

plete. Take a nest (
⋃̇
i∈IBi,j)j∈J in

∐
i∈I(Yi,Bi). Since the unions are disjoint,⋃̇

i∈IBi,j1 ⊆
⋃̇
i∈IBi,j2 implies that Bi,j1 ⊆ Bi,j2 for all i ∈ I. This shows that

for each i ∈ I, (Bi,j)j∈J is a nest in Bi . If (Yk,Bk) is spherically complete,
then

∅ 6=
⋂
j∈J

Bk,j ⊆
⋃̇

i∈I

⋂
j∈J

Bi,j =
⋂
j∈J

⋃̇
i∈I
Bi,j .

c) We keep the notations of the proofs of a) and b). If all ball spaces (Yi,Bi),
i ∈ I, are S2 , then for each i ∈ I,

⋂
j∈J Bi,j contains a ball B′i . As in

the proof of part a), we know that there is some k ∈ I such that Bi,j = Yi
for all i ∈ I with i 6= k and all j ∈ J . Thus we can take B′i = Yi for
all i ∈ I with i 6= k. Then

⋂
j∈J

∏
i∈I Bi,j =

∏
i∈I
⋂
j∈J Bi,j contains the

ball
∏
i∈I B

′
i. If all spaces are even S3 (or S4), then B′k can be taken as

maximal (or largest, respectively) ball in Bk∪{Yk} contained in
⋂
j∈J Bk,j and

it follows that
∏
i∈I B

′
i is a maximal (or largest, respectively) ball contained in∏

i∈I
⋂
j∈J Bi,j . If all spaces are S5 , then

⋂
j∈J Bk,j is a ball in Bk ∪{Yk} and

hence
⋂
j∈J

∏
i∈I Bi,j =

∏
i∈I
⋂
j∈J Bi,j is a ball. This proves that i) implies

ii) in all four cases.

In view of the equality
⋂
j∈J

⋃̇
i∈IBi,j =

⋃̇
i∈I
⋂
j∈J Bi,j the above arguments

can be readily adapted to prove that i) implies iii) in all three cases.
Now assume that

∏
i∈I(Yi,Bi) is S2 . Take k ∈ I and a nest of balls N =

(Bj)j∈J in (Yk,Bk). We define the nest
∏
i∈I(Yi,Bi) as in the proof of part a).

By assumption, the intersection
⋂
j∈J

∏
i∈I Bi,j =

∏
i∈I
⋂
j∈J Bi,j contains a

ball
∏
i∈I B

′
i. It follows that B′k is a ball in Bk that is contained in

⋂
j∈J Bk,j . If∏

i∈I(Yi,Bi) is even S3 (or S4), then
∏
i∈I B

′
i can be assumed to be a maximal

(or largest, respectively) ball contained in
⋂
j∈J

∏
i∈I Bi,j , which implies that

B′k is a maximal (or largest, respectively) ball contained in
⋂
j∈J Bk,j . If∏

i∈I(Yi,Bi) is S5 , then
⋂
j∈J

∏
i∈I Bi,j is a ball, which implies that

⋂
j∈J Bk,j

is a ball in Bk . We have proved that ii) implies i) in all three cases.

Replacing “
∏
i∈I” by “

⋃̇
i∈I” gives that iii) implies i) in all four cases.

�
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At first glance it may be surprising that for
∐
i∈I(Yi,Bi) to be spherically com-

plete it suffices that just one of the ball spaces (Yi,Bi) is spherically complete,
while for

∐
i∈I(Yi,Bi) to be S2 , S3 , S4 or S5 , all ball spaces (Yi,Bi) must have the

same property. This is because for
⋂
j∈J

⋃̇
i∈IBi,j to be nonempty it suffices that⋂

j∈J Bi,j is nonempty for at least one i ∈ I, whereas for it to contain a ball, all⋂
j∈J Bi,j must contain a ball.

From the previous theorem we immediately obtain the following result.

Theorem 9. The categories of spherically complete ball spaces, of S2 ball spaces,
of S3 ball spaces, of S4 ball spaces and of S5 ball spaces, all of them with ball
continuous functions as their morphisms, admit products and coproducts.

Let us conclude this section by giving an example which shows that the converse
in part b) of Theorem 8 is in general not true. (However, it can be shown to be
true when all Bi are countable.)

Example 10. Take X1 = ω, B1 to be the set of all final segments in ω, X2 = ω1,
and B2 to be the set of all final segments in ω1 . Then neither (X1,B1) nor (X2,B2)
is spherically complete as in both cases, the intersection over all final segments
is empty. Note, however, that the intersection over every countable nest of balls
in (X2,B2) is nonempty, and thus the same is true in the coproduct of the two

ball spaces. On the other hand, if N = (
⋃̇
i∈{1,2}Bi,j)j∈J is an uncountable nest

in
∐
i∈{1,2}(Yi,Bi), then we may w.l.o.g. assume that J = ω1 and that j1 < j2

implies B1,j2 ⊆ B1,j1 and B2,j2 ⊆ B2,j1 . Since B1 is countable, the balls B1,j must
eventually become stationary, i.e., equal to one and the same ball B1 ∈ B1 , which
is then contained in the intersection of the nest N .

5. The Topological Category of Augmented Ball Spaces

If (X,B) is a ball space andA = B∪{∅, X}, or ifX is an arbitrary (not necessarily
nonempty) set and A = {∅, X}, then we call (X,A) an augmented ball space.
Take two ball spaces (X,B) and (X ′,B′) and a ball continuous function f : X → X ′ .
Since f−1(∅) = ∅ and f−1(X ′) = X, f also satisfies

{f−1(A′) | A′ ∈ A′} ⊆ A , (8)

where A′ = B′ ∪ {∅, X ′}. Therefore we will also call f a ball continuous function
from (X,A) to (X ′,A′). Note that f is always ball continuous when A′ = {∅, X}.

We define the category of augmented ball spaces to consist of all aug-
mented ball spaces as objects, with the ball continuous functions between them as
morphisms.

A category C is called topological if
(1) For all sets X and all families (fi, (Xi, ξi))i∈I , indexed by a class I, of C-objects

(Xi, ξi) and functions fi : X → Xi there exists a unique initial C-object (X, ξ)
on the set X, i.e., an object (X, ξ) s.t. for all C-objects (Y, η) and maps
g : Y → X the following holds:

g ∈ [(Y, η), (X, ξ)]C ⇔ ∀i ∈ I : fi ◦ g ∈ [(Y, η), (Xi, ξi)]C

(Y, η)
g // (X, ξ)

fi // (Xi, ξi)

That is: arbitrary initial structures exist.
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(2) Fibre-smallness: For all sets X, the class of C-objects on X is a set.
(3) On sets with at most one element exists exactly one C-structure.

Proof of Theorem 2.
(1) The category admits initial objects. Take augmented ball spaces (Yi,Ai), a

set X, and functions fi : X → Yi , i ∈ I. We set

A := {f−1i (Ai) | i ∈ I, Ai ∈ Ai} . (9)

Observe that ∅ = f−1i (∅) ∈ A and X = f−1i (Yi) ∈ A since (Yi,Ai) is an
augmented ball space; hence also (X,A) is an augmented ball space.
The definition of A yields that all fi as functions from (X,A) to (Yi,Ai) are
ball continuous. We have to show that for any ball space (Z,AZ) and function
g : Z → X we have that g : (Z,AZ)→ (X,A) is ball continuous if and only if
for all i ∈ I, fi ◦ g : (Z,AZ)→ (Yi,Ai) is ball continuous.
If g is ball continuous, then by Lemma 4 and our remark at the start of this
section, so are all fi ◦ g . For the converse, assume that all fi ◦ g are ball
continuous. Take A ∈ A. Then by definition, there is some i ∈ I and some
Ai ∈ Ai such that A = f−1i (Ai). Since fi ◦ g is ball continuous, g−1(A) =

g−1(f−1i (Ai)) = (fi ◦ g)−1(Ai) ∈ AZ . This shows that g is ball continuous.
(2) Every ball structure on X is a subset of P(X) and so it is an element of
P(P(X)).

(3) Every set with at most one element carries a unique augmented ball space
structure. Indeed, if the set is empty, then this is (∅, {∅}). If X is a singleton,
then (X, {X}) is a ball space, so by definition, (X, {∅, X}) is an augmented
ball space; this is the only augmented ball space structure on X. �

Note that the definition (9) used in the proof also yields an initial object in the
category of all ball spaces where the morphisms are assumed to be the surjective
ball continuous functions. But if one of the fi’s is not surjective, it can happen
that there is a ball Bi ∈ Ai such that Bi ∩ fi(X) = ∅, so that f−1i (Bi) = ∅.

The definitions of product and coproduct can be taken over from the category of
ball spaces. If we use the construction described in (5), with every Bi replaced by
Ai , to derive an augmented ball space (X,A) from augmented ball spaces (Yi,Ai),
then A will now contain ∅ (we take Bi = ∅ ∈ Ai for some i ∈ I) and X (we take
Bi = Yi ∈ Ai for all i ∈ I).

Further, if we apply the construction described in (6) to derive an augmented
ball space (X,A) from augmented ball spaces (Yi,Ai), then A will again contain ∅
(we take Bi = ∅ ∈ Ai for all i ∈ I) and X (we take Ai = Yi ∈ Ai for all i ∈ I).

Observe that now also

A′ := {ιi(Ai) | i ∈ I, Ai ∈ Ai}
renders all embeddings ιi ball continuous since ∅ ∈ Ai . However, in all cases where
A′ differs from the set A obtained from (6), examples can be constructed that show
that this is not a coproduct.

Since the category of augmented ball spaces is topological, it must also admit
final objects (cf. [9]). We can present them explicitly. Take augmented ball spaces
(Yi,Ai), a set X, and functions fi : Yi → X, i ∈ I. We set

A := {A ⊆ X | ∀i ∈ I : f−1i (A) ∈ Ai} . (10)
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Then all fi as functions from (Yi,Ai) to (X,A) are ball continuous. Further, ∅ ∈ A
since f−1i (∅) = ∅ ∈ Ai for all i ∈ I, and X ∈ A since f−1i (X) = Yi ∈ Ai for all
i ∈ I. It remains to show that for any ball space (Z,AZ) and function g : X → Z
we have that g : (X,A) → (Z,AZ) is ball continuous if and only if for all i ∈ I,
g ◦ fi : (Yi,Ai)→ (Z,AZ) is ball continuous.

If g is ball continuous, then by Lemma 4 and our remark at the start of this
section, so are all g ◦ fi . For the converse, assume that all g ◦ fi are ball continuous
and take A ∈ AZ . Then f−1i (g−1(A)) = (g ◦ fi)−1(A) ∈ Ai for all i ∈ I by
continuity. Hence by (10), g−1(A) ∈ A, showing that g is ball continuous.

We observe that this definition does not work in the category of ball spaces. For
example, consider ball spaces (X, {B1}) and (X, {B2}) with B1 6= B2 and f1 and f2
the identity function of X. Then there is no subset of X with preimage B1 under
f1 and B2 under f2 , so (10) renders the empty set when ∅ and the whole set are
not balls.

6. Hybrid Ball Spaces

As a final topic in this article we investigate the following question:

Given two spherically complete ball spaces (X,B1) and (X,B2) on the same set
X, which operations of forming new balls from the balls in B1 ∪ B2 will preserve
spherical completeness?

A first step is provided by the following proposition; the easy proof is left to the
reader.

Proposition 11. If (X,B1) and (X,B2) are S1 ball spaces, then so is the ball space
(X,B1 ∪ B2). The same holds with S2 or S5 in place of S1 .

Note that the assertion may become false if we replace S1 by S3 or S4 . Indeed,
the intersection of a nest in B1 may properly contain a largest (or maximal) ball
which does not remain the largest (or a maximal) ball contained in the intersection
in B1 ∪ B2 .

Having obtained B = B1 ∪B2 , the next question is how to create new balls from
the balls in B without losing spherical completeness. The results of taking unions
and intersections are discussed in [1]. In the next section, we present a particular
case.

6.1. Closure under finite unions of balls.

Take a ball space (X,B). By f-un(B) we denote the set of all unions of finitely
many balls in B. In [1], the following theorem is proven:

Theorem 12. If (X,B) is an Sc1 ball space, then so is (X, f-un(B)).

For the convenience of the reader, we repeat the proof here. We need a lemma.

Lemma 13. If S is a maximal centered system of balls in f-un(B) (that is, no
subset of f-un(B) properly containing S is a centered system), then there is a subset
S0 of S which is a centered system in B and has the same intersection as S.

Proof. It suffices to prove the following: if B1, . . . , Bn ∈ B such that B1∪. . .∪Bn ∈
S, then there is some i ∈ {1, . . . , n} such that Bi ∈ S.
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Suppose that B1, . . . , Bn ∈ B \ S. By the maximality of S this implies that for
each i ∈ {1, . . . , n}, S ∪ {Bi} is not centered. This in turn means that there is a
finite subset Si of S such that

⋂
Si ∩ Bi = ∅. But then S1 ∪ . . . ∪ Sn is a finite

subset of S such that⋂
(S1 ∪ . . . ∪ Sn) ∩ (B1 ∪ . . . ∪Bn) = ∅ .

This yields that B1 ∪ . . . ∪Bn /∈ S, which proves our assertion. �

Proof of Theorem 12. Take a centered system S ′ of balls in f-un(B). Centered
systems of balls in a ball space are inductively ordered by inclusion. Hence there is
a maximal centered system S of balls in f-un(B) which contains S ′. By Lemma 13
there is a centered system S0 of balls in B such that

⋂
S0 =

⋂
S ⊆

⋂
S ′. Since

(X,B) is an Sc1 ball space, we have that
⋂
S0 6= ∅, which yields that

⋂
S ′ 6= ∅. This

proves that (X, f-un(B)) is an Sc1 ball space. �

This theorem becomes false if “Sc1” is replaced by “S1”.

Example 14. For every i ∈ N we let pi be the i-th prime. For every i ∈ N we
define a ball Bi ⊂ R by

Bi :=

(
0,

1

pi

)
\

{
1

pji

∣∣∣∣∣ j ∈ N with pji > pi+1

}
,

and set B := {Bi | i ∈ N}. Then for i 6= j, Bi and Bj are not comparable
by inclusion. Therefore, B admits no nests with more than one ball and is thus
spherically complete. But

Bi ∪Bi+1 =

(
0,

1

pi

)
since all the real numbers in (0, 1

pi
) that are missing in Bi are elements of Bi+1 .

Further, (Bi ∪ Bi+1)i∈N is a nest in (R, f-un(B)). As it has empty intersection,
(R, f-un(B)) is not spherically complete.

This leads us to the following question:

Under which other conditions than Sc1 is spherical completeness preserved under
taking finite unions?

We discuss one special case in the next section, starting with a ball space that is
not Sc1.

6.2. Bar-bells. As already mentioned in the Introduction, a natural example of
algebraic structures on which two distinct ball spaces appear naturally are ordered
abelian groups and ordered fields. On the one hand such a structure (G,≤) ad-
mits a natural valuation which is nontrivial if the ordering is nonarchimedean (cf.
Section 2.3). This gives rise to an ultrametric space, from which in turn we can
derive the ball space (G,Bu) where Bu consists of all closed ultrametric balls (cf.
Section 2.2). On the other hand, one can consider the order ball space (G,Bo)
where Bo consists of all nonempty closed bounded intervals. In [8] it is shown that
if (G,≤) is symmetrically complete, then (G,Bo) is spherically complete, and that if
(G,Bo) is spherically complete, then so is (G,Bu). Hence if (G,≤) is symmetrically
complete, then (G,B) is spherically complete for B = Bu ∪ Bo by Proposition 11.
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While (G,Bu) is always an Sc2 ball space once it is spherically complete (cf. [1]),
(G,Bo) and (G,B) are Sc1 if and only if G = R (with the canonical ordering). Hence
if G 6= R, we cannot apply Theorem 12 here.

A bar-bell is a subset of G obtained from a nonempty closed bounded interval
[a, b] by joining it with ultrametric balls centered in a and in b; it can thus be
written as Bα(a) ∪ [a, b] ∪Bβ(b) with α, β ∈ uG and a ≤ b.

Lemma 15. For every symmetrically complete ordered abelian group or field, the
ball space of bar-bells is spherically complete.

Proof. Take a nest N of bar-bells. W.l.o.g. we may assume that N = (Bi)i<κ
where κ is the cofinality of the nest and that i < j < κ⇒ Bj ( Bi . We write

Bi = Bαi(ai) ∪ [ai, bi] ∪Bβi(bi)
with αi, βi ∈ uG and ai ≤ bi .

If there is a nest of ultrametric balls that has an intersection which is a subset of
the intersection of N , then we are done. Hence assume that there is no such nest.
We will construct a sequence (iν)ν<κ that is cofinal in κ, such that

Biν+1
( [aiν , biν ] ⊆ Biν . (11)

Then ⋂
i<κ

Bi =
⋂
ν<κ

Biν =
⋂
ν<κ

[aiν , biν ]

and we are done again.
We take i0 = 0. Assume that for some ν < κ we have already chosen iµ for all

µ ≤ ν such that (11) holds with µ in place of ν. By our assumption there must be
some iν+1 < κ, iν+1 > iν , such that Bαiν+1

(aiν+1
) 6⊂ Bαiν (aiν ) and Bβiν+1

(biν+1
) 6⊂

Bβiν (biν ). Then Bαiν+1
(aiν+1) ∩ Bαiν (aiν ) = ∅ and Bβiν+1

(biν+1) ∩ Bβiν (biν ) = ∅.
Since Biν+1

⊂ Biν , we must have that aiν < Biν+1
< biν . Therefore, (11) holds.

Now assume that λ < κ is a limit ordinal and that we have already chosen iν
and constructed B′iν for all ν < λ such that (11) holds. Then we choose any i ∈ I
that is larger than all iν (which exists since λ is smaller than the cofinality κ) and
set iλ := i and proceed as above with ν = λ. �

Any finite union S of closed bounded intervals and ultrametric balls that is
convex is a bar-bell. This is seen as follows. Suppose that the union of the intervals
[ai, bi], 1 ≤ i ≤ m, and the balls Bαj (cj), 1 ≤ j ≤ n, is convex. Since ultrametric
balls with equal centers are comparable by inclusion, by listing only the largest
ones we may assume that all cj are distinct. Further, we can add the singleton
ball B∞(ai) or B∞(bi) to the balls Bαj (cj) in case ai , or bi respectively, is not
contained in any of the balls. Let min1≤j≤n cj = cj1 and max1≤j≤n cj = cj2 . Then
S = Bαj1 (cj1) ∪ [cj1 , cj2 ] ∪Bαj2 (cj2).

From this fact together with Lemma 15 we obtain Theorem 3.

Let us collect a few special properties of the ball space B of convex finite unions of
closed bounded intervals and ultrametric balls, which could be helpful in answering
the question stated after Theorem 3.

1) All of its balls can be expressed by a union of at most 3 balls from the two
generating ball spaces Bu and Bo .
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2) Every ball in Bu ∩ Bo is a singleton.

3) Both Bu and Bo are closed under finite nonempty intersections.

4) If N is a nest in B, then there is a nest N ′ in Bu or in Bo such that
⋂
N ′ ⊆

⋂
N .

An attempt to generalize the notion of convexity to arbitrary ball spaces could
be to call a finite collection of balls pseudo convex if it is of the form {B1, . . . , Bn}
with Bi ∩Bi+1 6= ∅ for 1 ≤ i < n.

Open question: Does the closure of a ball space under unions of finite pseudo
convex collections of balls always preserve spherical completeness, even if the ball
space fails to be Sc1? If not, what other conditions could ensure this?
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