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Abstract. It follows from a theorem of Davies [1952] that if A is an analytic
subset of 2ω , λ is positive and the Hausdorff s-measure of A is greater than λ,
then there is a compact subset C of A such that the Hausdorff s-measure of C
is greater than λ. We exhibit a counterpoint to Davies’s theorem: In Gödel’s
universe of sets, there is a co-analytic subset B of 2ω which has full Hausdorff
dimension such that if C is a closed subset of B then C is countable.

1. Dedication

This paper is dedicated to the memory of Sir Vaughan Frederick Randal Jones.
Vaughan was a brilliant mathematician, a generous colleague, and a loyal friend.

2. Preliminaries

2.1. Hausdorff Dimension.

2.1.1. Standard definitions.

Definition 1. Let A Ď 2ω and s P r0, 1s.
(1) For n P ω, ΛsnpAq is the infimum over all open covers tBpσiq : i P ωu of A, in

which every σi has length greater than n, of
ř8

0 1{2s|σi|. Here, |σ| denotes the
length of σ.

(2) ΛspAq is limnÑ8 ΛsnpAq.

Definition 2. The Hausdorff dimension of A is the supremum of the numbers s
such that ΛspAq ą 0.

2.1.2. Effective formulation.

Definition 3. Let M denote a computable partial function from 2ăω to 2ăω.
(1) M is prefix-free if for every pair of distinct elements of the domain of M ,

neither is an initial segment of the other.
(2) TheM -complexity of a sequence σ P 2ăω, denoteHM pσq, is the shortest length

of a sequence τ such that Mpτq “ σ, if there is such, and is 8 otherwise.
(3) M is universal if for every other such machine M˚, there is a constant C such

that for all σ, HM pσq ă HM˚pσq ` C.
(4) Fix a universal machine U , let H be an abbreviation for HU and call Hpσq the

complexity of σ.

These recursion theoretic definitions can be naturally applied relative to an ar-
bitrary B P 2ω by replacing “computable” by “computable relative to B.” We let
HBpσq refer to the complexity of σ relative to B.
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Definition 4. X P 2ω is Martin-Löf random relative to B if there is a constant C
such that for all `, HBpXæ`q ą `´ C.

For any B, the set of X such that X is Martin-Löf random relative to B has
full measure. No such X can be computable from B, but there are some which are
computable from B1, the Turing jump of B, [see Downey and Hirschfeldt, 2010].

Lutz [2000] introduced the effective version of Hausdorff dimension for a subset of
2ω in terms of computable martingales. Applied to a singleton tXu, this definition
yields an effective dimension for a single X P 2ω. Mayordomo [2002] provided
an alternate and equivalent characterization, which we take as a definition in the
following.

Definition 5. Let X P 2ω. The effective Hausdorff dimension of X relative to B
is the lim inf`Ñ8r

HB
pXæ`q
` s.

Proposition 6. There is an infinite recursive set R Ă ω such that for all B and
all pairs X and X˚, if X is Martin-Löf random relative to B and X˚piq is equal to
Xpiq for all i not in R then the effective Hausdorff dimension of X˚ relative to B
is equal to 1.

Proof. Let R be any recursive subset of ω of asymptotic density zero. For example,
R could be the set of powers of 2.

For the sake of a contradiction, suppose that X is Martin-Löf random relative
to B, that X˚ is identical to X except on elements of R and that the effective
Hausdorff dimension of X˚ relative to B is less than 1. Fix d so that d ă 1 and
there are infinitely many ` such that HBpX˚æ`q ă d ¨ `.

Let k be given. We may assume that for all ` ą k, there are at most 1´d
4 `

many elements of R which are less than `. Now, consider numbers ` ą k so that
HBpX˚æ`q ă d`.
Xæ` can be recovered from X˚æ` and XæR X `. By assumption, the former

satisfies HBpX˚æ`q ă d`. For sufficiently large `, the latter has complexity no
greater than twice the number of elements of R which are less than `. Hence, the
latter has complexity no greater than 2 ¨ 1´d4 ` “ 1´d

2 ¨ `. We claim that

HBpXæ`q ă HBpX˚æ`q`HBpXæRq`Op1q ă d``
1´ d

2
``Op1q “

1` d

2
``Op1q.

It suffices to verify the leftmost inequality above. Consider a machine M which on
input ρ searches through the initial segments of ρ for a sequence τ such that the
universal machine U halts on input τ . Since the domain of U is prefix free, there
can be at most one such τ . Upon finding τ , M views ρ as a concatenation τσ and
attempts to evaluate Upσq. If both steps are completed then M replaces the values
of Upτq on the integers of R with the values of Upσq. If Upτq is X˚æ` and Upσq is
the sequence whose values are identical with those of XæRX `, then Mpτσq “ Xæ`,
and so the M -complexity of Xæ` is the sum of the complexities of X˚æ` and XæR.
The inequality follows from the universality of U .

Since d ă 1 and ` may be taken arbitrarily large, we have a contradiction to
X’s satisfying HBpXæ`q ě ``Op1q, as is required for X to be Martin-Löf random
relative to B. �
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Theorem 7 (Lutz and Lutz [2017]). For any A Ď 2ω, the Hausdorff dimension
of A is the infimum over all B of the supremum over all X P A of the effective
Hausdorff dimension of X relative to B.

2.1.3. Capacitability.

Definition 8. A subset A of 2ω is analytic if it is the continuous image of a Polish
space, that is a separable completely metrizable topological space.

A’s being analytic is equivalent to there being a closed subset C of 2ωˆωω such
that for all X P 2ω,

X P A ðñ pDY P ωωqrpX,Y q P Cs.

Theorem 9 (Davies [1952], [see Rogers, 1998, Theorem 48]). Suppose that s P r0, 1s,
A Ď 2ω is analytic, and ΛspAq ą λ ą 0. Then, there is a closed C Ď A such that
ΛspCq ą λ.

When the conclusion to Theorem 9 applies to a set A, we say that A is Λs-
capacitable.

Proposition 10. There is a set A Ď 2ω such that Λ1pAq “ 1 and A has no
uncountable closed subset.

In other words, Proposition 10 asserts that there is a set A Ď 2ω of full dimension
which is not capacitable. A Bernstein set, one that meets every uncountable closed
subset of the real line but that contains none of them, has this property. We
can construct such a set by a transfinite recursion of length the cardinality of the
continuum. At each step α of the recursion, less than continuum many X P 2ω have
been added to A and less than continuum many Y P 2ω have been added to the
complement of A. We add another elementX to A in order to avoid being contained
in the α-th open set whose complement is uncountable and exclude another Y from
A to avoid A’s containing the α-th uncountable closed set. Since uncountable closed
sets have cardinality continuum, there will always be such X and Y available.

2.2. Non-Capacitability and Axiomatic Set Theory.

2.2.1. AD. The Axiom of Determinacy (ADq is the assertion that for every subset
A of ωω, one of the players in the infinite two-player game with payoff set A has a
winning strategy. Using a wellordering of ωω, one can construct a set that is not
determined, so it is standard practice to view AD as applying to the subsets of ωω
that are obtained without reference to the Axiom of Choice. For example, Martin
[1975] showed that all Borel subsets of ωω are determined. That all projective sets,
or even all sets in LpRq, are determined follows from large cardinal hypotheses, [see
Martin and Steel, 1988, Woodin, 2010].

One motivation for working with a determinacy hypothesis is that AD implies a
host of regularity properties for subsets of ωω: Lebesgue measurability, the perfect
set property, the property of Baire, to name a few. In the following theorem, Crone,
Fishman, and Jackson [2020] add capacitability to this list.

Theorem 11 (Crone et al. [2020], [see also Peng, Wu, and Yu, 2021]). Assume
AD. Let A Ď Rd and 0 ď δ ď d, then either the Hausdorff dimension of A is less
than or equal to δ or A contains a compact set C such that the Hausdorff dimension
of C is greater than or equal to δ.
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In particular, the conclusion of Theorem 11 holds for subsets of p2ωqd.

2.2.2. V “ L. Gödel’s Universe of Constructible sets consists of those sets which
are generated by iteration of first order definability through the transfinite. L
denotes the class of constructible sets and Lα denotes those sets that appear in the
first α steps of that recursion. L satisfies the basic axioms of set theory (ZF ), the
axiom of choice and the generalized continuum hypothesis. V “ L is the assertion
that every set is constructible, i.e. is an element of L.

Because the class of constructible sets is naturally endowed with a global defin-
able wellordering of its elements, the assumption V “ L implies that sets whose
existence would normally be demonstrated by abstract applications of the axiom of
choice can be explicitly defined. Consequently, if V “ L there are projective sets
that fail the previously mentioned regularity properties: not Lebesgue measurable,
without the perfect set property, or without the property of Baire. C1, defined as
follows, is a canonical example.

Definition 12. C1 denotes the set of X P 2ω such that there is an ordinal α such
that X P Lα and X can compute a wellordering of ω which is isomorphic to α.

C1 is well-known within the study of descriptive set theory under the condition
that V “ L. In that setting, by a theorem of Guaspari, Kechris and Sacks (inde-
pendently), it is an uncountable co-analytic set which has no uncountable closed
subset. See Sacks [1976] or Kechris [1975].

Theorem 13. If V “ L then C1 has Hausdorff dimension equal to 1.

Proof. By Theorem 7, it suffices to show that for every B P 2ω there is an X P C1

such that effective Hausdorff dimension of X relative to B is equal to 1. Let X
be Martin-Löf random relative to B and recursive in B1. By Proposition 6, let
R Ă ω be such that any X˚ which is equal to X on all arguments not in R satisfies
HBpX˚q “ 1. Let Y be such that Y P C1 and B1 is recursive relative to Y . It would
be sufficient to let Y be the master-code for Lβ`1, where β is the least ordinal such
that B P Lβ , [see Jensen, 1972]. Then, let X˚ be the result of replacing the values
of X on arguments of R so that the sequence of replaced values is the sequence of
values of Y . That is, if in is the nth element of R, then X˚pinq “ Y pnq. Note that
Y ěT X˚. Since R is recursive, X˚ ěT Y . For every β ą ω, Lβ is closed under
Turing equivalence. Thus, least β such that X˚ P Lβ is the same as least β such
that Y P Lβ . Since Y can compute a representation of this ordinal, so can X˚.
Hence X˚ P C1, as required to finish the proof. �

Thus, if V “ L then there is a co-analytic set of full dimension all of whose
closed subsets are countable (and therefore of dimension zero), which is an extreme
counterexample to capacitability.
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