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Abstract. This paper focus on the Cauchy problem of the 3D incompressible

magneto-micropolar equations with fractional dissipation in the Sobolev space.

Liu, Sun and Xin obtained the global solutions to the 3D magneto-micropolar

equations with a« = = v = % Deng and Shang established the global

well-posedness of the 3D magneto-micropolar equations in the case of a > %,

a+ B > g and y > 2—a > %. In this paper, we establish the global well-
5

posedness of the 3D magneto-micropolar equations with a = 8 = 7andy = %,

which improves the results of Liu-Sun-Xin and Deng-Shang by reducing the
value of 7 to %

1. Introduction

In this paper, we are concerned with the global well-posedness to the 3D
magneto-micropolar equations with fractional dissipation

Ou+u-Vu+ (n+ x)A**u=-Vr +b-Vb+2xV X w,

0w + u - Vw + dxw — kVV - w + nA?w = 2xV x u,
Ob+u-Vb+vA?Pb=1b- Vu, (1.1)
V-u=V-b=0,

u(x,0) = uo(x), w(x,0) = wo(x),b(x,0) = bo(x),

where u = u(z,t), w = w(z,t), b = b(z,t) and 7 = 7(x,t) represent the velocity
of the fluid, the microrotational velocity, the magnetic field and the hydrostatic
pressure, respectively. The parameters p, x and % are the kinematic viscosity,

vortex viscosity and magnetic Reynolds number, respectively. x and 7 are angular
1

viscosities. The parameters «, [3, v are nonnegative constants, and A = (—A)z
denotes the Zygmund operator defined via Fourier transform, namely

Asf(&) = [€I°f(€), Vs =0.

The magneto-micropolar system (1.1) is closely related to many classical fluid
equations. When the magnetic field disappears, namely b = 0, then the system (1.1)
reduces to the 3D incompressible micropolar equations which has been investigated
extensively with many interesting results. The existence of weak solutions was
proved by Galdi and Rionero in [5]. Yamaguchi [26] obtained the existence of global
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strong solutions in a bounded domain. Recently, the hyperdissipation micropolar
equations have received significant attention in mathematical fluid dynamics (see
for example [3, 7, 17, 21]).

When w = 0 and x = 0, the system (1.1) becomes the generalized magnetohydro-
dynamics (MHD) equations which model the motion of electrically conducting fluid.
The global well-posedness of the MHD equations have been investigated extensively
and important progress has been made. Readers may refer to [12, 13, 22, 23, 25]
and the references therein.

For the magneto-micropolar equations (1.1) in R?, Regmi and Wu [15] estab-
lished the global regularity for magneto-micropolar equations with partial dissi-
pation. Ma [11] extended the results of Regmi and Wu to other mixed partial
viscosities cases. Yamazaki [27] established the global regularity of solutions for
2D magneto-micropolar equations with &« = g = 1, v = 0. Recently, Shang and
Zhao obtained the global regularity with @« = 0, 8 > 1, v = 1 in [19]. Shang and Wu
[18] dealt with the global regularity problem with 1 < a <2,0< <1, a+f > 2,
y=0ora=2,=~v=0,or >0, §=v=1. Many more exciting results on
the global regularity for magneto-micropolar equations with partial dissipation are
available for the 2D case (see for example [9, 14, 16, 31, 32]).

For the 3D case of the system (1.1), Yuan [28] first established the regularity
of weak solutions and blow-up criteria for smooth solutions in the whole space.
Gala extended the results of Yuan in [28] to the Morrey-Campanato spaces in [4].
The regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-
Lizorkin space was proved in [34]. For more blow-up criteria of smooth solutions
and the regularity criteria of weak solutions readers refer to [24, 29, 30, 33].
Recently, Li-Shang [8] and Tan-Wu [20] established the existence of 3D small global
smooth solutions in the case of @« = § =+ = 1. Liu, Sun and Xin [10] obtained the
global existence and uniqueness of solutions for the case a = =~ = % + 7 with
n > 3. Very recently, Deng and Shang [2] established the global well-posedness of
magneto-micropolar equations with o > % +4, a+y>max{2, 5}, a+B>1+ 5
when n > 3.

In this paper, we consider the system (1.1) in the case of & = § =
We will show the global well-posedness of the following system

du+u-Vu+ (u+ x)A2u=—Vr+b-Vb+2yV X w,

w4+ u - Vw + 4dxyw — kVV - w + nAw = 2xV x u,
Ob+u-Vb+vAZb=1b-Vu, (1.2)
V.u=V-b=0,

u(x,0) = up(x), w(x,0) = wo(x), b(x,0) = bo(x).

More precisely, we establish the following main result.

slo
o
=
o
2
I
[

Theorem 1.1. Assume the initial data (ug,wo,bo) € H*(R®) with V-ug = V-by =
0. Then the system (1.2) has a unique global solution (u,w,b) satisfying

(u,w,b) € L>(0,T; H*(R*)), (u,b) € L*(0,T; H' (R%)), w € L*(0,T; H? (R?)).
for any T > 0.

Remark 1.2. Theorem 1.1 improves the results in [10] and [2] by reducing the
value of vy toy = % In fact, when n = 3, Liu etc. [10] obtained the well-posedness of
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solutions to the system (1.1) with « = 8 =~ = 5. Deng and Shang [2] established
the global well-posedness for the case of a > %, a+ > % andy>2—a> %. In
Theorem 1.1 we only need v = %

Remark 1.3. Notice that the value of @ = 8 = % and v = % here are the minimum,
therefore Theorem 1.1 is also valid for the case of a« = 3 > % and v > %

Remark 1.4. When the magnetic field b = 0, system (1.2) reduces to the mi-
cropolar equations, the result of Theorem 1.1 also holds true for the micropolar
equations.

Throughout the paper, C' stands for a generic positive constant which may be
different from line to line. In the following, for notational convenience, we use
|- ||x to denote | - || x(gs). Furthermore, we use ||(u,w,b)(t)|% to denote |lu(t)|% +

lw®% + 16()[I -
2. Preliminaries

In this section we present several elementary lemmas which are needed in the
proof of Theorem 1.1. The first contains two calculus inequalities involving frac-
tional differential operators. We can find the details in [6] for example.

Lemma 2.1. Suppose that s > 0 and p € (1,00). Let f,g be two functions such
that ASf € LPr, g € LP2, A*“lg € LP3 and Vf € LP*, then there exists a constant
C such that

1A, flgllze < CUA fllzorllgllzes + A gllLes [V £l 0a)
with pa,ps € [1,00], p1,ps € (1,00) such that
1 1 1 1 1
S= b= —
p p1 P2 P3 P4
where [A%, flg := A*(fg) — f(A®g) and A* = (-A)
following form of commutator estimate
ITA*710;, Algllee < CUIAF Lo [IA°T gl oz + [A° fllra gl Lrs)-

Then we recall the known Gagliardo—Nirenberg inequality as follows [1, Theorem
2.44].

[MFY

. In particular, we have the

Lemma 2.2. (Gagliardo—Nirenberg inequality) Let 1 < ¢,7 < 00 and 0 < m < n <
00. Then a constant C exists such that
11—« m

_ . 1 «
1 iy < CUFNZallf Nl with St ond a=1-n

3. Proof of the Main Theorem

This section is devoted to the proof of Theorem 1.1. We first prove the global
existence part. To this end, the crucial piece is the global a priori H? bound for
(u,w, b). If we obtain this global bound, then the existence part of Theorem 1.1 can
be proved by the standard Friedrichs method, so we omit the details here. Thus
our main effort is to establish the global bounds for ||(u,w,b)(t)||g2(®s) with any
given t > 0.
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3.1. The L? estimate. Taking the L? inner products of the system (1.2);23
with (u,w,b) respectively, adding the results and integrating by parts, it follows by
V-u=0and V-b=0 that
1d 5
5l w, D) (O)|72 + (1 + )M T ull72 + dxllw]F2 + &V - wl|7
+llA2wlFs + v]ATD|7:

=4y V xu-wdz, (3.1)
R3

where we have used the facts
/b~Vb-ud:L’+/ b-Vu-bdx =0, wa-udx:/ V X u-wdz.
R3 R3 R3 R3
Then applying Holder inequality, Lemma 2.2 and Young’s inequality, we derive that

dx | V xu-wde < 4x||Vul gz ||w| L2
R3
1 5 4
< dxllull 22 |AT ul| 2o [|wl| L2

(1 +x)
2

Inserting (3.2) into (3.1), it thus follows from the Gronwall’s inequality that

< 2x||wll72 + IATullZ2 + Cllul 7. (3.2)

t t
s, B)(8) 22 + (1 + X) / AT u(r) | 2adr + 4 / lw(r)[22dr

t t t
+2ﬂ/ ||V~w(7)\|%zd7+2n/ ||A%w(7)\|%zd7+2u/ AT b(r) |2adr
0 0 0
<c (3.3)

3.2. The Hi estimate. Applying A% to the system (1.2); 3, dotting the resul-
tant by (A%U,A%b) respectively, integrating over R?® and adding them up, by the
divergence free conditions V- u =0 and V - b = 0, we have

2dt
:/ [A%,b.V]b-A%udx+2x/ AT (V x w) - Afudz
RS

o

—/ A%, u-V]b- Afbdx
R3

(A, ARB)(0) 3 + () [A%ul3a + VIIAZD] 3

e

7U'V]U‘A%udx+/ [A%,b-V]u-Albdz
R3

=L+L+L+1+1s, (3.4)

where the following property has been applied

b-VATh-Atudr + [ b-VAiu-Afbdz = 0.
R3 R3
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By Holder inequality, together with Lemma 2.1, Sobolev embedding theorem and
Young’s inequality, we find

L < C||[A%,b- VBl 2| AT ull 2
< CfIATH]| 12| V], 22 [ AT | 2
< C||A%]| 2| ATD| 2 | AT w2
< ZIIA%BIEs + ClIATb . AT ula. (3.5)

Arguing similarly to above inequality (3.5), it can be derived that

I3 < O[[A%,u- V]ul| g2 | ATul 2

w+ X 5 3
< S IA%ulEa + ClATul|Za ATl Z, (3.6)

I < C||[A%,b- Vu| g2 AT
+X
<HETX HMHm+*M%MH%WMWMﬁWMWmMMWH7 (3.7)

Is < O||[A%,u- V)bl 2 AT 2
+X
<HETX HM”m+*M%MH{mmwhﬁWMWmmMWH (3.8)

By Holder and Young’s inequalities, it follows that

1
I < 2|A% 2 A b 2

m+x 1
< THAQUH%Q + C||Azw]||2,. (3.9)

Inserting the estimates (3.5)-(3.9) into (3.4), it thus leads to

d 3 3
3 A ASD @72 + (1 + ) [A%u] 72 + v][A%D] 72
< C(IATulZ2 + |ATBlIZ) [ (ATu, ATD) |72 + ClIAZw] 7.

Then Gronwall’s inequality and (3.3) imply that

t t
Hm%mA%xm&r+w+x)A|m%mw&mf+ué|m%@ﬂ@sto.wim

3.3. The H! estimate. Applying A to both sides of system (1.2); 2,5 and taking
the L? inner products with (Au, Aw, Ab) respectively, adding them up together with
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V-u=0and V-b=0, we deduce
1d
2dt

+lAF w3 + vl|ATH]3

1(Aw, Aw, A ()72 + (1 + ) AT w7 + dx[[Aw][Z + KAV - w][7

:/ [A,b~V]b~Audx+2x/ A(wa)-Audx—/ [A,u- V]u- Audx
R3

R3 R3
+2x/ A(qu)kodxf/ [A,u-V]w - Awdz
R3 R3
+/ [A,b-V]u~Abdx7/ [A,u-V]b- Abdz
R3 R3
=L+ o+ Is+ I+ J5+ Jg+ J7,

where we also take advantage of the cancellation identity

/b-VAb~Audx+/ b-VAu - Abdz = 0.
R3 R3

(3.11)

Use an argument similar to that used in deriving the estimate (3.5) to obtain that

Ji < C[|[Ab- V]bl| 2 || Aul| 2
< Ol Ab]| 1= [ VO] sz [| A 2

< Cl|ATD] 2| AT ]| 2| A 2
< SIARbIZ + ClATD . | Au] .
Similarly, we have
T3 < Cl[[A, u- Vul| g2 Aul 2

+ 9 5
< F AT ulls + ClA Tl Au s,

Jo < CII[A,b- V]ul| L2 || AD][ 2
BAX e Vi, 9 5 5
< 5 IATulze + GlIATHIZ2 + CCIATul 72 + [IATH]Z:) | AD] 72
and

Jr < C[[A, - Vbl L2[|Ab] -

BF X0 Vo9 5 5
< =5 A5 ullze + S IATD]Za + CCIAT ullZa + [IAFD]72)1AB] 72

In view of the Holder and Young’s inequalities, one has

Jo + Jy = 4x A(V X u) - Awdzx
R3

< Ax||Aul| 2| Aw]| 2
< (p+x)[A%ul72 + CllAw]Z..

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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By Holder inequality, together with Sobolev embedding theorem and Young’s in-
equality, it can be shown that

Js < O|[[A; u- V]w|[ 2| Aw][ 2
< OflAu] sVl s [[Awl| L2
< C|[A%ul| 2 [[AF wl| 2 | Ao 2
< Diatwls + ClAPl w3 (317)
Collecting the estimates (3.12)-(3.17) into (3.11), we obtain

d 9
(A, A, AD) (1) 72 + () [ AT ul[F2 + 8[| Aw|F + 26]|AV - w7

+ AT w22 + v]|ATb]2.
< O+ [ ATul2s + |ATD)| 22 + || A2ul|22)][(Au, Aw, Ab) |22 + (1 + x) || A%ul|22.

Then Gronwall’s inequality, together with (3.3) and (3.10) imply that
t t
(A, A DO + (40 [ IATu(r) ey +8x [ [Aw(r)adr
0 0

t t t
420 [ AT w(r)Eadr 4 [ IAtu(r) Badr + v [ [ATb) adr
0 0 0
<c. (3.18)
3.4. The H? estimate. Applying A? to both sides of system (1.2); 23, taking the

L? inner products of the resulting equations with (A2u, A%w, A%b) respectively, and
using the divergence free property, we deduce by adding them up

1d 13
5 g | (A% A%, APB) (1) 132 + (4 0N T ull 7z + ax | A%z + 5[ APY - w7,
+l|AZw]|2z + v AT D)2,

:/ [A%)b-V]b- A%udx + 2y AQ(wa)-Azudm—/ [A% u- V]u - Audz
R3

R3 R3

+ 2x/ A*(V x u) - A*wdx — / A%, u- V]w - A2wdz
RS RS

+/ [A%b- V]u- A%bdx — / [A% - V]b- A%bdx
R3 R3
=K1+ Ko+ Ks+ Ky + K5 + Ko + K7. (319)
Arguing like in deriving (3.5), it follows that
K1 < O[[A%,b- VIbl| 2 [ A%u]| 2

< Ol A%b]| 22| VB]| 2z | A%l 2

< C[|ATb] 2| ATb]| 2 [ Al 2

< AT bl + ClATb A%, (3.20)
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Similarly, we obtain
K3 < C||[A? u- V]ul|p2]|A%ul| 2

M+x 13
IAFul3z + ClIAT |3 | A%u]35, (3.21)

Kq < O|[A%, b‘v]u||L2HA2bHL2
/H—X 13 2
1A% w32 + fIIA To)3 + CUIA U3z + [AT0]32) A% (3.22)

and
K7 < C|[[A%, u- V]b 12| A%b] 2

M+X 13 13 5 5
IAT w7z + = HA4bll%2+0(|\A4U|liz+|\A4bllia)llAleli2- (3.23)

Thanks to Holder mequauhty7 Lemma 2.2 and Young’s inequality, we have
Ko+ Ky = 4x/ A%(V x u) - A*wdz
R3
< dx || A%ul| 2 | A%w]| 2
2 % RE I 2
S Ax(A ul| Z2 1A Tl 22 [[ATw]| L2
< HTX + X

AT ullZ2 + Cl[(A%u, A%w) 7. (3.24)

By Holder inequality and Lemma 2.1, together with Sobolev embedding theorem
and Young’s inequality, we arrive at

K5 < / [A20;, ulw - A*wdx
R3
< C|I[A%0;, uwl| 2 [|A%w]| 2
< CIVul IA%wl] sz A%l + ClIA%], g o]l [ A%w]l e
i 2012, [A w2 ey RTCLRTY

< Ol[A%u 2 [A w22 |AZ w] 72 + CIAT w2 [|wl 72 A2 wl| 2o | A%w]| L2

u+x 13
IAF ulFz + O+ [[w]F2 + |ATullZ2 + [A2w]F2)[[A%w] 3.
(3.25)

< Zaullf. + 55X

Substituting the estimates (3.20)-(3.25) into (3.19), we eventually obtain

d 13

1A%, A%, AZB) ()17 + (4 X)NIAT wllZ + 8x[[A*w] 7z + 25[ A%V - w]
+nllARw]Es + AT,

< O+ wlf + 1A Tulgs + 1ARwlFa + [ATbIE: + AT ul32)[[(A%u, A%w, A%D)[5..

Then Gronwall’s inequality, together with (3.3) and (3.18) yield

t t
(A%, A%, A2B)(8) |12 + (1 + ) / IA% u(r)|2adr + 8x / 1A% (r)|2adr

¢ ¢ t
+2m/ ||A2V~w(7')||2deT—|—77/ HAgw(T)HQLQdT—I—V/ ||A%b(7)“%2d7
0 0 0
<c. (3.26)
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Finally, we prove the uniqueness. Assume that (uy,wy, b1, 7 ) and (ug, we, ba, 72)
are two solutions for the system (1.2) with the same initial data. We define

— A — A RN = A
U=1Uy — U2, W=w — W2, b:bl_an T ="T1 — T2,

thus the differences (@, w,b, 7) between these two solutions satisfy the following
equations

Ot +uy - V4 - Vug + (u+ x)A2a = —Va + by - Vb+b- Vby + 2V X @,
Otw 4+ uy - Vo + 4 - Vwy + dxw — kVV - w + nAw = 2xV X 4,
Ob+uy - Vb+u-Vby+vA3b=0by - Vi+b- Vus,
V-a=V-w=V-b=0,

b

B (3.27)
Taking the L? inner products of the system (3.27); 23 with (u,w,b) respectively,
integrating by parts we obtain

1d,, - 5_ _ _ 1
55||(u7w,b)(t)lliz + (4 ) AT |7 + A7 + £V - ©]|F2 +nl| Az
+ V| ATD|2,

:/ b- Vb - adx + 2x wa-ﬁdx—/ U-Vug-ude +2y | V x@-wdz
R3

R3 R3 R3
—/ 11~Vw2~wdx+/ B-VUQ-Bd:B—/ a- Vb - bdx
R3 R3 R3
= N1+ No + N3+ Ny + N5 + Ng + N7. (328)

Applying Hélder inequality, Sobolev embedding theorem and Young’s inequality, it
then follows that

N1+ Ny < 2[bl| 2] Vb2l sz [t 2
< 2|[bll 2 l| AT b2 2 [ ATal| e

—+ 5 _ 5 -
< %HAZU\@Z + ClIAT bo |72 B2 (3.29)

Similarly, it can be shown that

Ny < Ol el Va3l
+ 5 5 _
< W) stagz, + clntu (3.30)
Ny < Ol Va3
Vi, sz 5 -
< FIATB|Z2 + CllATua |72 )7 (3.31)
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Again applying Hoélder inequality, Lemma 2.2 and Young’s inequality, it allows us
to obtain

No + Ny < 4x||V x a2 [Jw]| L2
< aylfall 2. A Tal £ ]2
< XX 22, 1 o)(am)12, (3:32)
and
N5 < Clla| s || Vwz | £s [0 2
< Clfall 3 1A Tl £ | A3 wal| 2 ] 2

BHX) 8- s o
= %HAWH%Z + C(1+ [AZws||F2)|(@, @)17-. (3.33)

Putting the estimates (3.29)-(3.33) into (3.28), we finally arrive at

d.,., - 5 _ _ _
@ @.B)lIzz + (et 0 IA a7 +8xll@]72 + 2]V - @ll7,
+ 20| ABD][2. + v ATD|2.
< C(1+ AT ug|2e + [[A3ws 2 + [ATbo[2:) (@, @, b)| 2. (3.34)

By the Gronwall’s inequality, (3.3) and (3.18), we get the uniqueness immediately.
Thus the proof of Theorem 1.1 is completed.
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