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Abstract. We prove local injectivity near a boundary point for the geodesic
X-ray transform for an asymptotically hyperbolic metric even mod O(ρ5) in
dimensions three and higher.

Dedicated to the memory of Vaughan Jones

1. Introduction

The problem of recovering a function f from its geodesic X-ray transform

If(γ) =
∫
γ

fds,

where γ is a geodesic of a Riemannian metric g on a Riemannian manifold and ds
denotes integration with respect to g-arc length, has been studied extensively since
the early 20th century, starting with the Radon transform in the 2-dimensional
Euclidean space ([Rad17]). Aside from its intrinsic geometric interest, this ques-
tion arises in numerous applications, including medical, geophysical and ultrasound
imaging; for a comprehensive recent survey see [IM19]. A major breakthrough in
the study of the geodesic X-ray transform was the proof by Uhlmann-Vasy ([UV16])
of local injectivity near a boundary point on manifolds of dimension at least 3 with
strictly convex boundary. In this paper we prove an analog of the Uhlmann-Vasy
result on asymptotically hyperbolic manifolds.

Let (Mn+1
, ∂M) be a compact manifold with boundary and M be its interior.

A C∞ metric g on M is called asymptotically hyperbolic (AH) if for some (and
hence any) smooth boundary defining function ρ (that is, ρ

∣∣
∂M

= 0, ρ > 0 on
M , dρ

∣∣
∂M
6= 0) the Riemannian metric g := ρ2g on M extends to a smooth

metric on M with the additional property that |dρ|2g ≡ 1 on ∂M . We denote by
h = g|T∂M the induced metric on ∂M . As shown in [Maz86], (M, g) is a complete
Riemannian manifold with sectional curvatures approaching −1 as ρ → 0. The
classical example of an AH manifold is the Poincaré ball model of the hyperbolic
space of constant sectional curvature −1, the manifold being the Euclidean unit
ball Bn+1 = {(x1, . . . , xn+1) ∈ Rn+1 : |x| < 1} with the metric

gH := 4
∑n+1
j=1 (dxj)2

(1− |x|2)2 .
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Interest in the study of AH manifolds has risen in the past 20 years since the
AdS/CFT conjecture, proposed in [Mal98], related conformal field theories with
gravity theories on AH spaces.

Since a boundary defining function ρ is determined only up to a smooth positive
multiple, g determines a conformal family c of metrics on the boundary given by
c = [h]. This conformal class of metrics is called the conformal infinity of g. In
[GL91], Graham and Lee show that for each conformal representative h ∈ c there
exists a unique boundary defining function ρ inducing a product decomposition
[0, ε)ρ × ∂M of a collar neighborhood of the boundary such that the metric can be
written in the form

g = dρ2 + hρ
ρ2 , (1.1)

where hρ is a one-parameter family of metrics on ∂M , smooth in ρ up to ρ = 0,
with h0 = h. We say that an AH metric is in normal form if it is written as in (1.1).
Note that (1.1) implies that the equality |dρ|2g = 1 is valid in a neighborhood of ∂M
instead of just on ∂M . In this paper we will be concerned with AH metrics that
are even mod O(ρN ), where N is a positive odd integer. This means that whenever
g is written in normal form (1.1) in a neighborhood of ∂M , one has

(∂ρ)mhρ
∣∣
ρ=0 = 0 for m odd, 1 ≤ m < N. (1.2)

In the case when (1.2) holds for any odd N > 0 the metric g will be called even.
As shown in [Gui05, Lemma 2.1], evenness mod O(ρN ) is a well defined property
of an AH metric, independent of the chosen conformal representative determining
the normal form (1.1).

A unit-speed geodesic γ for g is said to be trapped if either lim inft→∞ ρ(γ(t)) > 0
or lim inft→−∞ ρ(γ(t)) > 0. If γ is not trapped, then limt→±∞ γ(t) ∈ ∂M exists
and ρ(γ(t)) = O(e−|t|). (See [Maz86] or [GGSU19, Lemma 2.3].) In this case we
define

If(γ) :=
∫ ∞
−∞

f(γ(t)) dt (1.3)

for f such that the integral converges.
Injectivity of the X-ray transform has been studied in various settings overlapping

with AH spaces. Classical results on hyperbolic space viewed as a symmetric space
can be found in [Hel11]. More recently, [Leh] and [LRS18] consider injectivity
of the X-ray transform in the setting of Cartan-Hadamard manifolds, which are
by definition complete, simply connected manifolds of non-positive curvature; the
underlying manifolds are diffeomorphic to Rn. Injectivity results specifically in the
setting of AH manifolds can be found in [GGSU19].

We will focus on (1.3) restricted to a subset of geodesics. If U ⊂ M (typically
an open neighborhood of a point p ∈ ∂M , or its closure), a geodesic is said to be
U -local if γ(t) ∈ U for all t ∈ R and limt→±∞ γ(t) ∈ U ∩∂M . The set ΩU of U -local
geodesics is nonempty if U is any open neighborhood of a boundary point; this is
a consequence of the existence of “short” geodesics (see §2.2 of [GGSU19]).

As we will indicate in Section 3, for U a small neighborhood of a boundary point,
the map f → If |ΩU can be defined on ρ3/2L2(U ; dvg) with values in an appropriate
L2 space (here dvg denotes the volume form induced by the smooth metric g on
M).
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Theorem 1. Let M be a manifold with boundary of dimension at least 3, with
its interior endowed with an asymptotically hyperbolic metric g that is even mod
O(ρ5). Given any neighborhood O in M of p ∈ ∂M , there exists a neighborhood
U ⊂ O in M of p such that f → If

∣∣
ΩU

is injective on ρ3/2L2(U ; dvg).
We expect that local injectivity holds for general asymptotically hyperbolic metrics,
but that other techniques will be needed to prove this. Likewise, we expect that
the hypothesis f ∈ ρ3/2L2(U ; dvg) can be weakened.

Our approach is motivated by the following observation. Recall that the Klein
model for hyperbolic space is another metric on Bn+1 obtained from the Poincaré
metric by a change of the radial variable. Geodesics for the Klein model are straight
line segments in Rn+1 under suitable parametrizations. So the hyperbolic X-ray
transform can be identified with the Euclidean X-ray transform applied to a function
supported in the unit ball, modulo changing the parameter of integration on each
geodesic. This observation has been utilized in the study of the hyperbolic Radon
transform, see e.g. [BT93]. There is an analogous relation for even AH metrics. An
even AH metric induces what we call an even structure on (M,∂M) subordinate to
its smooth structure. This is a subatlas of the atlas defining the smooth structure,
with the property that all the transition maps for the even structure are even
diffeomorphisms. One can use the even structure to define a new smooth structure
(Me, ∂Me) on the topological manifold with boundary underlying (M,∂M) by
introducing r = ρ2 as a new boundary defining function. As outlined at the end
of §4 of [FG12], when viewed relative to the smooth structure (Me, ∂Me), the
metric g is projectively compact in the sense that its Levi-Civita connection is
projectively equivalent to a connection ∇̂ smooth up to the boundary, i.e. its
geodesics agree up to parametrization with the geodesics of ∇̂. The connection ∇̂
need not be the Levi-Civita connection of a metric as happens on hyperbolic space,
but the Uhlmann-Vasy local injectivity result applies also to the X-ray transform
for smooth connections, so local injectivity for even AH metrics follows just by
quoting [UV16].

The introduction of r = ρ2 as a new defining function to pass from M to Me

is a key step in Vasy’s approach to microlocal analysis on even AH manifolds; see
[Vas13a, Vas13b, Vas17].

If the AH metric g is not even, one can still introduce an even structure and
a corresponding (Me, ∂Me) by introducing r = ρ2 as a new boundary defining
function. But in this case the connection ∇̂ is no longer smooth up to the boundary:
its Christoffel symbols have expansions in

√
r. If ∂ρhρ

∣∣
ρ=0 6= 0 in (1.1), then

the Christoffel symbols have r−1/2 terms so ∇̂ is not even continuous up to the
boundary. If ∂ρhρ

∣∣
ρ=0 = 0 but (∂ρ)3hρ

∣∣
ρ=0 6= 0, then ∇̂ has

√
r terms so it

is continuous but not Lipschitz. Our assumption that g is even modulo O(ρ5)
guarantees that ∇̂ is at least a C1 connection.

In principle one could try to extend directly the proof in [UV16] to the case of
a C1 connection like ∇̂. But the microlocal methods do not seem very well suited
to such an analysis. Instead we argue by perturbation: ∇̂ is a perturbation of a
smooth connection, and the perturbation gets smaller the closer one gets to the
boundary. For the quantitative control needed to carry this out, we need to use
not only the local injectivity result of [UV16], but also the associated stability
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estimate. We briefly indicate how this goes, beginning by describing this stability
estimate.

Let ∇ be a smooth connection on a manifold with strictly convex boundary
(Me, ∂Me), of dimension at least 3, let r be a boundary defining function, and M̃
a closed manifold of the same dimension containing Me. The authors of [UV16]
constructed a one-parameter family of “artificial boundaries” near a point p ∈ ∂Me

given by x̂ = −η, where x̂ ∈ C∞(M̃) satisfies x̂(p) = 0 and dx̂(p) = −dr(p), and
η > 0, and showed injectivity of the X-ray transform I of ∇ restricted to geodesics
in Me entirely contained in Uη := {x̂ ≥ −η} ∩ {r ≥ 0}, for η sufficiently small (see
Figure 1). The proof is based on the construction of a family of “microlocalized

M̃ z

M ⊂M e

x̂ = −η

grad

p

(x̂)
Uη

Figure 1. The artificial boundary.

normal operators” Aχ,η,σ each one of which is, roughly speaking, the conjugate
by exponential weights of the average of If over the set of such geodesics passing
through a given point. Here σ is the parameter in the exponential weight and χ is a
cutoff function. They showed that for appropriately chosen χ, the operator Aχ,η,σ
is an elliptic pseudodifferential operator in Melrose’s scattering calculus which for
sufficiently small η has trivial kernel when acting on functions supported in Uη, and
derived the stability estimate

‖f‖L2(Uη) ≤ C‖Aχ,η,σf‖H1,0
sc (Oη), (1.4)

where H1,0
sc denotes a scattering Sobolev space and Oη is a neighborhood of Uη in

Xη := {x̂ ≥ −η}.
If g is an AH metric even mod O(ρN ), its Levi-Civita connection is projectively

equivalent as described above to a connection ∇̂ of the form ∇̂ = ∇+ rN/2−1B on
Me, where ∇ and B are smooth. If N ≥ 5, then ∇̂ is C1, so the constructions of
its X-ray transform Î and the operator Âχ,η,σ can be carried out just as for the
smooth connection ∇. We show that the norm of the perturbation operator

Âχ,η,σ −Aχ,η,σ : L2(Uη)→ H1,0
sc (Oη) (1.5)

goes to zero as η → 0. This gives an estimate of the form (1.4) for Âχ,η,σ for η
sufficiently small, which implies local injectivity since Âχ,η,σ factors through the
X-ray transform Î. The perturbation operator is estimated as in the classical Schur
criterion bounding an L2 operator norm by the sup of the L1 norms of the Schwartz
kernel in each variable separately. We lift the kernels of the operators Âχ,η,σ and
Aχ,η,σ to a blown up space which is a refinement of Melrose’s double stretched space
(see [Mel94]), where their singularities are more easily analyzed. Due to the fact
that the connection ∇̂ is only of class C1, some rather technical analysis is required
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near each boundary face and corner of the blow-up to conclude that the kernel of
Âχ,η,σ is sufficiently regular that the norm of the perturbation operator vanishes in
the limit as η → 0.

As in [UV16], the method of proof naturally yields reconstruction via a Neu-
mann series and a stability estimate for Î acting between Sobolev spaces on Me

and the sphere bundle S0Me of a smooth metric g0 on Me, which we use to pa-
rametrize geodesics for ∇̂. One could pull back such an estimate to obtain one for
I acting between Sobolev spaces on M and the sphere bundle of g, but we will
not pursue this here. Moreover, one could obtain a global injectivity result in the
same way as in [UV16] provided the compact manifold with boundary {ρ ≥ ε}
admits a strictly convex foliation, for all ε sufficiently small. We mention that Vasy
recently used semiclassical analysis to provide a simplified, compared to [UV16],
proof of injectivity of the global and local X-ray transform on compact manifolds
with boundary admitting a convex foliation ([Vas]). Global injectivity is shown
there without the need for localization and layer stripping. In the present work,
working with the local transform is essential for the aforementioned perturbation
argument showing Theorem 1 for AH metrics which are even mod O(ρ5), and we
follow the original formulation of [UV16].

In Section 2 we define even structures on a manifold with boundary and construct
the new manifold with boundary (Me, ∂Me) obtained by introducing r = ρ2 as a
new defining function. We show that via this construction, even asymptotically hy-
perbolic metrics are the same as projectively compact metrics, only viewed relative
to different smooth structures near infinity. In Section 3 we use this observation to
relate the X-ray transforms for g and ∇̂, and then deduce Theorem 1 for even AH
metrics. Section 4 begins the analysis for the C1 connection ∇̂ arising from an AH
metric even mod O(ρ5). We decompose ∇̂ into a smooth projectively compact con-
nection ∇ and a nonsmooth error term and extend both to the larger manifold M̃ in
such a way that they agree outside of Me. We also prove Lemma 4.1, which states
that the exponential map for ∇̂ has one more degree of regularity than expected.
In Section 5 we review scattering Sobolev spaces on a manifold with boundary, the
construction of the microlocal normal operator Aχ,η,σ, and the stability estimate
(1.4). We also show how Theorem 1 follows from Proposition 5.6, which is the
assertion that the norm of the perturbation operator (1.5) goes to zero as η → 0.
In Section 6 we describe the blown-up double space, analyze in detail the lift of the
kernel of Aχ,η,σ to this space, and conclude with the proof of Proposition 5.6.

Throughout this paper and unless otherwise stated, given an n+ 1-dimensional
manifold with boundary (such as (M,∂M) or (Me, ∂Me)), lower case Latin indices
i, j, k label objects on the manifold and run between 0 and n in coordinates. Lower
case Greek indices α, β, γ label objects on the boundary and run between 1 and n
in coordinates. So a Latin index corresponds to a pair i↔ (0, α).

2. Even Asymptotically Hyperbolic = Projectively Compact

This paper is based on an equivalence between even asymptotically hyperbolic
metrics and projectively compact metrics, briefly outlined at the end of Section 4
of [FG12]. Since it is central to the paper, we describe this equivalence in more
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detail. We begin by recalling the notions of projective equivalence and projectively
compact metrics. A reference for projective equivalence is [Poo81, §5.24].

Two torsion-free connections ∇ and ∇̂ on a smooth manifold are said to be
projectively equivalent if they have the same geodesics up to parametrization. This
is equivalent to the condition that their difference tensor ∇̂ − ∇ is of the form
v(iδ

k
j) = 1

2 (viδkj + vjδ
k
i ) for some 1-form v. If γ(t) is a geodesic for ∇, then γ(t(τ))

is a geodesic for ∇̂, where t(τ) solves the differential equation t′′ = µ(t)(t′)2 with
µ(t) = −vγ(t)(γ′(t)). If v = du happens to be exact, then this equation for the
parametrization reduces to the first order equation

t′ = ce−u(γ(t)) (2.1)
which can be integrated by separation of variables.

Let eg be a metric on the interior of a manifold with boundary (Me, ∂Me). (The
explanation for the super/subscript e will be apparent shortly. For now this is just
an inconsequential notation.) We say that eg is projectively compact if near ∂Me

it has the form
eg = dr2

4r2 + k

r
,

where r is a defining function for ∂Me and k is a smooth symmetric 2-tensor on
Me which is positive definite when restricted to T∂Me. (The papers [ČG16a],
[ČG16b] consider more general notions of projective compactness; our projectively
compact metrics are projectively compact of order 2 in the terminology introduced
there.) It is easily checked that this class of metrics is independent of the choice
of defining function r. Elementary calculations (see (4.1) below) show that if e∇
is the Levi-Civita connection of such a metric and r a defining function, then the
connection ∇̂ defined by

∇̂ = e∇+D, Dk
ij = v(iδ

k
j), v = dr/r (2.2)

extends smoothly up to ∂Me. Thus e∇ is projectively equivalent to the smooth
connection ∇̂. It turns out that projectively compact metrics are the same as
even asymptotically hyperbolic metrics upon changing the smooth structure at the
boundary. We digress to formulate the notion of an even structure on a manifold
with boundary, which underlies this equivalence.

Set Rn+1
+ = {(ρ, s) : ρ ≥ 0, s ∈ Rn}. View Rn ⊂ Rn+1

+ as the subset ρ = 0.

Definition 2.1. Let U ⊂ Rn+1
+ be open. Let f : U → R be smooth. f is said to be

even (resp. odd) if either:
(1) U ∩ Rn = ∅, or
(2) U ∩ Rn 6= ∅ and the Taylor expansion of f at each point of U ∩ Rn has only

even (resp. odd) terms in ρ.

It is equivalent to say that f is even (resp. odd) if there is a smooth function u so
that f(ρ, s) = u(ρ2, s) (resp. f(ρ, s) = ρ u(ρ2, s)). A smooth map ϕ : U → Rn+1

+
is said to be even if it is of the form ϕ(ρ, s) = (ρ′, s′), where ρ′ is odd and each
component of s′ is even.

Definition 2.2. Let (M,∂M) be a manifold with boundary, with atlas {(Uα, ϕα)}α∈A.
Let {(Uα, ϕα)}

α∈Ã be a subatlas of {(Uα, ϕα)}α∈A corresponding to a subset Ã ⊂ A.
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We say that {(Uα, ϕα)}
α∈Ã defines an even structure on (M,∂M) subordinate to

its smooth structure if the transition map
ϕα2 ◦ ϕ−1

α1
: ϕα1(Uα1 ∩ Uα2)→ ϕα2(Uα1 ∩ Uα2)

is even for all α1, α2 ∈ Ã. The even structure is defined to be the maximal atlas
containing {(Uα, ϕα)}

α∈Ã for which all transition maps are even.

Remark 2.3. Since {(Uα, ϕα)}
α∈Ã is in particular an atlas for the smooth struc-

ture determined by {(Uα, ϕα)}α∈A, the even structure determines the smooth struc-
ture with respect to which it is subordinate. So there is really no need to begin with
the original smooth structure. Nevertheless, we will usually have the smooth struc-
ture to start with and this language is appropriately suggestive. There are many
different even structures subordinate to a given smooth structure.

A diffeomorphism for some ε > 0 between a collar neighborhood of ∂M in M
and [0, ε) × ∂M induces an even structure on (M,∂M). In fact, an atlas for ∂M
induces an atlas for [0, ε) × ∂M whose transition maps are the identity in the ρ
factor and independent of ρ in the ∂M factor.

If (M,∂M) is a manifold with boundary with subordinate even structure, it is
invariantly defined to say that a function f on M is even: f ◦ ϕ−1

α is required
to be even on Rn+1

+ for all charts (Uα, ϕα) in the even structure. Likewise for
odd functions. Conversely, knowledge of the even and odd functions on (M,∂M)
determines the subordinate even structure.

As an aside, we comment that if (M,∂M) is a manifold with boundary, there
is a natural one-to-one correspondence between smooth doubles of (M,∂M) and
subordinate even structures. Recall that a smooth double of (M,∂M) is a choice of
smooth manifold structure on the topological double 2M = (MtM)/∂M such that
the inclusions M → 2M are diffeomorphisms onto their range and such that the
natural reflection 2M → 2M is a diffeomorphism. The even (resp. odd) functions
on (M,∂M) are determined by the double by the requirement that their reflection-
invariant (resp. anti-invariant) extension to 2M is smooth.

Denote by S : Rn+1
+ → Rn+1

+ the squaring map
S(ρ, s) = (ρ2, s).

Let (M,∂M) be a manifold with boundary and let {(Uα, ϕα)}
α∈Ã define an even

structure on (M,∂M) subordinate to its smooth structure. We construct another
manifold with boundary (Me, ∂Me) as follows. Set Me = M as topological spaces.
Define

ψα = S ◦ ϕα, α ∈ Ã.
If α1, α2 ∈ Ã, then

(ϕα2 ◦ ϕ−1
α1

)(ρ, s) = (ρ a(ρ, s), s′(ρ, s)),
where a and the components of s′ are even. Now ψα2 ◦ψ−1

α1
= S ◦ (ϕα2 ◦ϕ−1

α1
)◦S−1.

Hence
(ψα2 ◦ ψ−1

α1
)(r, s) =

(
S ◦ (ϕα2 ◦ ϕ−1

α1
)
)
(
√
r, s)

=S
(√
r a(
√
r, s), s′(

√
r, s)

)
=
(
ra(
√
r, s)2, s′(

√
r, s)

)
.
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Since a and the components of s′ are even, it follows that ψα2 ◦ ψ−1
α1

is smooth.
Hence the charts {(Uα, ψα)}

α∈Ã define a manifold with boundary structure on the
topological space M , which we denote (Me, ∂Me). As topological spaces we have
M = Me. On the interior, the identity I : M → Me is a diffeomorphism. Since
ψα◦ϕ−1

α = S is smooth, it follows that I : M →Me is smooth. But I−1 : Me →M
is not smooth since in the charts ψα, ϕα, its first component is the function

√
r on

Rn+1
+ . The process of passing from (M,∂M) with its subordinate even structure

to (Me, ∂Me) could be called “introducing r = ρ2 as a new boundary defining
function”.

Next consider the inverse process of “introducing ρ =
√
r as a new bound-

ary defining function”. Let (N, ∂N) be any manifold with boundary. We con-
struct another manifold with boundary (M,∂M) with subordinate even structure,
such that (N, ∂N) equals (Me, ∂Me) as manifolds with boundary. To do so, let
{(Uα, ψα)}α∈A be an atlas for (N, ∂N). Take M = N as topological spaces. Use
as charts on M the maps ϕα = S−1 ◦ ψα. Now

(ψα2 ◦ ψ−1
α1

)(r, s) = (rb(r, s), s′(r, s))
where b and s′ are smooth. Calculating the compositions as above gives

(ϕα2 ◦ ϕ−1
α1

)(ρ, s) =
(
ρ
√
b(ρ2, s), s′(ρ2, s)

)
.

Since b(0, s) 6= 0, this is an even diffeomorphism. The atlas {(Uα, ϕα)}α∈A thus de-
fines the desired manifold with boundary (M,∂M) with subordinate even structure.
In this case the subatlas Ã equals A.

Suppose now that g is an AH metric on the interior M of a compact manifold
with boundary (M,∂M) with a subordinate even structure. In the context of this
discussion it is natural to define g to be even relative to the chosen even structure
if in coordinates (ρ, s) in the even structure it has the form

g = ρ−2(g00dρ
2 + 2g0αdρds

α + gαβds
αdsβ

)
(2.3)

with g00, gαβ even and g0α odd. The choice of a representative h for the conformal
infinity induces a diffeomorphism between [0, ε) × ∂M and a collar neighborhood
of ∂M with respect to which g has the form (1.1) with h0 = h. By analyzing
the construction of the normal form in [GL91], it is not hard to see that this
diffeomorphism putting g into normal form is even relative to the coordinates (ρ, s)
and the even structure determined by the product [0, ε) × ∂M (see the proof of
[Gui05, Lemma 2.1] for the special case when (2.3) is already in normal form
relative to another representative). It follows that g is even as defined in the
introduction and that g uniquely determines the even structure with respect to
which it is even. In the other direction, an even AH metric in the sense of the
introduction is clearly even with respect to the even structure determined by any
of its normal forms. Thus an AH metric g is even in the sense of the introduction
if and only if it is even relative to some even structure subordinate to the smooth
structure on (M,∂M), and this even structure is uniquely determined by g.

If g is an even AH metric, we can consider the smooth manifold with boundary
(Me, ∂Me) obtained from the even structure determined by g upon introducing r =
ρ2 as a new boundary defining function. Since I−1 : Me →M is a diffeomorphism,
eg := (I−1)∗g is a metric on Me. We claim that eg is projectively compact relative
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to the smooth structure on (Me, ∂Me). In fact, if g has the form (1.1) on [0, ε)×∂M
with hρ even in ρ, then

eg = dr2

4r2 + kr
r
, (2.4)

where kr = h√r is a one-parameter family of metrics on ∂Me which is smooth in r.
Thus eg is projectively compact. Conversely, a projectively compact metric relative
to (Me, ∂Me) is an even AH metric when viewed relative to (M,∂M).

In summary, the class of even asymptotically hyperbolic metrics on the interior
of a manifold with boundary (M,∂M) with subordinate even structure is exactly
the same as the class of projectively compact metrics in the interior of (Me, ∂Me).
The distinction is just a matter of which smooth structure one chooses to use at
infinity. The smooth structures are related by introducing r = ρ2 as a new defining
function.

3. Local Injectivity for Even Metrics

Let (M,∂M) be a manifold with boundary and g an even AH metric on M . As
described in Section 2, the associated metric eg obtained by introducing r = ρ2

as a new defining function is projectively compact. In particular, for any defining
function r for ∂Me, the connection ∇̂ defined by (2.2) is smooth up to ∂Me. We
will reduce the analysis of the local X-ray transform of g to that for ∇̂.

Lemma 3.1. ∂Me is strictly convex with respect to ∇̂.

Proof. Recall that this means that if r is a defining function for ∂Me with r > 0 in
Me and if γ̂ is a nonconstant geodesic of ∇̂ such that r(γ̂(0)) = 0 and dr

(
γ̂ ′(0)

)
= 0,

then ∂2
τ (r ◦ γ̂)|τ=0 < 0. Write g in normal form (1.1) relative to a conformal

representative h on ∂M , so that eg has the form (2.4) on Me. Letting Γ̂kij (resp.
eΓkij) denote the Christoffel symbols of ∇̂ (resp. the Christoffel symbols of the
Levi-Civita connection e∇ of eg) an easy calculation (see (4.1) below) shows that
eΓ0
αβ = 2kαβ = 2hαβ on ∂Me. Since D0

αβ = 0, we have at τ = 0:

∂2
τ (r ◦ γ̂) = −Γ̂0

ij γ̂
i′ γ̂j ′ = −Γ̂0

αβ γ̂
α′ γ̂β ′ = −eΓ0

αβ γ̂
α′ γ̂β ′ = −2hαβ γ̂α′ γ̂β ′ < 0.

�

It will be convenient to embed Me in a smooth compact manifold without bound-
ary M̃ and to extend ∇̂ to a smooth connection on M̃ , also denoted ∇̂. If γ̂ is a geo-
desic of ∇̂ with γ̂(0) ∈Me, set τ±(γ̂) := ± sup{τ ≥ 0 : γ̂(t) ∈Me for 0 ≤ ±t ≤ τ}.
If U ⊂ Me (usually a small neighborhood of p ∈ ∂M or its closure), we define the
set Ω̂U of U -local geodesics of ∇̂ by
Ω̂U :=

{
γ̂ : |τ±(γ̂)| <∞, |τ+(γ̂)|+|τ−(γ̂)| > 0, γ̂(t) ∈ U for t ∈ [τ−(γ̂), τ+(γ̂)]

}
.

Here the requirement |τ+(γ̂)|+ |τ−(γ̂)| > 0 excludes geodesics tangent to ∂Me.
If f ∈ C(U), set

Îf(γ̂) =
∫ τ+(γ̂)

τ−(γ̂)
f(γ̂(τ)) dτ, γ̂ ∈ Ω̂U . (3.1)

The U -local X-ray transform of f is the collection of all Îf(γ̂), γ̂ ∈ Ω̂U .
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Recall that the parametrization of a geodesic of any connection on TMe is de-
termined up to an affine change τ → aτ + b, a 6= 0. Such a reparametrization
changes Îf(γ̂) by multiplication by a−1. In particular, whether or not Îf(γ̂) = 0
is independent of the parametrization. It suffices to restrict attention to geodesics
whose parametrization satisfies a normalization condition. For instance, in the next
section we fix a background metric g0 and require that |γ̂′(0)|g0 = 1.

Next we relate I and Î. This involves relating objects on M with objects on Me.
Since I : M → Me is the identity map, this amounts to viewing the same object
in a different smooth structure, i.e. in different coordinates near the boundary.
We suppress writing explicitly the compositions with the charts ψα, ϕα. So the
expression of the identity in these coordinates is I(ρ, s) = (ρ2, s). Likewise, g and
eg are related in coordinates by setting r = ρ2, as in (2.4). If f is a function
defined on M , we can regard f as a function fe on Me, related in coordinates by
f(ρ, s) = fe(ρ2, s). If U ⊂M , set Ue = I(U).

If γ(t) is a U -local geodesic for g, it is also a geodesic for eg. Since e∇ is
projectively equivalent to ∇̂, (2.1) and (2.2) imply that γ̂(τ) := γ(t(τ)) is a geodesic
for ∇̂, where dt/dτ = c

(
r ◦ γ(t(τ))

)−1. Different choices of c determine different
parametrizations; imposition of a normalization condition on the parametrization
as mentioned above provides one way to specify c for each geodesic. The relation
between I and Î follows easily:

If(γ) =
∫ ∞
−∞

f(γ(t)) dt = c

∫ τ+(γ̂)

τ−(γ̂)
(r−1fe)(γ(t(τ))) dτ = cÎ(r−1fe)(γ̂). (3.2)

Section 3.4 of [UV16] shows that if Ue is a sufficiently small open neighborhood
of p ∈ ∂Me, then the Ue-local X-ray transform for a smooth metric extends to a
bounded operator on L2(Ue) with target space L2 of a parametrization of the space
of Ue-local geodesics with respect to a suitable measure. The same argument holds
in our setting for a smooth connection such as ∇̂. We will not make explicit the
target L2 space since we are only concerned here with injectivity.

Equation (3.2) shows that it is important to understand when r−1fe ∈ L2(Ue).
Making the change of variable r = ρ2 in the integral gives∫

(r−1fe)2 drds = 2
∫

(ρ−2f)2ρ dρds = 2
∫

(ρ−3/2f)2 dρds.

Thus r−1fe ∈ L2(Ue, drds) if and only if f ∈ ρ3/2L2(U, dρds). In particular,
If(γ) = cÎ(r−1fe)(γ̂) provides a definition of If for f ∈ ρ3/2L2(U, dvg) consis-
tent with its usual definition.

The main result of [UV16] is local injectivity of the geodesic X-ray transform
for a smooth metric on a manifold with strictly convex boundary. However, the
proof applies just as well for the X-ray transform for a smooth connection such
as ∇̂. In particular, the construction in the main text of the cutoff function χ
for which the boundary principal symbol is elliptic is also valid for a connection
since the right-hand side of the geodesic equation γk ′′ = −Γkijγi ′γj ′ is a quadratic
polynomial in γ′. We do not need the extension of Zhou discussed in the appendix
of [UV16], although that more general result applies as well. The main result of
[UV16] transferred to our setting is as follows.



LOCAL X-RAY TRANSFORM ON AH MANIFOLDS 743

Theorem 3.2 ([UV16]). Assume that dimMe ≥ 3 and let p ∈ ∂Me. Every
neighborhood Oe of p in Me contains a neighborhood Ue of p so that the Ue-local
X-ray transform of ∇̂ is injective on L2(Ue).

Proof of Theorem 1 for g even. The relation (3.2) shows that f ∈ ρ3/2L2(U, dvg)
is in the kernel of the U -local transform for g if and only if r−1fe ∈ L2(Ue) is in
the kernel of the Ue-local transform for ∇̂. Thus for g even, Theorem 1 follows
immediately from Theorem 3.2. �

4. Connections Associated to AH Metrics Even mod O(ρN )

If the AH metric g in (1.1) is not even, then the even structure on (M,∂M)
determined by a normal form for g depends on the choice of normal form. We fix
one such normal form and thus the even structure it determines. We then construct
(Me, ∂Me) as above by introducing r = ρ2 as a new boundary defining function.
The metric eg would be projectively compact except that the corresponding one-
parameter family kr = h√r in (2.4) is no longer smooth: it has an expansion in
powers of

√
r. The connection ∇̂ defined by (2.2) involves first derivatives of kr. As

already discussed in the Introduction, assuming that g is even mod O(ρ5) suffices to
guarantee that ∇̂ is Lipschitz continuous, and, in fact, that it extends to be C1 up
to ∂Me, though not necessarily C2. Near ∂Me, ∇̂ can be viewed as a perturbation
of a smooth connection ∇.

Straightforward calculation from (2.4) shows that the Christoffel symbols of the
connection ∇̂ defined by (2.2) are given in terms of coordinates near a point p ∈
∂Me by

Γ̂0
ij =

(
0 0
0 2(kαβ − r∂rkαβ)

)
, Γ̂γij =

(
0 1

2k
γδ∂rkδβ

1
2k

γδ∂rkαδ Γγαβ

)
, (4.1)

where Γγαβ denotes the Christoffel symbols of kr with r fixed. If g is even mod
O(rN ) with N odd, then k = k(1) + rN/2k(2) with k(1), k(2) smooth. It follows that
all Γ̂kij have the form

Γ̂kij = Γkij + rN/2−1Bkij

with Γkij , Bkij smooth up to ∂Me. The expressions Γkij , Bkij can be interpreted as the
Christoffel symbols of a smooth connection ∇ on Me and the coordinate expression
of a (1, 2) tensor field B respectively. ∇ and B are not uniquely determined by the
connection ∇̂; henceforth we fix one choice for them. Recall that we have chosen
a closed manifold M̃ containing Me. Choose some smooth extension of ∇ to a
neighborhood of Me, also denoted ∇. Then extend Γ̂ by

Γ̂kij = Γkij + rN/2−1H(r)Bkij (4.2)

where H(r) is the Heaviside function. The extended connection ∇̂ is then C(N−3)/2

and the two connections ∇̂, ∇ agree outside of Me.
An important consequence of the special structure of the connection ∇̂ is that

its exponential map is more regular than one would expect. We consider the expo-
nential map in the form êxp : TM̃ → M̃ × M̃ , defined by êxp(z, v) = (z, ϕ̂(1, z, v)),
where t → ϕ̂(t, z, v) is the geodesic with ϕ̂(0, z, v) = z, ϕ̂ ′(0, z, v) = v. Since ∇̂
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is C(N−3)/2 and N ≥ 5, usual ODE theory implies that êxp is a C(N−3)/2 diffeo-
morphism from a neighborhood of the zero section onto its image. In fact, it has
one more degree of differentiability. We formulate the result in terms of the inverse
exponential map since that is how we will use it.

Lemma 4.1. Let ∇̂ be the C(N−3)/2 connection defined by (4.2), where N ≥ 5
is an odd integer. Then êxp−1 is C(N−1)/2 in a neighborhood in M̃ × M̃ of the
diagonal in ∂Me × ∂Me.

Proof. It suffices to show that TM̃ 3 (z, v) → ϕ̂(1, z, v) ∈ M̃ is C(N−1)/2 near
(z, 0) for z ∈ ∂Me. Work in coordinates (r, s) for z with respect to which eg is
in normal form (2.4). Set z = (z0, zα) = (r, sα). For v use induced coordinates
v = (v0, vα) with v = v0∂r + vα∂sα = vi∂zi and set w = (z, v). Write the flow as
ϕ̂(t, w) = (z̃(t, w), ṽ(t, w)). The geodesic equations are:

(z̃ k)′ = ṽ k, (ṽ k)′ = −Γ̂kij(z̃)ṽ iṽ j . (4.3)

Observe from (4.1) that all Γ̂kij are C(N−1)/2 except for Γ̂γ0α = Γ̂γα0. So the right-
hand sides of all equations in (4.3) are C(N−1)/2 except for the equation for (ṽ γ)′.
By (4.1), (4.2), this equation has the form

(ṽ γ)′ = Aγij(z̃)ṽ iṽ j − 2r̃N/2−1H(r̃)Bγ0β(z̃)ṽ 0ṽ β (4.4)

with Aγij of regularity C(N−1)/2 and Bγ0β smooth. Using r̃ ′ = ṽ 0, write

−2r̃N/2−1H(r̃)Bγ0β(z̃)ṽ 0ṽ β =− 4
N

(
r̃N/2H(r̃)

)′
Bγ0β(z̃) ṽ β

=− 4
N

(
r̃N/2H(r̃)Bγ0β(z̃) ṽ β

)′
+ 4
N
r̃N/2H(r̃)

(
Bγ0β,k(z̃) ṽ kṽ β +Bγ0β(z̃) (ṽ β)′

)
=− 4

N

(
r̃N/2H(r̃)Bγ0β(z̃) ṽ β

)′
+ 4
N
r̃N/2H(r̃)Cγij(z̃)ṽ iṽ j ,

where for the last equality we have used (4.3) for (ṽ β)′, so that

Cγij(z̃)ṽ iṽ j = Bγ0β,k(z̃) ṽ kṽ β −Bγ0β(z̃)Γ̂βij(z̃)ṽiṽj .

Note that r̃N/2H(r̃)Cγij(z̃)ṽ iṽ j is C(N−1)/2.
Therefore (4.4) can be rewritten in the form(
vγ + 4

N
r̃N/2H(r̃)Bγ0β(z̃) ṽ β

)′
=
(
Aγij(z̃) + 4

N
r̃N/2H(r̃)Cγij(z̃)

)
ṽ iṽ j . (4.5)

Now the linear transformation ṽ 7→ b̃ = L(z̃)ṽ, where b̃ γ = ṽ γ+ 4
N r̃

N/2H(r̃)Bγ0β(z̃) ṽ β ,
is of class C(N−1)/2 in (z̃, ṽ) and is invertible for r̃ small. Replacing (4.4) by (4.5)
in (4.3) and setting ṽ = L−1(z̃)̃b throughout, we obtain a system of ODE of the
form (

z̃, ṽ 0, b̃
)′

= F
(
z̃, ṽ 0, b̃

)
,

where F is C(N−1)/2. It follows that the map (t, z, v) 7→ ϕ̂(t, z, v) is of class C(N−1)/2

upon setting b̃ γ = Lγβ(z̃)ṽ β . �
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Lemma 3.1 (the strict convexity of ∂Me) holds for both ∇̂ and ∇ if g is even
mod O(ρN ) with N ≥ 5 odd, with the same proof as before. We define the sets Ω̂U ,
ΩU of U -local geodesics for ∇̂ and ∇ the same way as before. It will be important
to have a common parametrization for the sets of geodesics of ∇̂ and ∇. For this
purpose, we will fix a smooth background metric g0 on M̃ (this will be done in
Section 5). There is no canonical way of choosing g0 and the choice made does not
affect the conclusions, but a convenient choice will simplify some computations.
Once a metric g0 has been fixed, we let S0M̃ denote its unit sphere bundle. For
v ∈ S0M̃ , denote by γ̂v, (resp. γv) the geodesic for ∇̂ (resp. ∇) with initial vector
v. We define the U -local X-ray transforms for ∇̂ and ∇ just as in (3.1), except now
we view them as functions on the subsets of S0M̃ corresponding to Ω̂U , ΩU :

Îf(v) =
∫ τ+(γ̂v)

τ−(γ̂v)
f(γ̂v(τ)) dτ

and similarly for If(v). Sometimes we will use the notation If(v) generically for
Îf(v) or If(v), or, for that matter, for the U -local X-ray transform for any C1

connection on a manifold with strictly convex boundary. No confusion will arise
with the notation If(γ) from Section 3 for the X-ray transform for the AH metric
g, since we will not be dealing with g again except implicitly in the isolated instance
where we deduce Theorem 1.

5. Stability and Perturbation Estimates

We continue to work with the connections ∇̂ and ∇ obtained from an AH metric
even mod O(ρN ) with N ≥ 5. From now on it will always be assumed that the
dimension of M (and thus also of Me) is at least 3. Since ∇ is smooth and ∂Me is
strictly convex with respect to it, Theorem 3.2 (local injectivity) holds also for∇. As
mentioned in the Introduction, in order to deduce local injectivity for ∇̂ we will use
the stability estimate derived in [UV16] for the conjugated microlocalized normal
operator Aχ,η,σ, formulated in terms of scattering Sobolev spaces. In this section
we review those spaces, the construction of the microlocalized normal operator, and
the stability estimate proved in [UV16]. Then we formulate our main perturbation
estimate (Proposition 5.6) and show how Theorem 1 follows from it. Proposition 5.6
will be proved in Section 6. In this section we work almost entirely on Me and its
extension M̃ (with the exception of the very last proof), so we will not be using the
subscript e for its various subsets to avoid cluttering the notation.

We now define polynomially weighted scattering Sobolev spaces on a compact
manifold with boundary (Xn+1

, ∂X). Let x be a boundary defining function for
X. The space of scattering vector fields, denoted by Vsc(X), consists of the smooth
vector fields on X which are a product of x and a smooth vector field tangent to
∂X. Thus if (x, y1, . . . , yn) are coordinates near p ∈ ∂X, elements of Vsc(X) can be
written near p as linear combinations over C∞(X) of the vector fields x2∂x, x∂yα ,
α = 1, . . . , n. If k ∈ N0 and β ∈ R let

Hk,β
sc (X)
= {u ∈ xβL2(X) : x−βV1 . . . Vmu ∈ L2(X) for Vj ∈ Vsc(X) and 0 ≤ m ≤ k};
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here L2 is defined using a smooth measure on X 1. Note that H0,β
sc (X) = xβL2(X).

For s ≥ 0, Hs,β
sc (X) can be defined by interpolation and for s < 0 by duality, though

we will not need this. The norms ‖ · ‖Hk,βsc (X) can be defined by fixing scattering
vector fields in coordinate patches on X that locally span Vsc(X) over C∞(X);
any different choice of vector fields would result in an equivalent norm. If U is a
neighborhood of p ∈ ∂X (or the closure of one) then Hk,β

sc (U) consists of functions
of the form u

∣∣
U

, where u ∈ Hk,β
sc
(
X
)
.

We next review the arguments and results we will need from [UV16], starting
with the construction of the artificial boundary mentioned in the introduction.

Lemma 5.1 ([UV16], Sec. 3.1). Let p ∈ ∂Me and ∇ be a C1 connection with
respect to which ∂Me is strictly convex. There exists a smooth function x̂ in a
neighborhood U of p in M̃ with the properties:
(1) x̂(p) = 0
(2) dx̂(p) = −dr(p) (recall that r is a boundary defining function for Me)
(3) Setting xη := x̂+ η, for any neighborhood Õ of p in M̃ there exists an η0 such

that Uη := {r ≥ 0} ∩ {xη ≥ 0} ⊂ Õ for η ≤ η0

(4) For η near 0 (positive or negative) the set Xη := {x̂ > −η} = {xη > 0} ⊂ M̃
has strictly concave boundary with respect to ∇ locally near p. 2

The level sets of x̂ can be seen in Figure 1.

Write Yp = {x̂ = 0}; by shrinking U we can assume that Yp ∩ U is a smooth
hypersurface of M̃ . We can then identify a neighborhood of p in M̃ with (−ε, ε)x̂×Yp
for some small ε > 0 via a diffeomorphism ϕ0 (which can be constructed e.g. using
the flow of a vector field transversal to Yp). Fixing coordinates y1, . . . , yn for Yp
centered at p, choose the metric g0 so that in a neighborhood of p it is Euclidean
in terms of coordinates (x̂, y1, . . . , yn).

For U ′ a small neighborhood of p contained in U and η ∈ R small, denote by ψη :
U ′ → M̃ the map which in terms of the above identification maps (x, y) 7→ (x+η, y).
For a fixed small 0 < δ0 � ε and 0 ≤ η < δ0, we can identify a neighborhood of
∂Xη in M̃ with (−δ0, δ0)xη × Yp via the diffeomorphism ϕη = ϕ0 ◦ ψη. Note that
g0 is also Euclidean in terms of coordinates (xη, y1, . . . , yn). Moreover, Xη is given
locally near its boundary by [0, δ0)xη × Yp in terms of this identification and ψ−η
maps diffeomorphically a neighborhood of ∂X0 in X0 onto one of ∂Xη in Xη, with
inverse ψη. Vectors in S0

zM̃ , z ∈ Xη, can be written as v = λ∂xη + ω, where
ω ∈ TYp (of course not necessarily of unit length, so our setup slightly differs from
the one in [UV16], see Remark 5.4 below). Henceforth, the notation |v| for a vector
v will refer to norm with respect to g0 (which is Euclidean in our coordinates in
the region of interest).

In order to show local injectivity of the X-ray transform, one needs a description
of geodesics staying within a given neighborhood:

1Our notation slightly differs from that of [UV16] in that we use a smooth measure rather the
scattering measure x−(dimX+1)dxdy to define our base L2 space. The spaces here and in [UV16]
are the same up to shifting the weight by (dimX + 1)/2.
2Recall that this means that for any ∇-geodesic γ(t) with xη(γ(0)) = 0 and dxη(γ′(0)) = 0 one
has d2

dt2

∣∣
t=0

xη ◦ γ(t) > 0.
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Lemma 5.2 ([UV16], Section 3.2). Let ∇ be a C1 connection with respect to which
Me has strictly convex boundary. There exist constants C̃ > 0, 0 < δ1 < δ2, c0 > 0
and η0 > 0, and neighborhood Zp of p in Yp, such that if 0 ≤ η < η0 and if γ(t)
is a ∇-geodesic with initial position z = (x, y) ∈ [0, c0]xη × Zp ⊂ Xη and velocity
v = (λ, ω) ∈ S0

zM̃ satisfying
|λ|
|ω|
≤ C̃
√
x (5.1)

then one has xη ◦ γ(t) ≥ 0 for |t| ≤ δ2 and xη ◦ γ(t) ≥ c0 for |t| ≥ δ1. See Fig. 2.

By taking η0 � c0 in Lemma 5.2 and by Lemma 5.1 one can always assume that
a neighborhood of Uη in Xη is contained in [0, c0]xη × Zp, and we will henceforth
assume that this is the case. Now let δ1 and ∇ be as in Lemma 5.2 and let
exp : TM̃ → M̃ be the exponential map of ∇. If v ∈ S0

zM̃ satisfies the assumptions
of the lemma and f is continuous and supported in [0, c0)xη ×Zp, we have If(v) =∫ δ1
−δ1

f(exp(tv))dt, so for all such v and f one can define the X-ray transform by
integrating only over a fixed finite interval. The authors of [UV16] consider If
only on vectors v = (λ, ω) ∈ S0

zM̃ satisfying a stronger condition, namely that for
some positive constant C2 one has |λ||ω| ≤ C2x with z = (x, y) ∈ [0, c0)xη × Zp for η
sufficiently small, and construct a microlocalized normal operator for I. Specifically,
with f as before and χ ∈ C∞c (R) with χ ≥ 0 and χ(0) = 1, let

Aχ,ηf(z) :=
∫
S0
zM̃

χ

(
λ

|ω|x

)
If(v)dµg0 , z = (x, y) ∈ [0, c0)xη × Zp, (5.2)

where dµg0 is the measure induced on S0
zM̃ by g0|

TzM̃
. Note that for any C2, c0

can be chosen sufficiently small that (5.1) is automatically satisfied in [0, c0)xη×Zp.
The constant C2 is fixed when χ ∈ C∞c (R) is chosen (see Proposition 5.3 below),
and then c0, η0 can be chosen so that the integrand in (5.2) is only supported on
vectors corresponding to geodesics staying in Xη. Finally for σ > 0 define the
conjugated microlocalized normal operator:

Aχ,η,σ := x−2
η e−σ/xηAχ,ηe

σ/xη .

We denote this operator in case ∇ = ∇ (resp. ∇̂) by Aχ,η,σ (resp. Âχ,η,σ). In the
case of the smooth connection ∇ on Me, for which ∂Me is strictly convex, and in
dimension ≥ 3, it was proved in [UV16, Proposition 3.3] that Aχ,η,σ are scattering
pseudodifferential operators (in the notation there, Aχ,η,σ ∈ Ψ−1,0

sc (Xη)). This
implies that they also act on scattering Sobolev spaces. The following Proposition
contains the stability estimate we will need in terms of such spaces.

Proposition 5.3 ([UV16], Sections 2.5 and 3.7). Suppose as before that dim(Me) ≥
3 and let σ > 0. There exists χ0 ∈ C∞c (R), χ0 ≥ 0, χ0(0) = 1, such that for any
sufficiently small neighborhood O of p ∈ ∂Me in X0 there exist η0 > 0 and C0 > 0
with the property that for 0 ≤ η ≤ η0 one has Uη ⊂ Oη := ψ−η(O) ⊂ Xη, and the
estimate

‖u‖xβL2(Uη) ≤ C0‖Aχ0,η,σu‖H1,β
sc (Oη), β ∈ R, (5.3)

where u ∈ xβL2(Uη) is extended by 0 outside Uη. Here the Sobolev spaces on subsets
of Xη are defined by pulling back by ψη the corresponding spaces on subsets of X0.
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r = 0

Zp

{xη = 0}

Yp = {xη = η}

Uη

p

xη γ(−δ1) γ(δ1)

ω

λ v

Figure 2. The level sets of xη

Remark 5.4. The estimate stated in [UV16, Section 3.7] amounts to

‖u‖Hs,βsc (Xη) ≤ C0‖Aχ0,η,σu‖Hs+1,β
sc (Xη), s ≥ 0, suppu ⊂ Uη, (5.4)

upon taking into account that the analog of Aχ,η constructed there has a factor
of x−1 incorporated and the polynomial factor appearing in the definition of the
operator analogous to Aχ,η,σ is x−1

η , whereas we used a factor of x−2
η in Aχ,η,σ

directly. For s = 0 the space on the left hand side of (5.4) is exactly xβL2(Uη). On
the other hand, the upper bound in (5.4) can be replaced by the one in (5.3) provided
suppu ⊂ Uη, since the Schwartz kernel of the operators Aχ0,η,σ has been localized
in both factors near Uη, see for instance [UV16, Remark 3.2].

The way we construct the operators Aχ,η also differs from the setup of [UV16]
in that we parametrize geodesics by their initial velocities normalized so that they
have unit length with respect to the (Euclidean near p) metric g0, and average the
transform over them using the measure induced by g0 on the fibers of S0M̃ (i.e. the
standard measure on the unit sphere Sn). In [UV16] the geodesics are parametrized
by writing their initial velocities as (λ, ω) ∈ R × Sn−1 using coordinates, and the
measure used for averaging is dλdω, where dω is the standard measure on Sn−1.
However this difference doesn’t affect the analysis, as already remarked there (see
Remark 3.1 and the proof of Proposition 3.3).

Remark 5.5. As remarked in [UV16, Lemma 3.6], Proposition 5.3 holds for any
χ0 sufficiently close to a specific Gaussian in the topology of Schwartz space. In
particular, χ0 can be taken to be even, and from now on we assume that this is the
case, since this simplifies the notation.

Let χ0 be as in Proposition 5.3, chosen to be even. Let σ > 0 be fixed. Define

Eη,σ := Aχ0,η,σ − Âχ0,η,σ

Note that by construction the operator Aχ0,η,σ (resp. Âχ0,η,σ) depends on the
behavior of the connection ∇ (resp. ∇̂) only in the set xη ≥ 0, provided η0, c0
above are sufficiently small. Therefore E0,σ = 0, since the two connections agree
outside of Me.

In Section 6.2 we will prove the following key proposition:

Proposition 5.6. Let σ > 0. Provided O is a sufficiently small neighborhood of
p ∈ ∂Me in X0, for each δ > 0 there exits η0 > 0 with the property that if 0 ≤ η < η0
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one has Uη ⊂ Oη = ψ−η(O) and

‖Eη,σu‖H1,0
sc (Oη) ≤ δ‖u‖L2(Uη)

for all u ∈ L2(Uη) extended by 0 outside of Uη.

Remark 5.7. In Proposition 5.6 one does not need to assume that dim(Me) ≥ 3,
however if dim(Me) = 2 Proposition 5.3 does not hold and the proof of Corollary
5.8 below breaks.

An immediate consequence of Proposition 5.6 is the following:

Corollary 5.8. With notations as before and assuming that dim(Me) ≥ 3, there
exists η0 > 0 such that for 0 < η < η0 the transform f 7→ Îf

∣∣
Ω̂Uη

is injective on
L2(Uη).

Proof. Fix σ > 0 and let χ0 be as in Proposition 5.3, even. Then take O sufficiently
small, as in Propositions 5.3 and 5.6, and let C0 and η0 be according to the former,
corresponding to O. By Proposition 5.6, upon shrinking η0 if necessary, for 0 ≤
η < η0 we have

‖Eη,σu‖H1,0
sc (Oη) ≤ 1/(2C0)‖u‖L2(Uη)

for u ∈ L2(Uη) extended by 0 elsewhere. Since Aχ0,η,σ = Âχ0,η,σ + Eη,σ, if u ∈
L2(Uη) one has, for 0 ≤ η < η0

‖u‖L2(Uη) ≤ C0‖Aχ0,η,σu‖H1,0
sc (Oη) ≤ C0‖Âχ0,η,σu‖H1,0

sc (Oη) + C0‖Eη,σu‖H1,0
sc (Oη)

≤ C0‖Âχ0,η,σu‖H1,0
sc (Oη) + 1/2‖u‖L2(Uη) ⇒ ‖u‖L2(Uη) ≤ 2C0‖Âχ0,η,σu‖H1,0

sc (Oη).

This implies injectivity of Âχ0,η,σ on L2(Uη). Using the definition of Âχ0,η,σ, the
local X-ray transform f 7→ Îf

∣∣
Ω̂Uη

is injective on eσ/xηL2(Uη) ⊃ L2(Uη) for 0 <

η ≤ η0. �

Proof of Theorem 1. The proof presented in Section 3 for the even case applies here
verbatim, with the only difference that injectivity of the Ue-local transform for ∇̂
on L2(Ue) now follows from Corollary 5.8. �

6. Analysis of Kernels

The goal of this section is to prove Proposition 5.6. In essence, the proof proceeds
as for the classical Schur criterion stating that an operator is bounded on L2 if
its Schwartz kernel is uniformly L1 in each variable separately (see e.g. [SR91,
Lemma 3.7]). Hence it is necessary to understand well the properties of the kernels
of Aχ0,η,σ and Âχ0,η,σ. The fine behavior of these kernels is perhaps best analyzed
on a modified version of Melrose’s scattering blown-up space ([Mel94]), which we
describe in Section 6.1. We then analyze the kernels on it in Section 6.2.
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6.1. The Scattering Product. We start by briefly describing blow-ups in general
(for a detailed exposition see [Mel]). Let Y d be compact manifold with corners and
Z a p-submanifold; this means that Z is a submanifold of Y with the property that
for each p ∈ Z there exist coordinates for Y of the form (x1, . . . , xk, y1, . . . , yd−k) ∈
Rk+ × Rd−k centered at p, with xj defining functions for boundary hypersurfaces
of Y , such that in terms of them Z is locally expressed as the zero set of a subset
of the xi, yj . If Z is an interior p-submanifold of codimension at least 2, meaning
that it is locally given as y′ = (yj1 , . . . , yjs) = 0, 2 ≤ s ≤ d − k in terms of such
coordinates, blowing up Z essentially amounts to introducing polar coordinates in
terms of y′. Formally, let SN(Z) π→ Z be the spherical normal bundle of Z with
fiber at p ∈ Z given by SNp(Z) := ((TpY/TpZ)\{0}) /R+. It can be shown that the
blown up space [Y ;Z] := SN(Z)q (Y \Z) admits a smooth structure as a manifold
with corners such the blow down map β : [Y ;Z] → Y , given by β

∣∣
Y \Z = IdY \Z

and β
∣∣
SN(Z) = π, becomes smooth. The front face of the blown up space is given

by SN(Z) ⊂ [Y ;Z]. If Z is a boundary p-submanifold, i.e. it is contained in a
boundary hypersurface of Y , the spherical normal bundle is replaced by its inward
pointing part, with the rest of the discussion unchanged. If P is a p-submanifold
of Y that intersects Z with the property (P\Z) = P , and β is a blow down map,
then the lift of P is defined as β∗(P ) = β−1(P\Z). If β = β1 ◦ · · · ◦βk with βj blow
down maps we will write β∗(P ) := β∗k(β∗k−1(· · ·β∗1(P ))).

Now let (X, ∂X) be a smooth compact manifold with boundary; this implies that
X

2 is a smooth manifold with corners. First define the b-space X2
b :=

[
X

2; (∂X)2]
with blow down map β1. We denote by ffb the front face of this blow-up. If
∆b := β−1

1 (∆◦) (the diagonal ∆ ⊂ X2 is not a p-submanifold), we let the scattering
product be X2

sc :=
[
X

2
b; ∂(∆b)

]
with blow down map β2 : X2

sc → X
2
b. Set βsc =

β1 ◦β2 and let ffsc ⊂ X
2
sc be the front face associated with β2. We finally introduce

a third blown up space obtained from X
2
sc by blowing up the scattering diagonal

∆sc := β∗2(∆b). We denote the new space by X2
d and the corresponding blow down

map by β3; let βd := βsc ◦ β3. This space is pictured in Fig. 3. By a result
on commutativity of blow-ups (see [Mel, Section 5.8]), X2

d is diffeomorphic to[
[X2

b; ∆b], β̃∗2(∂∆b)
]
, where β̃2 : [X2

b; ∆b] → X
2
b is the blow down map. We name

the various faces of X2
d as in Fig. 3: G10 := β∗d

(
∂X ×X

)
, G01 := β∗d

(
X × ∂X

)
,

G11 := β∗3 (β∗2 (ffb)) and G2 := β∗3(ffsc); finally let G3 be the front face associated
with β3. We will occasionally write Gb for the collection of boundary hypersurfaces
{G10,G11,G01} and G∪b for their union. Moreover, if p ∈ ∂X and O is a neighborhood
of p in X we let O2

d := β−1
d (O2).

We next describe the coordinate systems we will use on X2
d. Let dim

(
X
)

= n+1
and (x, y) and (x̃, ỹ) be two copies of the same coordinate system in a neighborhood
O of a point p ∈ ∂X, so that (x, y, x̃, ỹ) is a coordinate system for O2 ⊂ X

2. Here
and for the rest of this section x (and thus also x̃) is a boundary defining function
for ∂X. The projective coordinate systems (s1 = x̃/x, x, y, ỹ) and (s2 = x/x̃, x̃, y, ỹ)
are valid in a neighborhood of G01 and G10 respectively and the coordinate functions
are smooth away from G10 and G01 respectively (though they do not form coordinate
systems near G2 and G3 in X

2
d). In terms of the former coordinate system, s1 is
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Figure 3. The modified scattering product space X2
d

a defining function for G01 and x a defining function for G11, whereas in terms of
the latter s2 is a defining function for G10 and x̃ is one for G11. On the other hand,
either by checking directly or by using the commutativity of the blow-up mentioned
before, one sees that a valid coordinate system in a neighborhood of any point near
G11 ∩ G2 can be obtained by appropriately choosing n of the θj below,(

τ =
√

(s1 − 1)2 + |ỹ − y|2, θ = (s1 − 1, ỹ − y)
τ

, σ = x

τ
, y

)
, (6.1)

where | · | denotes the Euclidean norm. For instance, letting

U±J =
{

(θ0, . . . , θn) ∈ Sn : ±θJ > 1/
√

2(n+ 1)
}
, J = 0, . . . , n (6.2)

we can cover Sn by the U±J and use θj , j 6= J as smooth coordinates on UJ± for each
choice of ±. Now note that (X = (s1 − 1)/x, Y = (ỹ − y)/x, x, y) are valid smooth
coordinates globally on (O2

d)◦, and the coordinate functions are smooth up to G3
and G◦2 . Thus one obtains a diffeomorphism T from (O2

d)◦ onto an open subset of
Rn+1

+ × [0,∞) × Sn, extending to a smooth diffeomorphism up to G3 and G◦2 , by
setting(

x, y,R =
√
X2 + |Y |2, θ = (X̂, Ŷ ) = (X,Y )

R

)
∈ Rn+1

+ × [0,∞)× Sn. (6.3)

Again we can choose coordinates on Sn to obtain smooth valid coordinate systems
on (O2

d)◦, up to G3 and G◦2 . Note that θ = (θ0, . . . , θn) stands for the same functions
in both (6.1) and (6.3) and that R is a defining function for G3. Moreover,

x01 =1 + xRX̂

2 + xRX̂
, x10 = (2 + xRX̂)−1, x11 = (2 + xRX̂)2

1 +R
(6.4)

are smooth defining functions for G01, G10 and G11 respectively, each smooth up to
all other boundary hypersurfaces and non-vanishing there.

Via the diffeomorphism T , the expression |dx dy dR dω| (where dω is the volume
form on Sn induced by the round metric) pulls back to a smooth global section
of the smooth density bundle on (O2

d)◦, which is smooth and non-vanishing up to
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G3 and G◦2 , but not up to the other boundary faces. The following can be shown
via a straightforward computation in local coordinates smooth up to the various
boundary faces in different parts of O2

d.

Lemma 6.1. Via the diffeomorphism T defined by the coordinates (6.3), the ex-
pression

(R+ 1)−1(2 + xRX̂)n|dx dy dR dω|
pulls back to a smooth non-vanishing section of the smooth density bundle on O2

d,
up to all boundary faces.

We now record the form that the lift β∗dW̃ takes in terms of (6.3) whenever
W̃ ∈ Vsc(X) is identified with a vector field on X2 acting on the left factor. (The lift
β∗dW̃ is well defined since βd : (X2

d)◦ → (X2 \∆)◦ is a diffeomorphism.) As before,
we work in a neighborhood O2 of a point (p, p) ∈ ∂∆ where we have coordinates
(x, y, x̃, ỹ). Then W̃ is spanned over C∞ by x2∂x, x∂yα . Those lift via β1 to the
vector fields −xs1∂s1 + x2∂x, x∂yα respectively, in coordinates (x, s1 = x̃/x, y, ỹ).
Now we lift those using β2 and find that in terms of coordinates (x, y,X, Y ) they are
given respectively by (−1− 2xX)∂X − xY · ∂Y + x2∂x and −∂Y α + x∂yα . Blowing
up ∆sc corresponds to using polar coordinates about (X,Y ) = 0. Consider the
sets U±J , J = 0, . . . , n, in (6.2): on U±J the functions θj , j 6= J , form a smooth
coordinate system. Then for each J , choice of ±, and α = 1, . . . , n, there exist
smooth functions ajJ,±, b

j
J,±,α ∈ C∞(U±J ) such that

(β3)∗
(
X̂∂R +R−1

∑
j 6=J

ajJ,±(θ)∂θj
)

= ∂X

and (β3)∗
(
Ŷ α∂R +R−1

∑
j 6=J

bjJ,±,α(θ)∂θj
)

= ∂Y α .

Thus if W̃ ∈ {x2∂x, x∂y} then in the set {(x, y,R, θ) ∈ O × [0,∞) × U±J } we have
β∗dW̃ =

∑
j c
j
J,±(x, y,R, θ)Wj , where Wj belong to either of the two sets

W1 = {x2∂x, x∂y, ∂R} or WJ
2 = {R−1∂θj , j 6= J}, J = 0, . . . , n (6.5)

and cjJ,± are smooth and grow at most polynomially fast as R→∞. Note also that
β∗dW̃ is smooth on X

2
d \ G3 and tangent to its boundary faces other than G3.

6.2. Analysis on blow-ups. In this section we describe the Schwartz kernels of
the operators Aχ,η,σ defined in Section 5 (in Lemma 6.2) and prove two technical
lemmas regarding their regularity and dependence on the parameter η when lifted
to the scattering stretched product space (Lemmas 6.3 and 6.4). We then use those
to analyze the kernel of the difference Eη,σ in Lemma 6.7 and finally its properties
to prove Proposition 5.6.

Recall that the operators Aχ,η,σ act on functions supported in sets varying with
the parameter η. As in [UV16], it will be convenient to create an auxiliary family
of operators acting on functions defined on the same space for all values of the
parameters. We use the smooth one-parameter family of maps ψη(·), defined after
Lemma 5.1 to map diffeomorphically Xη onto X0 (locally near the boundaries).
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For σ > 0, η ≥ 0 and χ as in Section 5 define a one-parameter family of operators
by

Ãχ,η,σ := (ψ−η)∗ ◦Aχ,η,σ ◦ (ψη)∗, (6.6)

all acting on functions supported in X0 near p ∈ ∂Me. We use the notation Ãχ,η,σ
and ˜̂

Aχ,η,σ for the operators corresponding to ∇ = ∇ and ∇̂. Similarly, for χ0
determined by Proposition 5.3 let

Ẽη,σ := Ãχ0,η,σ −
˜̂
Aχ0,η,σ.

Proposition 5.6 immediately reduces to showing the following:

Proposition 5.6 ′. Let σ > 0. Provided O is a sufficiently small neighborhood
of p ∈ ∂Me in X0, for every δ > 0 there exits η0 > 0 with the property that if
0 ≤ η < η0 one has Ũη := ψη(Uη) ⊂ O and

‖Ẽη,σu‖H1,0
sc (O) ≤ δ‖u‖L2(Ũη),

for all u ∈ L2(Ũη) extended by 0 outside Ũη.

We now identify the Schwartz kernel κ
Ãχ,η,σ

of Ãχ,η,σ. It will be convenient to

view it as a section of the full smooth density bundle on X
2
0, which entails the

choice of a smooth positive density on the left X0 factor. This choice will not affect
our analysis of the regularity properties of the kernel. We will use the the product
decomposition [0, δ0)x0 × Yp of a collar neighborhood of Yp in X0 introduced in
Section 5 and the coordinates yα on Yp such that the metric g0 is Euclidean in
terms of (x0, y

1, . . . yn). Henceforth we will write g for g0 and SM̃ for its unit
sphere bundle. No confusion will arise with the AH metric g, as it will not appear
again.

Lemma 6.2. Suppose ∇ is a connection on TM̃ whose exponential map exp :
TM̃ → M̃ is of class C2 and for which ∂Me is strictly convex. Also let χ ∈ C∞c (R)
be even with χ(0) = 1, χ ≥ 0, and let σ > 0. Then for η sufficiently small and for
z = (x, y), z̃ = (x̃, ỹ) ∈ X0 in a sufficiently small neighborhood of p, we have

κ
Ãχ,η,σ

= x−2e−σ(1/x−1/x̃)2χ (P (z, z̃, η))
|det(d

z̃
exp−1

z−η)(z̃ − η)|
|exp−1

z−η(z̃ − η)|n
|dzd z̃|,

where P (z, z̃, η) :=
dx0
(
exp−1

z−η(z̃ − η)
)

x
∣∣dy(exp−1

z−η(z̃ − η)
)∣∣ and η = (η, 0).

(6.7)

Proof. First examine the kernel κAχ,η,σ of Aχ,η,σ on X2
η, for fixed η ≥ 0 small. Let

f be smooth and supported in a small neighborhood in Xη of a point in Uη. We
write z′ = (x′, y), z̃ ′ = (x̃′, ỹ) in terms of the product decomposition [0, δ0)xη × Yp
on Xη with y, ỹ the coordinates on Yp as before, and also v′ = λ′∂xη +ω′ for vectors
in Tz′Xη. We assume throughout that x′, |y| and η are sufficiently small that the
conclusions of Lemma 5.2 are true for all geodesics entering the computation of
Aχ,η,σf(z′) (see the discussion following Lemma 5.2). Writing dλg for the measure
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induced by g on the fibers of TM̃ , compute

Aχ,η,σf(z′) =x′−2
e−σ/x

′
∫
Sz′Xη

χ

(
λ′

x′|ω′|

)∫ ∞
−∞

(eσ/xηf)
∣∣
z̃ ′=expz′ (tv′)

dt dµg

=x′−2
e−σ/x

′
∫
Sz′Xη

2χ
(

λ′

x′|ω′|

)∫ ∞
0

(eσ/xηf)
∣∣
z̃ ′=expz′ (tv′)

dt dµg

=x′−2
e−σ/x

′
∫
Tz′Xη

2χ
(

λ′

x′|ω′|

)
(eσ/xηf)

∣∣
z̃ ′=expz′ (v′)

dλg
|v′|n

=x′−2
e−σ/x

′
∫
Xη

2χ
(

dxη
(
exp−1

z′ (z̃ ′)
)

x′|dy
(
exp−1

z′ (z̃ ′)
)
|

)
eσ/x̃

′
f(z̃ ′)

|exp−1
z′ (z̃ ′)|n

(expz′)∗(dλg).

By Lemma 5.2 the two integrals with respect to t above are in fact over finite
intervals (−δ1, δ1) and [0, δ1), respectively. Moreover, dλg(v′) =

√
det g(z′)|dv′| =

|dv′| in terms of fiber coordinates, since g is Euclidean near p. Thus we can take

κAχ,η,σ = x−2
η (z′)e

−
(

σ
xη(z′)−

σ

xη (̃z′)

)
2χ
(

dxη
(
exp−1

z′ (z̃ ′)
)

xη(z′)
∣∣dy(exp−1

z′ (z̃ ′)
) ∣∣
)

×
|det(d

z̃ ′
exp−1

z′ )(z̃ ′)|
|exp−1

z′ (z̃ ′)|n
|dz′d z̃ ′|.

Conjugation by ψη in (6.6) corresponds to replacing (z′, z̃ ′) by (z − η, z̃ − η) in
the Schwartz kernel of Aχ,η,σ, where z, z̃ are expressed in terms of the product
decomposition [0, δ0)x0×Yp on X0. Noting that dxη = dx0 completes the proof. �

In the next two lemmas we use (6.7) to analyze the Schwartz kernel of Ãχ,η,σ
on
(
X0
)2

d near β−1
d (p, p). Since the proof of Proposition 5.6 has been reduced to

showing Proposition 5.6 ′, from now on the entire analysis will be on X0. We will
thus drop the subscript and write X to mean X0. We write z = (z0, zα) = (x, yα)
and z̃ = (z̃ 0, z̃ α) = (x̃, ỹα) for points in the left and right factor of X respectively
with respect to the product decomposition [0, δ0)x0 × Yp. Denote by ν a fixed
smooth non-vanishing section of Ω

(
X

2
d
)
, the smooth density bundle on X

2
d; also

recall the notations G∗ introduced in Section 6.1 for the various boundary faces of
X

2
d. In what follows, whenever we say that a function f vanishes to infinite order

at a collection {Fj}Jj=1 of boundary hypersurfaces of a manifold with corners, we
mean that if xj is a defining function of Fj then for any (N1, . . . , NJ) ∈ NJ0 one
has

∏J
j=1 x

−Nj
j f ∈ L∞ (thus this is purely a statement regarding the growth of f

without any mention of the behavior of its derivatives near Fj).

Lemma 6.3. Let the hypotheses of Lemma 6.2 hold. For a sufficiently small neigh-
borhood O of p in X there exists η0 > 0 depending on O, ∇ and χ such that

β∗d(κ
Ãχ,η,σ

) = K∇(·, η) · ν, where K∇(·, ·) ∈ C0(O2
d × [0, η0)

)
.

Moreover, K∇ is C1 away from G2 × [0, η0) and G∪b × [0, η0), it vanishes to infinite
order on Gb × [0, η0),3 and its restriction to G3 × [0, η0) is independent of ∇.
3With some abuse of notation, this means on G × [0, η0) for G ∈ Gb.
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Proof. Throughout this proof we always assume that we are working in a small
enough neighborhood O2 and with small enough η0 that the coordinates (x, y, x̃, ỹ)
are valid, g is Euclidean on O, exp−1

z−η(z̃−η) is a C2 diffeomorphism onto its image
for (z, z̃) ∈ O2 and 0 ≤ η < η0, and the conclusion of Lemma 5.2 holds for geodesics
entering the computation of Aχ,η for such η.

Before we lift (6.7) to X2
d to study its regularity, we analyze its various factors on

X
2. The main difficulty in proving Lemmas 6.3 and 6.4 is that whenever Taylor’s

Theorem is used to identify the leading order behavior of a Ck function at a point,
the remainder term is generally not Ck. To circumvent this issue in our case, we
use Taylor’s Theorem for the function t 7→ exp−1

z−η(z − η + t(z̃ − z)) to write two
different expressions for exp−1

z−η(z̃ − η), each one of which will be used in different
parts of the argument:

dzk(exp−1
z−η(z̃ − η)) =pkj (z, z̃, η)(z̃ − z)j (6.8)

=(z̃ − z)k + pkij(z, z̃, η)(z̃ − z)i(z̃ − z)j , where (6.9)

pkj (z, z̃, η) :=
∫ 1

0
∂
z̃j

(
dzkexp−1

z−η
)∣∣
z−η+τ(z̃−z)dτ ∈ C

1(O2 × [0, η0)
)
,

pkij(z, z̃, η) :=
∫ 1

0
(1− τ)∂

z̃iz̃j

(
dzkexp−1

z−η
)∣∣
z−η+τ(z̃−z)dτ ∈ C

0(O2 × [0, η0)
)
,

with

pkj (z, z, η) = δkj and pkij(z, z, η) = 1
2Γkij(z − η).

Here Γkij denote the connection coefficients of ∇ in coordinates (x, y). Now (6.8)
and (6.9) can be used to show regularity of the factors of (6.7). By (6.8),

|exp−1
z−η(z̃ − η)|2 = Gij(z, z̃, η)(z̃ − z)i(z̃ − z)j , where Gij ∈ C1(O2 × [0, η0)

)
,

Gij(z, z, η) = δij , Gij positive definite in O2 × [0, η0).
(6.10)

To analyze P from (6.7) write, using (6.8) and (6.9),

P (z, z̃, η) =
p0
j (z, z̃, η)(z̃ − z)j

x
(
qij(z, z̃, η)(z̃ − z)i(z̃ − z)j

)1/2 , (6.11)

=
x̃− x+ p0

ij(z, z̃, η)(z̃ − z)i(z̃ − z)j

x
(
|ỹ − y|2 + qijk(z, z̃, η)(z̃ − z)i(z̃ − z)j(z̃ − z)k

)1/2 , (6.12)

where qij = δαβp
α
i p

β
j ∈ C1(O2 × [0, η0)

)
, qijk ∈ C0(O2 × [0, η0)

)
. We finally have

|det(d
z̃

exp−1
z−η)(z̃ − η)| ∈ C1(O2 × [0, η0)

)
, |det(d

z̃
exp−1

z−η)(z − η)| = 1. (6.13)

We now lift the various factors of the kernel. As explained in Section 6.1, near
any point in (O2

d)◦ we obtain a smooth coordinate system with a suitable choice of
n of the θj in (6.3). Moreover, the functions (x, y,R, θ) are smooth up to G◦2 and
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G3, and x, R are defining functions for G2 and G3 respectively. Since βd is smooth,
(6.13) implies that

β∗d
(
|det(d

z̃
exp−1

z−η)(z̃ − η)|
)
∈ C1(O2

d × [0, η0)
)

and it is identically 1 at G2 and G3. Now write Ẑ = (xX̂, Ŷ ), so that z̃ − z = xRẐ;
by (6.10),

β∗d|exp−1
z−η(z̃ − η)|−n =x−nR−n

(
Gij(z, z + xRẐ, η)ẐiẐj

)−n/2
=x−nR−n

(
GαβŶ

αŶ β + 2xG0βX̂Ŷ
β + x2G00X̂

2)−n/2.
Next pull back χ(P ), writing it in two ways using (6.11) and (6.12):

β∗d(χ(P )) =χ
(

p0
j (z, z + xRẐ, η)Ẑj

x
(
qij(z, z + xRẐ, η)ẐiẐj

)1/2
)

(6.14)

=χ
(
X̂ +R p0

αβŶ
αŶ β + xR

(
2p0

0βX̂Ŷ
β + xp0

00X̂
2)(

|Ŷ |2 + xR qijkẐiẐjẐk
)1/2

)
, (6.15)

where in (6.15) the pkij and qijk are all evaluated at (z, z+xRẐ, η). Some caution is
required when the denominator of P approaches 0. Near any point in (O2

d)◦×[0, η0)
the expression β∗d(χ(P )) is C2. This is because any such point projects via βd to a
pair of points away from the diagonal, which implies that if the denominator of P in
(6.7) vanishes the numerator does not. Thus χ(P ) = 0 there, since χ is compactly
supported. Now suppose we are given q′ = (x′, y′, R′, θ′, η′) ∈ (G◦2 ∪ G3) × [0, η0),
so either x′ = 0 or R′ = 0. Since |θ| = |(X̂, Ŷ )| = 1, either X̂ or |Ŷ | are bounded
away from 0. If |Ŷ | ≤ ε for some ε > 0, the numerator of P is bounded below in
absolute value by

√
1− ε2 − CR(ε+ x), therefore if ε is small enough the numerator

is bounded below by a positive constant in a sufficiently small neighborhood of q′.
This again implies that χ(P ) is continuous at q′ in this case. On the other hand,
if |Ŷ | ≥ ε then in a neighborhood of q′ the denominator is bounded away from 0.
We conclude that β∗d(χ(P )) extends continuously to (O2

d \G∪b )× [0, η0) and, in fact,
it is C1 away from G2 × [0, η0) and G∪b × [0, η0) due to (6.14). A similar analysis
applies to show that Rnxnβ∗d

(
|exp−1

z−η(z̃ − η)|−n
)
∈ C1((O2

d \ G∪b ) × [0, η0)
)

in the
support of β∗d(χ(P )).

Next we have

β∗d(x−2e−σ/x+σ/x̃) = x−2e
−σ RX̂

1+xRX̂ and β∗d|dx dy dx̃ dỹ| = xn+2Rn|dx dy dR dω|,

so upon combining the lifts of the factors in (6.7) and using Lemma 6.1 we find that
β∗d(κ

Ã∇χ,η,σ
) = K∇ · ν, where, up to a smooth non-vanishing multiple depending on

ν,

K∇ = 2e−
σRX̂

1+xRX̂ χ
(
P (z, z + xRẐ, η)

) ∣∣ det(d
z̃

exp−1
z−η)(z − η + xRẐ)

∣∣(
Gij(z, z + xRẐ, η)ẐiẐj

)n/2 (R+ 1)
(2 + xRX̂)n

.

(6.16)
By our analysis of the various factors we conclude that K∇ is C1 on O2

d away
from G2 × [0, η0) and G∪b × [0, η0), and continuous up to G◦2 × [0, η0). Thus Taylor’s
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theorem in terms of R applies for x > 0; we find that for R ≥ 0 small and x > 0

K∇ = 2−n+1χ

(
X̂

|Ŷ |

)
|Ẑ|−n +RΛ∇(x, y,R, θ, η), (6.17)

where Λ∇ is continuous in all of its arguments, up to x = 0: observe that by (6.14)
β∗d(χ(P )) = χ

(
a1(z,xRẐ,η,Ẑ)

x (a2(z,xRẐ,η,Ẑ))1/2

)
with aj both C1 in their arguments, so upon

taking an R-derivative the chain rule generates a factor of x which cancels the one
in the denominator of the argument of χ. From (6.17) we conclude K∇

∣∣
G3

is indeed
independent of ∇.

Finally the vanishing of K∇ to infinite order on Gb × [0, η0) follows as in the
proof of [UV16, Proposition 3.3] (also see [Ept20, p.45]), where it is shown that
e
− σRX̂

1+xRX̂ χ
(
P
)

decays exponentially (or vanishes identically) as R →∞, and upon
taking into account that all other factors of the kernel grow at most polynomially
fast as R→∞, uniformly in η. �

Lemma 6.4. Let the hypotheses and notations of Lemma 6.3 be in effect. Also let
W be the lift to X

2
d of a vector field in Vsc(X) acting on the left factor of X2 and

x3 be a defining function for G3, smooth and non-vanishing on X
2
d \ G3. Then for

any sufficiently small neighborhood O of p in X there exists η0 > 0 such that

x3W (K∇) = K∇,W (·, ·) ∈ C0(O2
d × [0, η0)

)
,

vanishing to infinite order on Gb × [0, η0). Moreover, in terms of a product decom-
position G3 × [0, ε)x3 × [0, η0)η for X2

d × [0, η0)η near G3 × [0, η0)η one has

x3W (K∇) = κW (q, η) + x3κ∇,W (q, x3, η), q ∈ G3 (6.18)

where κW ∈ C0(G3×[0, η0)
)

is independent of ∇ and κ∇,W ∈ C0(G3×[0, ε)×[0, η0)
)
.

Remark 6.5. The kernel K∇ is well defined only up to a non-vanishing smooth
multiple, since there isn’t a canonical non-vanishing smooth density on X

2
d. How-

ever, by the comments at the end of Section 6.1, x3W is smooth on X
2
d, hence by

Lemma 6.3 and (6.17) it follows that multiplying K∇ by a function smooth on X
2
d

does not affect the result.

Remark 6.6. The fact that the leading order term of x3W (K∇) at G3 × [0, η0) in
(6.18) is independent of ∇ is expected, since that was the case for K∇, and x3W is
tangent to G3.

Proof. Recall the diffeomorphism T from Section 6.1 defined on O2
d \ G∪b for a

small neighborhood O of p, and let U±J := T −1(Rn+1
+ × [0,∞) × U±J

)
× [0, η0) for

η0 > 0 ,with U±J as in (6.2). Then
⋃
J,± U

±
J covers (O2

d \ G∪b )× [0, η0), and in each
of the U±J we have valid coordinates (x, y,R, θj , η), j 6= J . By the remarks at the
end of Section 6.1, it suffices to show the claim on U±J for J = 0, . . . , n assuming
that W = W1,W2, where W1 ∈ W1, W2 ∈ WJ

2 (see (6.5)), and use a partition of
unity subordinate to the cover {U±J }J,± to obtain the statement for general W .

We will use the expression (6.16) we computed for K∇ in Lemma 6.3. Suppose
first that W1 ∈ W1: then W1 is smooth for x ≥ 0 and we will show continuity of
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W1K∇ up to x = 0 (so in this case the leading order term at G3 in (6.18) vanishes).
Recall the notation Ẑ = (xX̂, Ŷ ) and observe that

e
−σ RX̂

1+xRX̂
∣∣det(d

z̃
exp−1

z−η)(z − η + xRẐ)
∣∣ (R+ 1)
(2 + xRX̂)n

= Λ0(z,R,Rθ, η), (6.19)

with Λ0(z,R, v, η) ∈ C1(O × [0,∞)×Rn+1 × [0, η0)
)

for some small neighborhood
O of p and small η0 > 0. Therefore, W1Λ0 is continuous on the same space. Note
that Λ0(z, 0, 0, η) is independent of ∇. Using (6.14), we see that W1

(
χ
(
P (z, z +

xRẐ, η)
))

is continuous up to G◦2 and G3 and, similarly to the proof of Lemma
6.3, W1

(
Gij(z, z + xRẐ, η)ẐiẐj

)−n/2 is continuous in the support of χ
(
P
)

and
χ′
(
P
)
. Since K∇ = Λ0χ(P )(GijẐiẐj)−n/2, the product rule implies the continuity

of W1K∇ away from G∪b . Again by the proof of [UV16, Proposition 3.3], W1K∇
vanishes to infinite order at Gb uniformly in η, and thus W1K∇ ∈ C0(O2

d× [0, η0)
)
.

Upon multiplying by x3 throughout, we obtain the claim for W1 ∈ W1, with κW1 ≡
0 in (6.18).

Now fix a J and suppose W2 ∈ WJ
2 , so that W2 = R−1∂θj for some j 6= J . We

will analyze W2K∇, again looking away from G∪b first. By (6.19) and the chain rule
we have that

∂θjΛ0 = R

n∑
m=0

∂vmΛ0 ∂θjθ
m (6.20)

is continuous up to x = 0 on U±J .
For ∂θj (β∗d(χ(P ))), as noted in the proof of Lemma 6.3,

β∗d(χ(P )) = χ

(
a1(z, xRẐ, η, Ẑ)

x(a2(z, xRẐ, η, Ẑ))1/2

)
,

where aj(z, u, η, v) is C1 in (z, u, η) and C∞ in v. Thus in U±J , for x,R > 0 and
j 6= J ,

∂θj (β∗d(χ(P ))) =χ′(P )
(
R∂u

(
a1/a

1/2
2
)
(z, xRẐ, η, Ẑ) · ∂θj Ẑ

+ x−1∂v(a1/a
1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ

)
.

Now use Taylor’s Theorem for the function R 7→ ∂v
(
a1/a

1/2
2
)
(z, xRẐ, η, Ẑ) · ∂θj Ẑ

(which is C1 in the support of χ′(P )) for x > 0, and the fact that ∂vj
(
a1/a

1/2
2
)∣∣
u=0 =

δ0
j (δαβvαvβ)− v0δjαv

α

(δαβvαvβ)3/2 to find that

∂θj (β∗d(χ(P ))) = χ′(P )
(
R∂u

(
a1/a

1/2
2
)
(z, xRẐ, η, Ẑ) · ∂θj Ẑ

+ x−1 δ
0
m(δαβvαvβ)− v0δmαv

α

(δαβvαvβ)3/2

∣∣∣
v=Ẑ

∂θj Ẑ
m +Rbk`(z, xRẐ, η, Ẑ)Ẑk∂θj Ẑ`

)
;

(6.21)
here bk`(z, u, η, v) is C0 in (z, u, η) and C∞ in v. Note that on U±J and for j 6= J

∂θj Ẑ
m =

{
xδ0mδmj , m 6= J

−xδ0mθj/θm, m = J
,
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so in particular ∂θj Ẑm is smooth on U±J . Therefore, evaluating at v = Ẑ in (6.21)
we obtain

∂θj (β∗d(χ(P ))) = χ′(P ) (δαβŶ αŶ β)∂θj X̂ − X̂δmαẐα∂θj Ẑm

(δαβŶ αŶ β)3/2
+Rχ′(P )Λ1, (6.22)

where Λ1 ∈ C0(U±J ) in the support of χ′(P ) (as in the proof of Lemma 6.3) and
bounded as R→∞.

We similarly compute that

∂θj
(
Gk`(z, z + xRẐ, η)ẐkẐ`

)−n2 = −n2 |Ẑ|
−n−2(2δk`Ẑk∂θj Ẑ`)+RΛ2 (6.23)

with Λ2 ∈ C0(U±J ) and bounded as R→∞ in the support of χ(P ).
Now apply ∂θj to K∇ = Λ0χ(P )(GijẐiẐj)−n/2 and use the product rule. Using

(6.20), (6.22) and (6.23), together with (6.19) and the remarks following (6.17) to
deal with the non-differentiated factors, we obtain (6.18) in U±J for x3W = ∂θj .
Again by the proof of Proposition 3.3 in [UV16], W2K∇ decays exponentially fast
or vanishes identically as R→∞ on U±J , uniformly in η, and we are done. �

We have shown the regularity results we need for the kernel of Ãχ,η,σ, under
hypotheses which apply for both ∇ = ∇̂,∇. We now analyze the lift of the kernel
κ
Ẽη,σ

of Ẽη,σ (viewed as a section of the smooth density bundle on X
2, as usual):

Lemma 6.7. Let W and x3 be as in the statements of Lemmas 6.3 and 6.4. Then
for any sufficiently small neighborhood O of p in X there exists η0 > 0 such that
upon writing β∗d(κ

Ẽη,σ
) = KE · ν one has x−1

3 KE , WKE ∈ C0(O2
d × [0, η0)

)
and

they both vanish to infinite order on Gb× [0, η0). Moreover, both WKE and x−1
3 KE

vanish identically for η = 0.

Proof. First observe that Lemmas 3.1 and 4.1 imply that for σ > 0 and χ0 fixed
in Proposition 5.3, Lemmas 6.2, 6.3 and 6.4 apply to both ∇ and ∇̂, provided η0
and O are sufficiently small: note that one needs O to be small enough that if
supp(χ0) ⊂ [−M,M ] then Mx ≤ min{C̃∇̂, C̃∇}

√
x in O, where C̃∇̂, C̃∇ are the

constants of Lemma 5.2 corresponding to the two connections. Now we observe
that WKE and x−1

3 KE ∈ C0(O2
d × [0, η0)

)
and both vanish to infinite order on

Gb × [0, η0). To see this note that in both (6.17) and (6.18) the leading order
coefficient at G3× [0, η0) does not depend on the connection and hence cancels upon
taking the difference K∇̂ −K∇ (as long as K∇̂, K∇ are computed using the same
density ν). Finally, if η = 0 we have Ẽ0,σ = E0,σ, acting on functions supported
in a subset of X = X0 ⊂ M c

e . Since ∇ = ∇̂ on M c
e and by the construction of

Âχ0,0,σ (resp. Aχ0,0,σ), K∇̂(·, 0) (resp. K∇(·, 0)) only depends on the connection
∇̂ (resp. ∇) on X ⊂M c

e , we have Âχ0,0,σ = Aχ0,0,σ and thus E0,σ = Ẽ0,σ = 0 and
WKE(·, 0), x−1

3 KE(·, 0) ≡ 0. �

We finally have:

Proof of Proposition 5.6 ′. Recall that we now write X for X0. Let O′ ⊂ X be a
small open neighborhood of p ∈ Me in X where the results of this section hold
and O a neighborhood of p in X with O ⊂ K ⊂ O′, where K is compact. For
sufficiently small η ≥ 0 we have Ũη = ψη(Uη) ⊂ O. Fix δ > 0. We will show that
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there exists an η0 such that if 0 ≤ η < η0 then for u, v ∈ L2(O) with supp v ⊂ Ũη,
and W̃j ∈ {x2∂x, x∂y1 , . . . , x∂yn} ⊂ Vsc(X) one has

|(u, W̃ k
j Ẽη,σv)| ≤ δ‖u‖L2(O)‖v‖L2(Ũη), j = 0, . . . , n, k = 0, 1. (6.24)

This will imply the claim since W̃j span Vsc(X) on O′. Let πL;d = πL ◦ βd,
πR;d = πR ◦ βd, where πL, πR denote projection onto the left and right factor
of X2 respectively. By the Cauchy-Schwartz inequality and using the notations of
Lemma 6.7,∣∣ ∫

O2
(u⊗ v)κ

Ẽη,σ

∣∣2 ≤(∫
O2

d

∣∣(π∗L;du)KE(·, η)(π∗R;dv)
∣∣ν)2

≤
∫
O2

d

|(π∗L;du)|2|KE(·, η)|ν ·
∫
O2

d

|KE(·, η)| |(π∗R;dv)|2ν.(6.25)

Recall that the “coordinates” (6.3) and the analogous ones given by(
x̃, ỹ, R̃ =

√
X̃2 + |Ỹ |2, θ̃ = (X̃, Ỹ )/R̃

)
, where X̃ = x− x̃

x̃ 2 , Ỹ = y − ỹ
x̃

(6.26)

identify O2
d \ G∪b with a subset of Rn+1

+ × [0,∞)× Sn. By interchanging the roles of
(x, y) and (x̃, ỹ), Lemma 6.1 yields the existence of a non-vanishing α̃ ∈ C∞(X2

d)
such that in terms of (6.26) one has ν = α̃(R̃ + 1)−1(2 + x̃R̃θ̃0)n|dx̃ dỹ dR̃ dω̃| (dω̃
is the volume form with respect to the round metric). Thus∫
O2

d

|(π∗L;du)|2|KE |ν =
∫
|u(x, y)|2|KE;L(x, y,R, θ, η)| (2 + xRθ0)n

1 +R
|dx dy dR dω|,

(6.27)

and similarly∫
O2

d

|KE ||(π∗R;dv)|2ν =
∫
|KE;R(x̃, ỹ, R̃, θ̃, η)| |v(x̃, ỹ)|2 (2 + x̃R̃θ̃0)n

1 + R̃
|dx̃ dỹ dR̃ dω̃|,

(6.28)

where KE;L, KE;R express KE in terms of (6.3) and (6.26) respectively. The in-
tegrations on the right hand sides of (6.27) and (6.28) are over the appropriate
subsets of Rn+1

+ × [0,∞)× Sn corresponding to O2
d (the function α̃ and the corre-

sponding function α have been absorbed into KE;R, KE;L). Extend KE;L and KE;R

to Rn+1
+ × [0,∞) × Sn × [0, η0) by multiplication by a cutoff function in C∞c (O′2d )

which is 1 in a neighborhood of O2
d.

For large R0 we have∫
|u(x,y)|2|KE;L(x, y,R, θ, η)| (2 + xRθ0)n

1 +R
|dx dy dR dω|

≤ ‖u‖2L2(O) sup
(x,y)∈O

∫
Sn

∫ ∞
0
|KE;L(x, y,R, θ, η)| (2 + xRθ0)n

1 +R
|dR dω|
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= ‖u‖2L2(O) sup
(x,y)∈O

(∫
Sn

∫ R0

0
|KE;L(x, y,R, θ, η)| (2 + xRθ0)n

1 +R
|dR dω|

+
∫
Sn

∫ ∞
R0

(1 +R)−2
{

(1 +R)|KE;L(x, y,R, θ, η)|(2 + xRθ0)n
}
|dR dω|

)

= ‖u‖2L2(O) sup
(x,y)∈O

(I(x, y, η) + II(x, y, η)) .

By (6.4), (2 + xRθ0)n and (1 +R) are of the form x−n10 and x−1
11 x

−2
10 respectively.

Since by Lemma 6.7 KE vanishes to infinite order at Gb × [0, η0), there exists a
constant C such that for all (x, y) ∈ O and all 0 ≤ η ≤ η0

(1 +R)|KE;L(x, y,R, θ, η)|(2 + xRθ0)n ≤ C.

Therefore, for given δ > 0, R0 can be chosen sufficiently large that II(x, y, η) ≤ δ/2
for 0 ≤ η ≤ η0. On the other hand, I(x, y, η) is continuous (it is an integral over
a compact set of a function continuous jointly in (x, y,R, θ, η)) and it vanishes
identically for (x, y, η) ∈ O × {0} ⊂ K × {0} by Lemma 6.7. Thus there exists η0
such that for 0 ≤ η ≤ η0 we have sup(x,y)∈O I(x, y, η) ≤ δ/2 and (6.27) is bounded
above by δ‖u‖2L2(O).

Now (6.28) can be analyzed in exactly the same way as (6.27); the only difference
is that now (2 + x̃R̃θ̃0)n and (1 + R̃) are of the form x−n01 and x−1

11 x
−2
01 . This however

does not change the arguments since KE vanishes to infinite order at Gb, uniformly
for small η. We conclude that (6.24) holds for k = 0.

To show (6.24) for k = 1, we observe that β∗d(|dzdz̃|) = hν, where h = x11x
n+2
2 xn3

(as before, x∗ stands for a boundary defining function of G∗ that is smooth and non-
vanishing up to the other faces). By the analysis at the end of Section 6.1 it follows
that for j = 0, . . . , n the vector field x3Wj , where Wj is the lift of W̃j , is smooth on
X

2
d and tangent to all of its boundary hypersurfaces. Thus (Wjh)/h ∈ x−1

3 C∞(X2
d).

Writing κ
Ẽη,σ

= κ̃E(z, z̃, η)|dzdz̃| so that β∗d(κ̃E)h = KE we have, for u, v ∈ L2(O)
as before,∫

O2
u(z)(W̃j κ̃E(z, z̃, η))v(z̃)|dzdz̃| =

∫
O2

d

(π∗L;du)β∗d(W̃j κ̃E)(π∗R;dv)h ν

=
∫
O2

d

(π∗L;du)
(
Wjβ

∗
d(κ̃E)

)
h (π∗R;dv) ν

=
∫
O2

d

(π∗L;du)
(
Wj KE −KE

Wj h

h

)
(π∗R;dv) ν.

Then (6.24) for k = 1 follows exactly the same steps as for k = 0 from (6.25)
onwards, with KE replaced by Wj KE − ((Wj h)/h)KE : by Lemma 6.7, Wj KE −
((Wj h)/h)KE ∈ C0(O2

d× [0, η0)
)
, it vanishes to infinite order at Gb× [0, η0) and is

identically 0 for η = 0. This finishes the proof of the proposition. �
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