
NEW ZEALAND JOURNAL OF MATHEMATICS

Volume 52 (2021), 671–689

https://doi.org/10.53733/176

THE NEUMANN PROBLEM FOR MONGE-AMPÈRE TYPE
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Abstract. This paper concerns a priori second order derivative estimates of

solutions of the Neumann problem for the Monge-Ampère type equations in

bounded domains in n dimensional Euclidean space Rn. We first establish
a double normal second order derivative estimate on the boundary under an

appropriate notion of domain convexity. Then, assuming a barrier condition
for the linearized operator, we provide a complete proof of the global second

derivative estimate for elliptic solutions, as previously studied in our earlier

work. We also consider extensions to the degenerate elliptic case, in both the
regular and strictly regular matrix cases.

1. Introduction

In this paper, we revisit the following Neumann problem for Monge-Ampère type

equations, considered in [7]:

det[D2u−A(x, u,Du)] = B(x, u,Du), in Ω, (1.1)

Dνu = ϕ(x, u), on ∂Ω, (1.2)

where Ω ⊂ Rn, u is the unknown scalar function defined on Ω̄, A is a given n × n
symmetric matrix function defined on Ω×R×Rn, B is a nonnegative scalar valued

function on Ω × R × Rn, ϕ is a scalar valued function defined on ∂Ω × R, and ν

denotes the unit inner normal vector field on ∂Ω. As usual, we use x, z, p and r to

denote points in Ω,R,Rn and Rn×n respectively.

A Neumann problem of the form (1.1)-(1.2) arises naturally from the fully non-

linear Yamabe problem with prescribed boundary mean curvature in conformal

geometry, [7, 9, 15]. In this paper, we complete the proof of second derivative esti-

mates in [7] through upgrading the auxiliary function used there. As a consequence

we extend the second derivative estimates in the degenerate case in [14] to embrace

general regular matrix functions A. We also extend the the strictly regular case

in [7] to more general degenerate equations.

We introduce some notation from [7] before stating the main theorems. A matrix

A, which is twice differentiable with respect to p, is called regular, (strictly regular),
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in Ω if A is co-dimension one convex, (strictly co-dimension one convex), with

respect to p, in the sense that

n∑
i,j,k,l=1

Aij,kl(x, z, p)ξiξjηkηl ≥ 0, (≥ c0 > 0), (1.3)

for all (x, z, p) ∈ Ω× R× Rn, ξ, η ∈ Rn and ξ · η = 0, where Aij,kl = D2
pkpl

Aij and

c0 is a positive constant. A domain Ω is called uniformly A-convex with respect to

u ∈ C1(Ω̄), if ∂Ω ∈ C2 and

n∑
i,j,k=1

[Diνj(x)−DpkAij(x, u,Du)νk]τiτj ≤ −δ0|τ |2 (1.4)

on ∂Ω, for all vectors τ = τ(x) tangent to ∂Ω, and some positive constant δ0. For

more information about the definition of uniformly A-convex domain, one can refer

to the introduction of [7].

For the equation (1.1) with B > 0, we have

F̃ [u] := log det[D2u−A(·, u,Du)] = B̃(·, u,Du), (1.5)

where B̃ , logB. We have ∂F̃
∂wij

= wij , ∂2F̃
∂wij∂wkl

= −wikwjl, where {wij} ,
{uij − Aij} denotes the augmented Hessian matrix, and {wij} denotes the inverse

of the matrix {wij}. For convenience, we simply write

S =

n∑
i=1

wii and T =

n∑
i=1

wii. (1.6)

We introduce the linearized operators,

L = L[u] ,
n∑

i,j=1

wij(Dij−DpkAij(·, u,Du)Dk), L = L[u] , L−
n∑
k=1

DpkB̃(·, u,Du)Dk.

(1.7)

We will assume the existence of a nonnegative barrier function Φ with respect to

the linearized operator L in (1.7), in the sense that there exists a barrier function

Φ ≥ 0,∈ C2(Ω̄) satisfying

LΦ ≥ T − C0, in Ω, (1.8)

DνΦ ≥ 0, on ∂Ω, (1.9)

for some constant C0.

We now formulate a theorem on the global second order derivative estimate

for problem (1.1)-(1.2), under the existence of a nonnegative barrier function Φ

satisfying (1.8) and (1.9).

Theorem 1.1. Let u ∈ C4(Ω) ∩ C3(Ω̄) be an elliptic solution of the Neumann

problem (1.1)-(1.2) in a C3,1 domain Ω ⊂ Rn, which is uniformly A-convex with

respect to u, where A ∈ C2(Ω̄ × R × Rn) is regular, B > 0,∈ C2(Ω̄ × R × Rn)
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and ϕ ∈ C2,1(∂Ω × R). Suppose there exists a barrier function Φ ≥ 0,∈ C2(Ω̄)

satisfying (1.8) and (1.9). Then we have the estimate

sup
Ω
|D2u| ≤ C, (1.10)

where C is a constant depending on n, C0, A, B, Ω, ϕ, δ0, |Φ|1;Ω and |u|1;Ω.

In order to derive an estimate (1.10), which is independent of the positive lower

bound of B, we let Ci, (i = 1, 2, 3), denote positive constants satisfying

|DB
1

2(n−1) | ≤ C1, (1.11)

|D2B
1

n−1 | ≤ C2, (1.12)

and

Dpp(logB) ≥ −C3I, (1.13)

in U = (·, u,Du)(Ω), where I denotes the identity matrix.

We can then formulate a global second order derivative estimate, (independent

of inf B), for problem (1.1)-(1.2) under the conditions (1.11), (1.12), (1.13), which

extends the corresponding result in [14] to general regular matrix functions A sat-

isfying the same hypotheses as in Theorem 1.1. We also include the corresponding

estimate for strictly regular matrix functions A, without the barrier conditions

(1.8), (1.9) and condition (1.13).

Theorem 1.2. Under the assumptions of Theorem 1.1, assume also that B satisfies

conditions (1.11), (1.12) and (1.13) for fixed constants C1, C2 and C3. Then the

estimate

sup
Ω
|D2u| ≤ C, (1.14)

holds for constant C depending on n, Ci (i = 0, 1, 2, 3), A, supB, Ω, ϕ, δ0, |Φ|1;Ω

and |u|1;Ω. If A is strictly regular in Ω, then the barrier conditions (1.8), (1.9)

and condition (1.13) are not necessary and C depends on c0 instead of C0, C3 and

|Φ|1;Ω.

Note that in Theorems 1.1 and 1.2, we do not assume monotonicity conditions

of A, B and ϕ with respect to u, although these are critical for the construction of

barriers Φ in general domains as in [7].

Some historical results for the Neumann problem for equations of Monge-Ampère

type can be found in [4, 7, 8, 10, 11, 13, 14]. The results of this paper, along with

their application to full second derivative estimates and existence theorems as in [7],

may also be extended to parabolic Monge-Ampère type equations, extending [13],

as well as the corresponding problems on Riemannian manifolds, extending [4]. The

derivation of second derivative estimates here and in all these papers adapts the

approach for the Monge-Ampère equation originating in [10].
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This paper is organized as follows. In Section 2, we prove the second order

derivative estimates, Theorem 1.1, on uniformly A-convex domains. In Section 3,

the second order derivative estimates in Theorem 1.2 are treated by combining the

techniques in Section 2 and [7, 14].

ACKNOWLEDGEMENT. This paper is dedicated to the memory of Vaughan

Jones. The second author remembers meeting Vaughan for the first time at the

Australian National University in 1989, during Vaughan’s participation in a special

year programme in mathematical physics sponsored by the Centre for Mathematical

Analysis, (CMA) and recalls in particular his CMA research report entitled “Bax-

terization”; (CMA R23-89). They met several times after that in various parts of

the world and their conversations were probably more about Vaughan’s windsurfing

passion than his formidable mathematics achievements. He also recalls only having

limited interactions with Vaughan during his time at Berkeley in 2005, because of a

windsurfing mishap on the San Francisco Bay, and just a couple of years ago hearing

about Vaughan’s love of windsurfing at Sanya, while he was attending a meeting

there. Another very memorable experience of the second author was giving lectures

at the 2008 NZMRI Summer Workshop at Nelson with Vaughan in attendance, (at

least when he wasn’t windsurfing).

2. Proof of Theorem 1.1

In this section, we consider the global second derivative estimate of the prob-

lem (1.1)-(1.2) in uniformly A-convex domains for regular matrices A, and prove

Theorem 1.1.

For the arguments below, we assume the functions ϕ, ν have been smoothly

extended to Ω̄ × R and Ω̄ respectively. We also assume that near the boundary,

ν is extended to be constant in the normal directions. For convenience in later

discussion, we denote Dξηu , Dijuξiηj , wξη , wijξiηj = Dijuξiηj − Aijξiηj for

any vectors ξ and η. As usual, C denotes a constant depending on the known data

and may change from line to line in the context.

By differentiation of the equation (1.5) in the direction ξ, we have

wij(Dijuξ −DξAij −DzAijuξ −DplAijDluξ)

=DξB̃ +DzB̃uξ +DplB̃Dluξ,
(2.1)

and a further differentiation in the direction of ξ yields,

wij [Dijuξξ −DξξAij − (DzzAij)(uξ)
2 − (DpkplAij)DkuξDluξ

− (DzAij)uξξ − (DpkAij)Dkuξξ − 2(DξzAij)uξ

− 2(DξpkAij)Dkuξ − 2(DzpkAij)(Dkuξ)uξ]

=wikwjlDξwijDξwkl +DξξB̃ + (DzzB̃)(uξ)
2 + (DpkplB̃)DkuξDluξ

+ 2(DξzB̃)uξ + 2(DξpkB̃)Dkuξ + 2(DzpkB̃)(Dkuξ)uξ

+ (DzB̃)uξξ + (DpkB̃)Dkuξξ.

(2.2)
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Here and below, we use the standard summation convention that repeated indices

indicate summation from 1 to n unless otherwise specified.

Applying the tangential operator δ = D − (ν · D)ν to the boundary condition

(1.2), we can get the mixed tangential normal derivative estimate on ∂Ω, namely

|Dτνu(x)| ≤ C, for x ∈ ∂Ω, (2.3)

for any unit tangential vector field τ , where the constant C depends on supΩ̄ |Du|
and Ω, see [7, 11, 14]. We shall deduce the estimate for Dννu on ∂Ω. First, the

ellipticity of u gives a lower bound of Dννu in Ω̄, namely

Dννu ≥
n∑

i,j=1

Aij(·, u,Du)νiνj . (2.4)

Next, from the uniform A-convexity of Ω with respect to u, we can employ a

barrier argument in a boundary strip to obtain an upper bound of Dννu on ∂Ω, in

accordance with the following lemma, which is a refinement of the corresponding

estimates in [7,11,14]. Here it is convenient to cover simultaneously the degenerate

case as it is embraced by the same proof, which is a modification of that in [11].

Lemma 2.1. Let u ∈ C4(Ω)∩C3(Ω̄) be an elliptic solution of the Neumann problem

(1.1)-(1.2) in a bounded domain Ω ⊂ Rn, which is uniformly A-convex with respect

to u. Then we have

Dννu ≤ C, on ∂Ω, (2.5)

where the constant C depends on n, A, Ω, ϕ, δ0, |u|1;Ω and |B
1

n−1 |1;U .

Proof. Considering the function

h = νkDku− ϕ(x, u), (2.6)

by calculations, we have from (2.1)

|Lh| ≤ C[T + |DB̃|(1 + |Dh|)], in Ω, (2.7)

where L is the first operator in (1.7). By using the arithmetic-geometric mean

inequality, from (1.1) and the positivity of B, we have

Λ
1

n−1 ≤ 1

n− 1
B

1
n−1 T , (2.8)

where Λ denotes the maximum eigenvalue of the augmented Hessian w = D2u−A.

From (2.6), (2.7), (2.8), (1.2) and |DB
1

n−1 | = 1
n−1B

1
n−1 |DB̃|, we then obtain

|Lh| ≤C|Dh|
n−2
n−1 T , for |Dh| > C ′,

h =0, on ∂Ω,
(2.9)

with constants C and C ′ depending on the same quantities as in the lemma state-

ment, (except that C ′ is independent of B).
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Since Ω is uniformly A-convex with respect to u and A is regular with respect

to p, there exists a defining function φ ∈ C2(Ω̄) satisfying φ = 0 on ∂Ω, Dφ 6= 0 on

∂Ω, and φ < 0 in Ω, together with[
Dijφ−

n∑
k=1

DpkAij(·, u,Du)Dkφ

]
n×n

≥ δ1I (2.10)

in a neighbourhood N of ∂Ω, whenever Dνu ≥ ϕ(·, u), where δ1 is a positive

constant and I is the identity matrix, with N and δ1 depending on δ0, A and

|u|1;Ω. For example, we can take φ = −d+ td2 near ∂Ω, for a large enough positive

constant, where d := d(x) = dist(x, ∂Ω) is the distance function to ∂Ω. Therefore,

we have

Lφ ≥ δ1T , in N ∩ {d ≤ d0},

φ = 0, on ∂Ω,
(2.11)

for a positive constant d0 depending on δ0, A and |u|1;Ω. Since the exponent n−2
n−1 < 1

in (2.9), by taking −Kφ as a barrier function, for sufficiently large constant K and

using (2.9) and (2.11), a standard barrier argument, as in the proof of the uniformly

convex case in Corollary 14.5 in [2], (under the structure condition (14.32)), leads

to the estimate

Dνh ≤ C, on ∂Ω. (2.12)

Thus, (2.5) follows from (2.12). �

Combining (2.3), (2.4) and (2.5), we conclude that

|Dνξu| ≤ C, on ∂Ω, (2.13)

for a unit vector ξ in any direction.

We introduce a perturbation Φ̃ of the barrier function Φ, given by

Φ̃ = Φ− aφ, (2.14)

where a is a small positive constant, φ ∈ C2(Ω̄) is a defining function of Ω satisfying

φ < 0 in Ω, φ = 0 on ∂Ω, and Dνφ = −1 on ∂Ω. (2.15)

For sufficiently small a > 0, the nonnegative function Φ̃ in (2.14) satisfies

LΦ̃ ≥ 1

2
T − C0, in Ω,

DνΦ̃ ≥ a, on ∂Ω.
(2.16)

With the above preparations, we give the proof for the global second order

derivative estimate in Theorem 1.1. In order to embrace general regular matrix

functions A, the argument is a refinement of that in [11] and [7], where the perturbed

barrier Φ̃ is used in its exponential form eκΦ̃ for some positive constant κ.
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Proof of Theorem 1.1. We employ an auxiliary function v, given by

v = v(·, ξ) = e
α
2 |Du|

2+eκΦ̃

[wξξ − v′(·, ξ)], (2.17)

for x ∈ Ω̄ and ξ ∈ Sn−1, where α, κ are positive constants to be determined, Φ̃ is

the perturbed barrier function in (2.14), and v′ is defined by

v′(·, ξ) = 2(ξ · ν)ξ′i[Diϕ(·, u)−DkuDiνk −Aijνj ], (2.18)

with ξ′ = ξ− (ξ · ν)ν. The term eκΦ̃ in the auxiliary function v in (2.17) is inspired

by that of [12] for the Pogorelov estimate. The strategy of our proof is to estimate

v at a maximum point (x, ξ) ∈ Ω̄×Sn−1. For this purpose, we divide the discussion

into two cases.

Case 1. v takes its maximum at an interior point x0 ∈ Ω and a unit vector ξ.

Let

H = log v = log(wξξ − v′) +
α

2
|Du|2 + eκΦ̃, (2.19)

then the function H also attains its maximum at the point x0 ∈ Ω and the unit

vector ξ. At the point x0, we have

0 = DiH =
Di(wξξ − v′)
wξξ − v′

+ αDkuDiku+ κeκΦ̃DiΦ̃, (2.20)

for i = 1 · · ·n, and

0 ≥ DijH =
Dij(wξξ − v′)
wξξ − v′

− Di(wξξ − v′)Dj(wξξ − v′)
(wξξ − v′)2

+α(DikuDjku+DkuDijku)

+κeκΦ̃DijΦ̃ + κ2eκΦ̃DiΦ̃DjΦ̃.

(2.21)

Consequently, we have at x0,

0 ≥ LH =L[log(wξξ − v′)] +
α

2
L|Du|2 + LeκΦ̃

=
1

wξξ − v′
Luξξ −

1

(wξξ − v′)2
wijDi(wξξ − v′)Dj(wξξ − v′)

− 1

wξξ − v′
L(Aξξ + v′) + αwijDikuDjku+ αDkuL(Dku)

+ κeκΦ̃LΦ̃ + κ2eκΦ̃wijDiΦ̃DjΦ̃.

(2.22)

Next, we shall estimate each term on the right hand side of (2.22) at the max-

imum point x0. Using (2.2) and the regular condition of A, (see (3.9) in [17]), we

have

Luξξ ≥ wikwjlDξwijDξwkl − C[(1 + S)T + S2]. (2.23)



678 FEIDA JIANG and NEIL S. TRUDINGER

By Cauchy’s inequality, we have

wijDi(wξξ − v′)Dj(wξξ − v′) ≤ (1 + θ)wijDiwξξDjwξξ +C(θ)wijDiv
′Djv

′ (2.24)

for any θ > 0, where C(θ) is a positive constant depending on θ. Since Aξξ + v′ is

a function of x, z and p, by direct calculations and (2.1), we have

|L(Aξξ + v′)| ≤ C[(1 + S)T + S], (2.25)

for some constant C depending on A,B, ϕ and |u|1;Ω. Using (2.1), we have

|L(Dku)| ≤ C(1 + T ), (2.26)

for some constant C depending on A,B and |u|1;Ω. By (2.16), we have

LΦ̃ ≥ 1

2
T − C̃0, (2.27)

for some positive constant C̃0 depending on C0, B, |DΦ̃|1;Ω and |u|1;Ω. Inserting

(2.23), (2.24), (2.25), (2.26), (2.27), Diku = wik + Aik and wijwjk = δik (here δik

is the usual kronecker delta) into (2.22), we get

0 ≥ 1

wξξ − v′
wikwjlDξwijDξwkl −

1 + θ

(wξξ − v′)2
wijDiwξξDjwξξ

+ αS + κeκΦ̃

(
1

2
T − C̃0

)
− C

[
1

wξξ − v′
(1 + S + T + ST + S2) + α(1 + T )

]
+ κ2eκΦ̃wijDiΦ̃DjΦ̃−

C(θ)

(wξξ − v′)2
wijDiv

′Djv
′.

(2.28)

In order to treat the terms with third order derivatives, we need to derive a lower

bound for the quantity

P := wikwjlDξwijDξwkl −
1

w11
wijDiwξξDjwξξ. (2.29)

From the inequality (3.48) in [11], we have

P̃ := wikwjlDξwijDξwkl −
1

w11
wijDξwiξDξwjξ ≥ 0. (2.30)

Using wij = uij −Aij(·, u,Du) and by direct calculations, we have

1

w11
wijDiwξξDjwξξ

=
1

w11
wij [Dξwiξ + (DξAiξ −DiAξξ)][Dξwjξ + (DξAiξ −DjAξξ)]

=
1

w11
wijDξwiξDξwjξ +

2

w11
wijDξwiξ(DξAjξ −DjAξξ)

+
1

w11
wij(DξAiξ −DiAξξ)(DξAjξ −DjAξξ),

(2.31)
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and

2

w11
wijDξwiξ(DξAjξ −DjAξξ)

=
2

w11
wij(Dξuiξ −DξAiξ)(DξAjξ −DjAξξ)

=
2

w11
wij [(Diuξξ −DiAξξ)− (DξAiξ −DiAξξ)](DξAjξ −DjAξξ)

=
2

w11
wijDiwξξ(DξAjξ −DjAξξ)−

2

w11
wij(DξAiξ −DiAξξ)(DξAjξ −DjAξξ).

(2.32)

Inserting (2.31) and (2.32) into (2.29), we get

P = P̃ − 2

w11
wijDiwξξ(DξAjξ −DjAξξ) +

1

w11
wij(DξAiξ −DiAξξ)(DξAjξ −DjAξξ)

≥ − 2

w11
wijDiwξξ(DξAjξ −DjAξξ),

(2.33)

where (2.30) and {wij} > 0 are used in the inequality.

Without loss of generality, we assume that {wij} is diagonal at x0 with the

maximum eigenvalue w11. We can always assume that w11 > 1 and is as large as

we want; otherwise we are done. Since v′ is bounded, w11 and wξξ are comparable

in the sense that for any θ > 0, there exists a further constant C(θ) such that

|w11 − wξξ + v′| < θw11, (2.34)

if w11 > C(θ). Then (2.34) guarantees the following relationship between w11 and

wξξ − v′,

(1− θ)w11 ≤ wξξ − v′ ≤ (1 + θ)w11. (2.35)

We now return to the third order derivative terms in (2.28). Using (2.35), we

have

1

wξξ − v′
wikwjlDξwijDξwkl −

1 + θ

(wξξ − v′)2
wijDiwξξDjwξξ

=
1

wξξ − v′

[
wikwjlDξwijDξwkl −

1− θ
wξξ − v′

wijDiwξξDjwξξ

]
− 2θ

(wξξ − v′)2
wijDiwξξDjwξξ

≥ 1

wξξ − v′
P − 2θ

(wξξ − v′)2
wijDiwξξDjwξξ

≥− 1

wξξ − v′
2

w11
wijDiwξξ(DξAjξ −DjAξξ)−

2θ

(wξξ − v′)2
wijDiwξξDjwξξ

≥− 2

(1− θ)w2
11

wii|Diwξξ||DξAiξ −DiAξξ| −
2θ

(1− θ)2w2
11

wijDiwξξDjwξξ,

(2.36)
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where the inequality (2.33) for P is used in the second inequality. Recalling DiH =

0 in (2.20) and using (2.35), we have

|Diwξξ| ≤|αDkuDiku+ κeκΦ̃DiΦ̃|(wξξ − v′) + |Div
′|

≤(1 + θ)w11|αDku(wik +Aik) + κeκΦ̃DiΦ̃|+ C(1 + wii)

≤(1 + θ)[αC(1 + wii) + κeκΦ̃|DiΦ̃|]w11,

(2.37)

for i = 1, · · · , n. By a direct calculation, we have

|DξAiξ −DiAξξ| ≤ C(1 + w11), (2.38)

for i = 1, · · · , n, where C is a constant depending on A and |u|1;Ω. Using (2.37)

and (2.38), we get

2

(1− θ)w2
11

wii|Diwξξ||DξAiξ −DiAξξ|

≤αC(1 + T ) + CκeκΦ̃wii|DiΦ̃|.
(2.39)

and

2θ

(1− θ)2w2
11

wijDiwξξDjwξξ

=
2θ

(1− θ)2w2
11

wii(Diwξξ)
2

≤θC
[
α2S +

(
α2 + κ2e2κΦ̃

)
T
]
.

(2.40)

Inserting (2.36), (2.39) and (2.40) into (2.28), and using (2.35) again, we then

obtain the following inequality provided w11 > C(θ):

0 ≥αS +
1

2
κeκΦ̃T + κ2eκΦ̃wii|DiΦ̃|2 − CκeκΦ̃wii|DiΦ̃|

− C(1 + α2θ)S − C
[
1 + α+

(
α2 + κ2e2κΦ̃

)
θ
]
T − κeκΦ̃C̃0 − C(1 + α).

(2.41)

By Cauchy’s inequality, we have

Cκwii|DiΦ̃| ≤ κ2wii|DiΦ̃|2 +
C2

4
T . (2.42)

By taking κ > C2 and inserting (2.42) into (2.41), since Φ̃ ≥ 0, we get

[α− C(1 + α2θ)]S +

{
1

4
κ− C

[
1 + α+

(
α2 + κ2e2κΦ̃

)
θ
]}
T

≤C(1 + α) + κeκΦ̃C̃0.

(2.43)

By successively choosing α > 2C, κ > max{4C(2+α), C2} and θ = 1/(α2 + κ2e2κ sup Φ̃),

we thus obtain an estimate S ≤ C at x0, which implies a corresponding estimate

for |D2u(x0)|.
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Case 2. We consider the case x0 ∈ ∂Ω, namely v(x, ξ) = e
α
2 |Du|

2+eκΦ̃

[wξξ −
v′(·, ξ)] attains its maximum over Ω̄ at x0 ∈ ∂Ω and a unit vector ξ. We then

consider the following two subcases of different directions of ξ.

Subcase (i). ξ is non-tangential to ∂Ω at x0. The unit vector ξ can be written

as

ξ = (ξ · τ)τ + (ξ · ν)ν, (2.44)

where τ ∈ Sn−1, with τ · ν = 0, (ξ · τ)2 + (ξ · ν)2 = 1 and ξ · ν 6= 0. By the

construction of v′ in (2.18), we have at x0,

wξξ = (ξ · τ)2wττ + (ξ · ν)2wνν + 2(ξ · τ)(ξ · ν)wτν

= (ξ · τ)2wττ + (ξ · ν)2wνν + v′(x, ξ).
(2.45)

By the construction of v and v(x0, τ) ≤ v(x0, ξ), we then have

v(x0, ξ) = (ξ · τ)2v(x0, τ) + (ξ · ν)2v(x0, ν)

≤ (ξ · τ)2v(x0, ξ) + (ξ · ν)2v(x0, ν),
(2.46)

which leads again to

v(x0, ξ) ≤ v(x0, ν) ≤ C, on ∂Ω, (2.47)

where (2.5) is used in the last inequality.

Subcase (ii). ξ is tangential to ∂Ω at x0. We then have Dνv ≤ 0 at x0. By a

direct calculation, we have

(wξξ − v′)Dν

(α
2
|Du|2 + eκΦ̃

)
+Dν(wξξ − v′) ≤ 0, at x0. (2.48)

From the definition of v′ in (2.18), we have

v′(x0, ξ) = 0, (2.49)

for tangential ξ. Since Φ̃ ≥ 0 in Ω̄ and DνΦ̃ ≥ a > 0 on ∂Ω, using (2.49), we get

from (2.48) that

Dνuξξ ≤ −(κa− αM)wξξ +Dν(Aξξ + v′), at x0, (2.50)

where M is a constant defined by

M = max
x∈∂Ω

|DkuDkνu|. (2.51)

Here due to (2.13), the constant M in (2.51) is bounded.

On the other hand, by tangentially differentiating the boundary condition twice,

we obtain

(Dku)δiδjνk + (δiDku)δjνk + (δjDku)δiνk + νkδiδjDku = δiδjϕ, on ∂Ω. (2.52)
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Hence at x0, for the tangential direction ξ we have

Dνuξξ ≥ ϕzDijuξiξj − 2(δiνk)Djkuξiξj + (δiνj)ξiξjDννu− C
≥ ϕzDijuξiξj − 2(δiνk)Djkuξiξj − C
≥ (ϕz + 2κ0)wξξ − C, at x0,

(2.53)

where κ0 is the minimal curvature of the boundary point over ∂Ω, (2.4) and (2.5)

are used in the second inequality and uij = wij +Aij is used in the third inequality.

Combining (2.50) with (2.53), and using (2.13), we obtain

(κa− αM + ϕz + 2κ0)wξξ ≤ C, at x0. (2.54)

By choosing κ large such that

κ ≥ 2

a

[
αM − (inf

Ω
ϕz + 2κ0)

]
, (2.55)

we again obtain

v(x0, ξ) ≤ C. (2.56)

We now conclude from the above two subcases (i) and (ii) that if v attains its

maximum over Ω̄ at a point x0 ∈ ∂Ω, then v(x0, ξ) is bounded from above as in

(2.56), which implies the second derivative Dξξu(x0) is also similarly bounded from

above.

Combining Case 1 and Case 2, we obtain the desired estimate (1.10) and

complete the proof of Theorem 1.1. �

We conclude this section with some remarks.

Remark 2.1. In [7], inequality (2.24) is written incorrectly with ξ and i, j inter-

changed. When we use the correct version (2.30), we need to control the difference

P−P̃ and this is done through the adjusted auxiliary function (2.17). Rather than

indicate all the consequent changes to our previous proof in [7], (and also taking

account of Remark 2.3 below), we have for clarity written out the full proof.

Remark 2.2. If we assume monotonicity conditions as in [7], namely that A,B and

ϕ are non-decreasing with respect to the solution variable u, the barrier in (1.8)

and (1.9) can be constructed in the form,

Φ =
1

ε1

[
eK(ū−u) − 1

]
(2.57)

for some proper constants ε1 and K, and an elliptic supersolution ū ∈ C2(Ω̄)

satisfying the same boundary condition; see Lemma 2.1 in [7], Lemma 2.2 in [5] or
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Lemma 2.1 in [6] for a simpler proof. When A ≡ 0, such an elliptic supersolution

ū is readily constructed; see [11]. With the barrier in (2.57), by using the proof of

this section, we thus recover Theorems 1.1 and 1.2 in [7] for general regular matrix

functions A as stated.

Remark 2.3. If we only use the double normal derivative estimate in [7], namely

Dννu ≤ C(1 +M2)
n−2
n−1 on ∂Ω, we need to adjust the auxiliary function v in (2.17)

to be

v = e
α
2 |Du−ϕ(x,u)ν|2+eκΦ̃

[wξξ − v′(·, ξ)], (2.58)

where ϕ is the function in (1.2) which has been extended to Ω̄× R. The auxiliary

function (2.58) is enough for use in the pure tangential derivative estimate on ∂Ω in

subcase (ii) of Case 2. In fact, since |Du−ϕ(x, u)ν|2 = |δu|2 on ∂Ω, differentiating

|Du − ϕ(x, u)ν|2 in the normal direction on ∂Ω, we only get the mixed tangential

normal derivatives of u, which does not depend on Dννu. So the bound for Dννu

on ∂Ω will not affect the discussion of the pure tangential estimate on ∂Ω. The

same remark is also relevant in the next section.

Remark 2.4. If the minimum curvature of ∂Ω, κmin ≥ κ0, for a sufficiently large

positive constant κ0, it is easy to check that Ω is uniformly A-convex, so that the

boundary derivative estimate (2.13) still holds. Also, since Ω then lies in a small ball

BR(x0) of radius R = 1/κ0 and centre x0, the quadratic function Φ(x) = |x−x0|2
2

will serve as a barrier function in the proof of Case 1, (analogously to the proof

of Lemma 3.3 in [16]), and moreover, in place of (2.17), we can use the simpler

auxiliary function

v = v(·, ξ) = e
α
2 |Du|

2+κΦ[wξξ − v′(·, ξ)], (2.59)

for ξ ∈ Sn−1, where α, κ, v′ are the same as those in (2.17). We can then use the

largeness of κ0 in part (ii) of Case 2, to complete the proof of estimate (1.10),

without any need for the full barrier condition (1.8), (1.9).

3. Proof of Theorem 1.2

In this section, under the conditions (1.11), (1.12) and (1.13), we improve the

global second order derivative estimate for the problem (1.1)-(1.2) such that the

estimate is independent of inf B. Both the regular matrix A and the strictly regular

matrix A cases are discussed.

If (1.11) holds and B is bounded, it is readily checked that

|DB
1

n−1 | ≤ C ′1 (3.1)
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in U , for some positive constant C ′1 depending on n, C1 and supB. Then the upper

bound (2.5) for Dννu on ∂Ω in Lemma 2.1 still holds. From (2.3), (2.4) and (2.5),

we can also get

|Dνξu| ≤ C, on ∂Ω, (3.2)

for a unit vector ξ in any direction.

We are now ready to prove Theorem 1.2. The proofs are the modifications of

those in Section 2 for the regular A case and [7] for the strictly regular A case,

where (1.11), (1.12) and (1.13) are used properly to avoid the dependence of inf B.

Proof of Theorem 1.2. We first deduce some basic inequalities from conditions (1.11),

(1.12) and (1.13). By (3.1) and (1.11), we have

|DB̃| ≤ C̃B−
1

n−1 , and |DB̃| ≤ C̄B−
1

2(n−1) , (3.3)

respectively, where the constant C̃ depends on n and C ′1, and the constant C̄

depends on n and C1. By (1.11) and (1.12), by direct calculations, we have

|D2B̃| ≤ ĈB−
1

n−1 , (3.4)

for some constant Ĉ depending on n, C1 and C2. By (1.13), we have

∑
k,l

(DpkplB̃)DkuξDluξ ≥ −C3

n∑
k=1

(Dkuξ)
2 ≥ −C ′3(1 + S2), (3.5)

for some constant C ′3 depending on C3, A and |u|1;Ω.

For the regular A case, we will follow the lines of the proof of Theorem 1.1 and

make necessary modifications. We still employ the same auxiliary function v in

(2.17).

In Case 1, v takes its maximum at an interior point x0 ∈ Ω and a unit vector

ξ. Plugging (3.3), (3.4) and (3.5) into (2.2), then in place of (2.23), we now have

Luξξ ≥ wikwjlDξwijDξwkl − C[(1 + S)T + S2]− C ′(1 + S)B−
1

n−1 , (3.6)

where the constant C depends also on C ′3, and the constant C ′ depends on C̃ and Ĉ.

Similarly, by using the first inequality in (3.3), there are also terms C(1+S)B−
1

n−1

and CB−
1

n−1 on the right hand side of (2.25) and (2.26) respectively. In place of

(2.27), by the second inequality in (3.3), we have

LΦ̃ ≥ 1

2
T − C0 − C̃0B

− 1
2(n−1) , (3.7)
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for some positive constant C̃0 depending on C̄ and Φ̃. Consequently, in place of

(2.28), we have

0 ≥ 1

wξξ − v′
wikwjlDξwijDξwkl −

1 + θ

(wξξ − v′)2
wijDiwξξDjwξξ + αS

+ κeκΦ̃

[
1

2
T − C0 − C̃0B

− 1
2(n−1)

]
+ κ2eκΦ̃wijDiΦ̃DjΦ̃−

C(θ)

(wξξ − v′)2
wijDiv

′Djv
′

− C
{

1

wξξ − v′
[
1 + S + T + ST + S2 + (1 + S)B−

1
n−1

]
+ α

(
B−

1
n−1 + T

)}
,

(3.8)

at the maximum point x0 ∈ Ω of v over Ω̄, for a further constant C.

Next, we need to treat the terms in (3.8) involving B−
1

n−1 and B−
1

2(n−1) . With-

out loss of generality, we assume that {wij} is diagonal at x0 with maximum eigen-

value w11. We can always assume that w11 > 1 and is as large as we want; otherwise

the proof is completed. From the arithmetic-geometric mean inequality as in (2.8),

we then have

T > (n− 1)B−
1

n−1 . (3.9)

By using Cauchy’s inequality, we also have

1

2
T − C0 − C̃0B

− 1
2(n−1) ≥ 1

2
T − εB−

1
n−1 − C(ε), (3.10)

for any positive constant ε, where C(ε) is a positive constant depending on ε, C0

and C̃0. Taking ε = n−1
4 , from (3.9) and (3.10), we obtain

1

2
T − C0 − C̃0B

− 1
2(n−1) ≥ 1

4
T − C(ε). (3.11)

Inserting (3.9) and (3.11) into (3.8), and following the same steps as in the proof

of Theorem 1.1, we can get an estimate S ≤ C at x0, which implies an estimate for

|D2u(x0)|.

Since (3.2) still holds, the proof for Case 2 when x0 ∈ ∂Ω is the same as that

of Theorem 1.1. We omit the details.

For the strictly regular A case, we present a proof without the barrier conditions

(1.8), (1.9) and condition (1.13) by adapting the proof of Theorem 4.1 in [7]. In

order to fit the Neumann case here, we restrict the oblique vector field β on ∂Ω

in [7] to be the unit inner normal vector field ν on ∂Ω. As in [7], we employ the

auxiliary function

v = wττ −K(1 +M2)φ, (3.12)
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where τ is the tangential vector field which is C2 extended to Ω̄, M2 = supΩ |D2u|,
φ ∈ C2(Ω̄) is a negative defining function for Ω, and K is a proper chosen constant

such that the maximum of v on Ω̄ must occur at an interior point of Ω. Using (3.3)

and (3.4), in place of (4.6) in [7], we have

wijAij,klukτulτ ≤ C
[
(1 +M2)T + (1 +M2 + |Duτ |2)B−

1
n−1

]
, (3.13)

at the interior maximum point x0 of v, where the constant C depends also on C1

and C2. Without loss of generality, we choose coordinates so that w is diagonalised

at x0 with the maximum eigenvalue w11. We can assume that

w11 >

[
2C

c0(n− 1)

]n−1

(3.14)

with C being the constant in (3.13), otherwise we have already obtained an upper

bound for uττ (x0). Similarly to (3.9), using (3.14) we get

T ≥ 2C

c0
B−

1
n−1 . (3.15)

Combining (3.13) and (3.15), we get

wijAij,klukτulτ ≤ C(1 +M2)T +
c0
2
|Duτ |2T , (3.16)

for a further constant C. Using the strictly regular condition of A in (3.16) as in [7],

we have

c0|Duτ |2T − CM2 ≤ C(1 +M2)T +
c0
2
|Duτ |2T , (3.17)

which implies the estimate (4.9) in [7] for uττ (x0). The rest of the proof can be

completed in the same way as that of Theorem 4.1 in [7]. Note that we only use the

strict regularity of A here. The barrier conditions (1.8), (1.9) and condition (1.13)

are not used. Therefore, the constant C in the desired estimate (1.14) depends on

c0 instead of C0, C3 and |Φ|1;Ω. �

Remark 3.1. Alternatively, in place of (3.7), we can also use the first inequality in

(3.3) to infer

LΦ̃ ≥ 1

2
T − C0 − C̃ ′0B−

1
n−1 (3.18)

for some constant C̃ ′0 depending on C̃ and Φ̃. Similar to (3.15), by assuming a large

enough w11 at the interior maximum point x0 of v, we have

T > CB−
1

n−1 (3.19)

for a large enough constant C. Then we can obtain a barrier inequality

LΦ̃ ≥ 1

4
T − C0, at x0, (3.20)
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for the perturbed barrier function Φ̃, which also suffices in the proof.

Remark 3.2. If B is separated in the sense that B(x, z, p) = f(x, z)g(p) with f > 0

and g ≥ g0 > 0 for some positive constant g0, then condition (1.13) is clearly

satisfied and constant C in (1.14) depends on g0 instead of C3.

If B only depends on x, (1.11) holds locally in Ω if B
1

n−1 ∈ C1,1 holds globally

in Ω̄; see Lemma 3.1 in [1]. In this case, we only need to assume that (1.11)

holds near ∂Ω, with B
1

n−1 ∈ C1,1(Ω̄). For general B we may also dispense with

condition (1.11) if B
1

n−1 ∈ C1,1 in some strictly larger domain U0. If we assume just

B
1

n−1 ∈ C1,1(Ū), by adapting an idea from [3], we will consider the removability

of condition (1.11) in the strictly regular case, for more general oblique boundary

value problems, in an ensuing work.

Remark 3.3. For the degenerate elliptic case when A = A(x, p), B = B(x, z, p) and

ϕ = ϕ(x) as in [14], by assuming B is strictly increasing in z, the barrier in (1.8) and

(1.9) can be constructed as in (2.57) by replacing ū with a subsolution u ∈ C2(Ω̄)

satisfying the same boundary condition; see [14]. Then following the proof of this

section, the second derivative estimate in Theorem 1.1 and the existence of globally

C1,1 solutions in Theorem 1.2 in [14] are valid for general regular matrix functions

A, that is the alternative restrictions (a) and (b) in Theorems 1.1 and 1.2 in [14]

can be dispensed with.
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