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Abstract. We establish analogues of Liouville’s theorem in the complex func-
tion theory, with the differential operator replaced by various difference op-

erators. This is done generally by the extraction of (formal) Taylor coeffi-
cients using a residue map which measures the obstruction having local “anti-

derivative”. The residue map is based on a Weyl algebra or q-Weyl algebra

structure satisfied by each corresponding operator. This explains the different
senses of “boundedness” required by the respective analogues of Liouville’s

theorem in this article.

1. Introduction

Liouville’s theorem from classical complex function theory continues to enjoy
new generalizations and interpretations in a wide range of mathematical disciplines,
see e.g. [8, 12]. In this article, however, we return to its origin from a different
perspective. It is well-known that the classical Liouville theorem for an entire
function f can be derived from the vanishing of the coefficients in its Taylor series
expansion

f(x) =

∞∑
k=0

akx
k

under the boundedness assumption. In view of the different versions of Little Pi-
card’s theorem on meromorphic functions with respect to various difference oper-
ators discovered in [2, 15, 5, 7], it is natural to ask if there are corresponding
Liouville-type theorems for these difference operators. We formulate a general
residue theory in a Weyl algebraic setting that allows us to consider Liouville’s
theorem for the (forward) difference operator ∆f(x) = f(x+1)−f(x). Our theory
can also handle the backward difference operator ∇f(x) = f(x) − f(x − 1), the
q-difference operator Dqf(x) =

(
f(x)− f(x/q)

)
/(x− x/q) ([1], [11], [17, p. 196]),

and of course, the differential operator Df(x) = f ′(x).
Here the Taylor series expansions are replaced by expansions in interpolation

polynomials appropriate to their respective difference operators. In the case of
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difference operator ∆, they are replaced by Newton series expansions
∞∑
k=0

akx(x− 1) · · · (x− k + 1), (1.1)

which converge in an appropriate half-plane or possibly the whole plane [14, pp.
163-168].

What are the natural growth restrictions that lead to the vanishing of the Newton
expansion coefficients?

It turns out that this problem is related, except in historical interests [20, 21,
26], to what appears to be a forgotten work of Boole [4] amongst many British
mathematicians [20, p. 157] about series solutions to differential and finite differ-
ence equations which is entirely formal. Boole noticed that there is a unified, formal
algebraic framework underlying these series solutions. Indeed Boole [4] suggested
to consider two operators ρ and π which satisfy the relation

ρf(π)u = λf(π)ρu (1.2)

for every function u on which those operators act, and every polynomial f(·); and λ
is another operator acting on f , e.g. λf(π) = f(φ(π)) for some φ. This important
relation about the syntax of ρ and π is generally being regarded as a prelude to
Boole’s foundational work in symbolic logic [20, 21, 26, 22]. However, the rela-
tion (1.2) can also be regarded, from today’s viewpoint, as a kind of “generalised
commutator relation” involving the symbols ρ and π. Applying two different se-
mantics to ρ and π, Boole successfully solved, amongst others, for series solutions
to confluent hypergeometric type differential equations [4, p. 236, Ex. 1] and dif-
ference equations under the same syntactic context. Boole’s approach gives, to the
best of authors’ knowledge, the first unifying treatment for different types of series
expansions mentioned above.

For different choices of the λ that appears in (1.2) (which “quantifies” the rela-
tionship between ρ and π) against their corresponding (e.g., differential/difference)
operators, we provide a unifying modern approach using Weyl algebra and its mod-
ifications, including q-Weyl algebras. In this approach, when we work with the
Weyl algebra

A = C〈X, ∂〉/〈∂X −X∂ − 1〉,
a usual entire function g having Taylor series expansion

g(x) =

∞∑
k=0

akx
k

is identified as an element

G =

∞∑
k=0

akX
k

in the left A-module A/A∂ in an X-adic completion [6]; and the derivative
g′(x) =

∑∞
k=1 akkx

k−1 will then be correspondingly identified as the element

∂G = ∂
∑∞
k=0 akX

k =
∑∞
k=1 kakX

k−1 in A/A∂. Here the symbol X need not
be interpreted as the usual monomial, but instead, the pair of symbols X and ∂
play respectively the roles of ρ and π in (1.2). In the classical setting, the extrac-
tion of the Taylor coefficients bk in the proof of Liouville’s theorem was done by
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Cauchy’s contour integrals. In the current setting, the extraction of the coefficients
bk is done by measuring the obstruction to the existence of “antiderivatives” of
G/Xk+1 using the map Res in the exact sequence

A/A∂ ∂×−→ A/A∂ Res−→ C −→ 0.

The criteria of vanishing of the coefficients will then depend on the map Res above.
In the classical setting, this map is presented as a Cauchy integral and the usual
boundedness condition will suffice; in the setting that is appropriate for Newton
series expansions, it turns out that one can present this map Res as a Barnes-type
integral, so one needs a growth restriction along infinite vertical straight lines, and
a “boundedness” condition in direction parallel to the positive real axis, in order
to make the coefficients vanish. Different choices of the maps Res with respect to
their corresponding operators would yield different “boundedness” conditions.

This article is organized as follows. In §2, we first introduce the Weyl-algebraic
framework of our theory, together with a realization of it in the context of difference
operator. We start with some preliminary constructions with the Weyl algebra A in
§2.1, which will lead to various kinds of series expansions for entire functions when
different left A-modules are considered. In §2.2, the construction will be extended
by allowing 1/X to come into play, so that one can handle Laurent-type series
expansions and talk about the notion of residues. In §2.3, a difference operator
analogue of Liouville’s theorem will be proved. The machinery developed so far
will help in extracting the coefficients in the series expansions. Following the same
structure of §2, the q-difference operator will then be investigated in §3, and the
classical situation regarding the differential operator will be handled briefly in §4.
Finally in §5, we will review our main results, give an application of our difference
Liouville’s theorem to strengthen a theorem by de Branges [9] about the periodicity
of a Hilbert space of entire functions defined by him [10], and to discuss on possible
further generalizations of our theory in special functions.

Throughout this article, we adopt the following notations:
(1) C∗ denotes the punctured complex plane C\{0}.
(2) For each open set U ⊂ C, O(U) denotes the space of all analytic functions

defined on U .
(3) For each r > 0 and each entire function f , the maximum modulus of f on the

circle of radius r centered at 0 is denoted by

M(r, f) = max
|z|=r

|f(z)|.

2. Main Results: Difference Liouville’s Theorem

2.1. The Weyl algebra. We start by introducing the notion of the Weyl algebra.
It is the following non-commutative algebra generated by two symbols which we
call X and ∂. It contains all the essential algebraic information of polynomial bases
of various kinds.

Definition 2.1. The Weyl algebra A is the (non-commutative) C-algebra defined
by

A = C〈X, ∂〉/〈∂X −X∂ − 1〉.
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Fix L ∈ A, and denote by AL the left ideal generated by L. Then the quotient

A/AL

is a left A-module. In this article, we focus on the simplest case when L = ∂. Then
the left A-module A/A∂ becomes the “universal model” for the various spaces of
analytic functions each of which is equipped with a specific operator. It is of course
possible to study such a quotient with other choices of L, but we will leave this to
future works.

In order to handle series expansions of entire functions, it is not enough to just
consider the quotient A/A∂, but to enlarge A so that the quotient above contains
not only polynomials in X but also power series in X.

Definition 2.2. Fix a C-vector subspace C[X] ⊂ F ⊂ C[[X]] of the space of
formal power series in X. We use the notation AF to denote the ring extension of
A generated by F and ∂ as a C-algebra, subject to the relation ∂X −X∂ − 1. We
suppress the emphasis of the dependence of AF on F in later usages when there is
no ambiguity.

As we will see later in §4, when ∂ is interpreted as the usual differential operator
D, the above set-up recovers the Maclaurin expansions (and hence the classical
Liouville theorem). In fact, the above set-up is completely general, and a slight
modification of the algebra A would allow us to handle the Jackson q-difference
operator [17, p. 196], to be considered in §3.

2.1.1. Application to the difference operator ∆. Recall from [14, pp. 163-168] (see
also [23, p. 109]) that (i) a Newton series (1.1) converges uniformly on every
compact subset of C if

lim
n→∞

ln |
∑∞
k=n(−1)kk! ak|

lnn
= −∞,

and that (ii) an entire function f admits a Newton series expansion if it is of
exponential type at most ln 2, i.e.,

lim sup
r→∞

ln+M(r, f)

r
≤ ln 2.

This motivates the following construction.

As in Definition 2.2, we let F ⊂ C[[X]] be the subspace defined by

F =
{∑

k

akX
k : lim

n→∞

ln |
∑∞
k=n(−1)kk! ak|

lnn
= −∞

}
and let AF be the C-algebra generated by F and ∂ subject to the relation
∂X −X∂ − 1. Then AF contains A as a subalgebra, and from now on we denote
AF by just A. If H ⊂ O(C) denotes the subspace consisting of entire functions
of exponential type at most ln 2, then H is endowed with the structure of a left
A-module by

(Xf)(t) = tf(t− 1);
(∂f)(t) = f(t+ 1)− f(t) for all f ∈ H and all t ∈ C. (2.1)
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Fix any 1-periodic entire function p (i.e., p(t + 1) = p(t) for all t), then we obtain
a left A-linear map

N : A/A∂ ·p−→ Hp. (2.2)

In particular, when p is the constant function 1, the series[∑
k

akX
k
]
· 1 =

∑
k

akx(x− 1) · · · (x− k + 1)

becomes the Newton series expansion of the entire function N [
∑
k akX

k]. Clearly
we obtain a more general expansion when p is chosen to be a non-constant 1-periodic
function.

2.2. Residues. In this subsection we discuss the notion of residues. Recall that
if O and Ω are the sheaves of analytic functions and one-forms on C∗ respectively,
then the classical residue is the map Res which fits into the exact sequence

H0(C∗,O)
d→ H0(C∗,Ω)

Res−→ H1(C∗,C)→ 0,

where the map d is the exterior derivative, whose definition originates from the
usual derivative D. In this article, however, the usual derivative D is just a special
interpretation of the symbol ∂ in the Weyl algebra, so the topological tool above
would be lost if one attempts to interpret ∂ alternatively. Local cohomologies (see
[16]) turns out to be the pure algebraic tool suitable for this purpose and Res is
now a map which fits into the exact sequence

H1
0 (C[X])

∂×−→ H1
0 (C[X])

Res−→ H2
0 (C)→ 0.

Here the local cohomology H1
0 (C[X]) is the space of principal parts at 0. Just for

the narrow purpose in this article, the general theory of local cohomologies is not
needed. The first task is to introduce the symbol X−1 or 1/X so that the discussion
of principal parts mentioned above is possible.

Definition 2.3. Choose a C-vector subspace C[X] ⊂ F ⊂ C[[X]]. We use the

notation A0 to denote the C-algebra generated by F ,
1

X
and ∂, subject to the

relation ∂X−X∂−1. The dependence on F in the notation A0 is again suppressed
for simplicity.

In the rest of this section, a choice of the subspace F is understood without
further emphasis.

Lemma 2.4. The cokernel of the map

A0/A0∂
∂×−→ A0/A0∂

has C-dimension one and is spanned by 1/X.

Proof. It is easy to establish by induction that the formula

∂Xn = nXn−1 mod A0∂

holds for each integer n ∈ Z. In particular, X−1 has no “anti-∂”. �
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Definition 2.5. Let M be a left A-module. Then we denote

M0 := A0 ⊗AM.

Corollary 2.6. Let M be a left A-module freely generated by a singleton over F .
Then the cokernel of the map

M0
∂×−→ M0

is one dimensional.

We now come to define the key map.

Definition 2.7. Let M be a left A-module freely generated by a singleton over F .
Then a choice of an isomorphism

Res : M0/∂M0 → C
is called a residue map. In particular, Res f = 0 if and only if f = ∂g for some
g ∈M0 (i.e., f has an “anti-∂”).

Corollary 2.6 implies that any two such choices of the residue map differ just by
a non-zero complex scalar multiple.

We see immediately that the extraction of Taylor coefficients by the residue map
defined above is in general explicitly described in the following theorem.

Theorem 2.8 (Cauchy integral formula). Let M be a left A-module which is
freely generated by a singleton {p} over F . For each choice of residue map Res :
M0/∂M0 → C, there exists a scalar c ∈ C∗ such that if f ∈ M has the “Taylor
series expansion”

f =
[∑

k

akX
k
]
p,

then

ak = c Res
( 1

Xk+1
f
)
, for every k ∈ N. (2.3)

2.3. Liouville’s theorem for the difference operator ∆. We emphasise that
the development in §2.1–2.2 about residues is completely general where the symbol
“∂” is up to interpretation. We finally come to our first version of Liouville’s
theorem by considering the left A-module effected by the interpretation (2.1), i.e.
(∂f)(x) = ∆f(x) = f(x+ 1)− f(x).

The following classical result of Whittaker states that for any given entire func-
tion f , we have Res f = 0. That is, an “anti-difference” always exists:

Theorem 2.9 ([27](pp. 22–24)). If f is an entire function, then there exists an
entire function g (of the same order as f) such that

f(x) = ∂g(x) = g(x+ 1)− g(x).

Theorem 2.10 (Difference Liouville’s theorem). Let f be an entire function. If
there exists a 1-periodic meromorphic function p such that

(1)
f

p
is entire and is of exponential type at most ln 2, and
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(2) there exists a sequence of positive real numbers {xn} diverging to +∞ such
that

f

p
(xn + iy) = o(xn)

for every y ∈ R uniformly as n→∞,
then f is 1-periodic.

We note that the Phragmén-Lindelöf theorem does not apply to functions de-
scribed in Theorem 2.10. In fact, these two theorems are independent of each
other.

2.3.1. Proof of difference Liouville’s theorem. Theorem 2.10 will be established in
several steps below.

Construction of a residue map. Fix a 1-periodic function p, and let M = Hp be
a left A-module where H ⊂ O(C) is the subspace of entire functions consisting of
exponential growth of type ln 2 at most as defined previously in §2.1.1. For each
a > 0, one defines the residue as the following map

Res : M0/∂M0 −→ C

f 7→
∫ a+i∞

a−i∞

f(x)

p(x)
e− cos(2πx) dx,

where the improper integral is understood as its Cauchy principal value. Here the
weight function e− cos(2πx) guarantees the convergence of the improper integral. We
first show that this residue map is well-defined.

Lemma 2.11. If f = ∂g for some g ∈M0, then Res f = 0.

Proof. If f(x) = g(x+ 1)− g(x), then∫ a+i∞

a−i∞

f(x)

p(x)
e− cos(2πx) dx = lim

T→+∞

∫ a+iT

a−iT

f(x)

p(x)
e− cos(2πx) dx

= lim
T→+∞

∫ a+iT

a−iT

g(x+ 1)− g(x)

p(x)
e− cos(2πx) dx

= lim
T→+∞

(∫ a+1+iT

a+1−iT
−
∫ a+iT

a−iT

)
g(x)

p(x)
e− cos(2πx) dx

= lim
T→+∞

∫
ΓT

g(x)

p(x)
e− cos(2πx) dx

= 0

by Cauchy’s integral theorem, since the contour ΓT is the boundary of the rectangle
with vertices a+ iT , a− iT , a+ 1− iT and a+ 1 + iT , and the two improper (line)
integrals

lim
T→+∞

∫
[a±iT, a+1±iT ]

g(x)

p(x)
e− cos(2πx) dx

both vanish. �
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Although the choice of the weight function w(x) = e− cos(2πx) used in the above
proof is not unique, Corollary 2.6 ensures that the residue map Res is, however,
unique up to a constant multiple.

Lemma 2.12. Let f be an entire function of exponential type at most ln 2. If there
exists a sequence {xn} of positive real numbers tending to +∞ such that

f(xn + iy) = o(xn)

for every y ∈ R uniformly as n→∞, then f is a constant.

Proof. Let H ⊂ O(C) be the subspace consisting of entire functions of exponential
type at most ln 2, which is considered as a left A-module as in §2.1.1. Now f ∈ H
admits a “Newton series expansion”

f =
[ ∞∑
k=0

akX
k
]
· 1

via the map (2.2). Note that the sequence {xn} has either a subsequence {xnj
}

such that cos(2πxnj
) ≥ 0 for all j, or a subsequence {xnj

} such that cos(2πxnj
) ≤ 0

for all j. In the former case we choose the residue map to be

Res f =

∫ a+i∞

a−i∞
f(t) e− cos(2πt) dt

as before, while in the latter case we choose the residue map to be

Res f =

∫ a+i∞

a−i∞
f(t) ecos(2πt) dt

instead (Here a can be any positive real number because of Cauchy’s integral the-
orem). Then in both cases, we have

|e∓ cos(2πt)| = e∓ cos(2π<t) cosh(2π=t) ≤ 1

when <t = xnj
. So for every k ≥ 1, we have by Theorem 2.8

|ak| =
∣∣∣∣cRes

( 1

Xk+1
f
)∣∣∣∣

=

∣∣∣∣∣c
∫ xnj

−k−1+i∞

xnj
−k−1−i∞

f(t+ k + 1)

(t+ 1)(t+ 2) · · · (t+ k + 1)
e∓ cos(2πt) dt

∣∣∣∣∣
≤ |c|

(xnj − k)k+1
max
<t=xnj

|f(t)|,

which tends to 0 as j →∞. Therefore ak = 0 for every k ≥ 1. �

Completion of the proof of Theorem 2.10. We simply apply Lemma 2.12 to the
function f/p in order to complete the proof. �

3. q-Liouville’s Theorems

We briefly discuss how to modify the Weyl algebra (2.1) into the setting of q-
difference operator. In the whole §3, we let q ∈ C∗ and suppose that |q| 6= 1.
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3.1. The q-Weyl algebra.

Definition 3.1. The q-Weyl algebra Aq is the C-algebra defined by

Aq = C〈X, ∂〉/〈∂X − qX∂ − 1〉.

Remark 3.2. One can recover the results concerning A from §2 by taking limit
q → 1 in those results concerning Aq.

Fix L ∈ Aq, and denote by AqL the left ideal generated by L. Then the quotient

Aq/AqL
is a left Aq-module.

Definition 3.3. Fix a C-vector subspace C[X] ⊂ F ⊂ C[[X]] of the space of formal
power series in X. We use the notation Aq, F to denote the ring extension of Aq
generated by F and ∂ as a C-algebra, subject to the relation ∂X − qX∂ − 1. We
suppress the emphasis of the dependence of Aq, F on F in later usages when there
is no ambiguity.

3.1.1. Applications to Jackson’s q-difference operator. Suppose that 0 < |q| < 1.
As in Definition 3.3, we let F ⊂ C[[X]] be the subspace defined by

F =
{∑

k

akX
k : lim sup

n
|an|1/n < 1

}
, (3.1)

and let Aq,F be the C-algebra generated by F and ∂ subject to the relation
∂X − qX∂ − 1. Then Aq,F contains Aq as a subalgebra, and from now on we
denote Aq,F by just Aq. Consider the subspace H ⊂ O(C∗) consisting of all ana-
lytic functions defined on the punctured complex plane which have q-exponential
growth of order < ln |q−1| [1, 24]. Then H is endowed with the structure of a left
Aq-module by

(Xf)(t) = (t− 1)f(qt);

(∂f)(t) =
f(t)− f(t/q)

t− t/q
for all f ∈ H and all t ∈ C∗. (3.2)

Fix any “periodic function” p (i.e. p(qt) = p(t) for all t, so that p must in fact be
a constant), then we obtain a left Aq-linear map

Nq : Aq/Aq∂
·p−→ H. (3.3)

Similar to the previous application in §2.1.1, take p to be the constant function 1,
then we recover ∑

k

(−1)kak(1− x)(1− qx) · · · (1− qk−1x)

as the series expansion of the analytic function Nq[
∑
k akX

k] in the polynomial
base {(x; q)n} [18, 1, 17].

On the other hand, if |q| > 1, then in Definition 3.3 we let F ⊂ C[[X]] be the
subspace defined by

F =
{∑

k

akX
k : lim sup

n
|an|

2
n(n−1) < |q−1|

}
.
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Then the same left Aq-module structure as in (3.2) and (3.3) can be equipped on
the whole space O(C) of all entire functions, and we obtain the same kind of series
expansions in the polynomial base {(x; q)n} [1].

In whichever case for |q| above, if instead of (3.2), we endow O(C∗) with a
slightly different left Aq-module structure

(Xf)(t) = tf(qt);

(∂f)(t) =
f(t)− f(t/q)

t− t/q
for all f ∈ O(C∗) and all t ∈ C∗, (3.4)

and choose the map

Ñq : Aq/Aq∂
·1−→ O(C∗). (3.5)

instead of (3.3) (note that the definition of the scalar multiplications in (3.3)
and (3.5) are different), then it gives a series expansion of the analytic function

Ñq[
∑
k akX

k] which assumes the form∑
k

akq
(k
2)xk.

This includes the well-known basic hypergeometric series [13].

Once we have fixed the basic notations, the following statements which are par-
allel to those from §2 become self-evident.

3.2. q-residues.

Definition 3.4. Choose a C-vector subspace C[X] ⊂ F ⊂ C[[X]]. We use the nota-

tion Aq,0 to denote the C-algebra generated by F ,
1

X
and ∂, subject to the relation

∂X − qX∂ − 1. The dependence on F in the notation Aq,0 is again suppressed for
simplicity.

In the rest of this section, a choice of F is understood without further emphasis.

Lemma 3.5. The cokernel of the map

Aq,0/Aq,0∂
∂×−→ Aq,0/Aq,0∂

has C-dimension one and is spanned by 1/X.

Proof. One easily proves by induction that

∂Xn =
1− qn

1− q
Xn−1 mod Aq,0∂

for each n ∈ Z. �

Definition 3.6. Let M be a left Aq-module. Then we denote

M0 := Aq,0 ⊗Aq M.



D-MODULE APPROACH TO LIOUVILLE’S THEOREM 73

Corollary 3.7. Let M be a left Aq-module freely generated by a singleton over F .
Then the cokernel of

M0
∂×−→M0

is one dimensional.

Definition 3.8. Let M be a left Aq-module freely generated by a singleton over
F . Then a choice of an isomorphism

Res : M0/∂M0 −→ C

is called a residue map.

Theorem 3.9 (Cauchy integral formula). Let M be a left Aq-module which is freely
generated by a singleton {p} over F . For each choice of residue map
Res : M0/∂M0 → C, there exists a scalar c ∈ C∗ such that if f ∈M has the “Taylor
series expansion”

f =
[∑

k

akX
k
]
p,

then

ak = c Res
( 1

Xk+1
f
)

for every k ∈ N. (3.6)

3.3. q-Liouville’s theorems. Suppose that 0 < |q| < 1, let F ⊂ C[[X]] be the
subspace as defined in (3.1) and let H ⊂ O(C∗) be the first left Aq-module in §3.1.1,
defined by (3.2) and (3.3).

Construction of a residue map. For each r > 1, one defines the residue as

Res : H0/∂H0 −→ C

f 7→ 1

2πi

∫
∂D(0,r)

f(x) dx.

It is easy to see that this residue map is also well-defined.

Lemma 3.10. If f = ∂g for some g ∈ H0, then Res f = 0.

Proof. If f(x) =
g(x)− g(x/q)

x− x/q
, then∫

∂D(0,r)

f(x) dx =

∫
∂D(0,r)

g(x)− g(x/q)

x− x/q
dx

=

(∫
∂D(0,r)

−
∫
∂D(0,r/|q|)

)
g(x)

x− x/q
dx

= 0

by Cauchy’s integral theorem, since g is analytic on the annulus bounded by the
circles ∂D(0, r) and ∂D(0, r/|q|). �
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Theorem 3.11. Let f be a holomorphic function defined on C∗, which has q-
exponential growth of order < ln |q−1| [1, 24]. If

|f(t)| = o(|t|)

as t→∞, then f is a constant.

Proof. H is a left Aq-module which is freely generated by {1} over F . By assump-
tion, the given function f ∈ H has a q-Taylor series expansion

f =
[ ∞∑
k=0

akX
k
]
· 1

via the map (3.3). Then for each k ≥ 1 and r > 0, we have by Theorem 3.9

|ak| =
∣∣∣∣Res

( 1

Xk+1
f
)∣∣∣∣

=

∣∣∣∣∣ 1

2πi

∫
∂D(0,r)

f(t/qk+1)

(t/q − 1)(t/q2 − 1) · · · (t/qk+1 − 1)
dt

∣∣∣∣∣
≤ 1

2π

2πrM(r/|q|k+1, f)

(r/|q| − 1)(r/|q|2 − 1) · · · (r/|q|k+1 − 1)

= o(r1−k)

which tends to 0 as r →∞. Therefore ak = 0 for every k ≥ 1. �

Remark 3.12. If one considers the left Aq-module structure defined by (3.4) and
(3.5) in this subsection, then the classical Liouville’s Theorem would be obtained

instead of Theorem 3.11. Although the same formula ak = c Res
( 1

Xk+1
f
)

works

for both left Aq-module structures, its interpretation via (3.4) and (3.5) is different
from that via (3.2) and (3.3) currently being considered. Also note that although
one can obtain the classical Liouville theorem this way, it is still conceptually dif-
ferent from obtaining the same theorem using the left A-module structure defined
by the differential operator, which will be done in §4.

4. Classical Liouville’s Theorem

We now return to the Weyl algebra A introduced in §2.
Let U ⊂ C be an open subset. We denote by O(U) the space of analytic functions

defined on U . Then O(U) is endowed with the structure of a left A-module by

(Xf)(t) = tf(t);
(∂f)(t) = f ′(t) for all f ∈ O(U) and all t ∈ U.

Let F ⊂ C[[X]] be the subspace defined by

F =
{∑

k

akX
k : lim

n→∞
|an|1/n = 0

}
,
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and A be the algebra generated by F and ∂ (the dependence of F has again been
suppressed in the notation). The map

A/A∂ ·1−→ O(C)

becomes an isomorphism of left A-modules. It is the usual Maclaurin series expan-
sion of entire functions.

Construction of a residue map. Let O(C) be the left A-module above. For each
r > 0, one defines the residue as

Res : O(C)0/∂O(C)0 −→ C

f 7→ 1

2πi

∫
∂D(0,r)

f(x)dx.

Hence we obtain

Theorem 4.1 (Liouville). Let f ∈ O(C) be an entire function such that

|f(t)| = o(|t|) as t→∞.
Then f is a constant.

Proof. O(C) is a left A-module which is freely generated by {1} over F . Expand
the given entire function f into a power series

f =
[ ∞∑
k=0

akX
k
]
· 1.

By the hypothesis, |f(t)| ≤ M|t||t| for some Mr such that limr→+∞Mr = 0. Then
for each k ≥ 1 and r > 0, we have

|ak| =
∣∣∣∣Res

( 1

Xk+1
f
)∣∣∣∣

=
1

2π

∣∣∣∣∣
∫
∂D(0,r)

f(t)dt

tk+1

∣∣∣∣∣
≤ 1

2π
2πr

Mrr

rk+1

which tends to 0 as r → +∞. Therefore ak = 0 for every k ≥ 1. �

5. Concluding Remarks

Discussion of main results. In this article, we have found different versions of Li-
ouville’s theorems corresponding to various difference operators by adopting an
algebraic approach to understanding series expansions in complex function theory.
It is found that various kinds of series expansions of analytic or meromorphic func-
tions can all be unified as different interpretations of the same “symbolic” power
series, which is an element in A/A∂. This new point of view has led to a uni-
fied residue theory, which is the main ingredient in this article towards obtaining
different kinds of Liouville’s theorems obtained.

Although the residue map (2.3) and the Cauchy integral formula (3.6) are in an
abstract algebraic setting, it turns out that for the particular cases of difference or
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differential operators that we consider, they can be realized using contour integrals.
In the consideration of the (forward) difference operator ∆f(x) = f(x+ 1)− f(x),
the residue map is realized as a Barnes-type contour integral; and in the cases
of Jackson’s q-difference operator Dqf(x) = [f(x) − f(x/q)]/(x − x/q) and the
usual differential operator, the residue map is realized as a Cauchy-type contour
integral. These machineries therefore lead to the different analogues of Liouville’s
theorem obtained in this article. We emphasize that the boundedness conditions in
these new analogues of Liouville’s theorem may not be the same as the traditional
“boundedness”. Firstly, In the setting of (forward) difference operator: entire func-
tions f that grow slower than a specific growth rate in the positive real direction
reduce to a 1-periodic function, i.e. ∆f = 0. Obviously, periodic functions need
not be bounded in the classical sense. This conclusion also agrees with the Lit-
tle Picard theorem for difference operator ∆ discovered by Halburd and Korhonen
[15]. Secondly, for Jackson’s q-difference operator, holomorphic functions on C∗
that grow slower than a specific growth rate reduce to an f such that Dqf = 0,
i.e. a constant. Finally, for differential operator, we recover the classical Liouville
theorem: an entire function that is bounded (“traditionally”) reduces to a constant.

Application to de Branges’ space of entire functions. Let E be an entire function
which satisfies

|E(z̄)| < |E(z)|
for all z with =(z) > 0. De Branges [9] considered the set H (E) of entire functions
F such that

‖F‖2 =

∫
R

∣∣∣F (t)

E(t)

∣∣∣2 dt <∞
and

|F (z)|2 ≤ ‖F‖2 |E(z)|2 − E(z̄)|2

2πi(z̄ − z)
for all z ∈ C. He showed that H (E) is a Hilbert space that enjoys special properties
(see [9, (H1–3)]) that generalise the classical Fourier series theory. He also showed
that if H (E) is 1-periodic (i.e. every function in H (E) is 1-periodic), then one
has the factorization

E(z) = F (z)G(z), (5.1)

where F is an entire function which has only real zeros and satisfies F (z − 1) =
±F (z), and G is an entire function of exponential type with no real zeros, such that
H (G) is 1-periodic. Our difference Liouville’s Theorem (Theorem 2.10) shows that
if we assume further that G is “bounded” in the difference sense, (i.e., of exponential
type < ln 2 and grows slower than <z in the direction parallel to the positive real
axis), then G must reduce to constant and E itself must therefore be periodic
according to (5.1).

D-module approach to solutions of difference/differential equations. The Weyl al-
gebraic point of view appears to be useful in studying almost all aspects of complex
function theory, whenever differential and/or difference operators are involved [6].
As an example, each family of classical hypergeometric orthogonal polynomials or
basic hypergeometric orthogonal polynomials in the Askey scheme [17] can be pre-
sented as polynomial solutions to differential or (q-)difference equations. One can
then make use of the Weyl algebraic machinery introduced in this article to study
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these families of polynomials as elements in left A-modules A/AL for different
choices of L ∈ A. At this point, we should mention that our D-module approach
is different from the more well-known umbral calculus approach advocated by the
Rota school [25] since the 1970’s.

Specifically, from the Weyl algebraic point of view, one realizes that the Char-
lier polynomial Cn(x; a) is in fact a “difference analogue” of the simple binomial
(1−x/a)n. To see this, one refers to the Rodrigues formula for Charlier polynomials
[3, Chap. 5], [19], which is

ax

x!
Cn(x; a) = ∇n a

x

x!
,

where ∇ is the backward shift operator defined by ∇f(x) = f(x)− f(x− 1). One
can then rearrange this to become

Cn(x; a) =
x!

ax
∇n a

x

x!
=

(
x!

ax
∇a

x

x!

)n
One notes that for any function f ,(

x!

ax
∇a

x

x!

)
f(x) = f(x)− x

a
f(x− 1) =

(
1− X

a

)
f(x),

if X is interpreted using the left A-module structure (2.1) regarding the (forward)
difference operator. As a result, the Charlier polynomial Cn(x; a) is just the image
of the map (

1− X

a

)n
under a scalar multiplication to the constant function 1, similar to (2.2):

Cn(x; a) =

n∑
k=0

(
n

k

)
(−a)−kx(x− 1) · · · (x− k + 1).

The orthogonality of these polynomials can also be formulated as a pairing making
use of the residue map defined in this article, which is now the obstruction of having
“anti-(X − a)” and is usually expressed as a sum rather than an integral. Their
generating functions can also be derived via D-modules, making use of a holonomic
system of PDEs. It turns out that the D-module approach hinted in this paper not
only leads to an alternative organisation of classical theories of special functions,
but also gives new discoveries of special functions, which will be pursued in a
forthcoming work.
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