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Abstract. In a 2016 paper by Alan Reid, Martin Bridson and the author, it
was shown using the theory of profinite groups that if Γ is a finitely-generated

Fuchsian group and Σ is a lattice in a connected Lie group, such that Γ and

Σ have exactly the same finite quotients, then Γ is isomorphic to Σ. As a
consequence, two triangle groups ∆(r, s, t) and ∆(u, v, w) have the same finite

quotients if and only if (u, v, w) is a permutation of (r, s, t). A direct proof of

this property of triangle groups was given in the final section of that paper,
with the purpose of exhibiting explicit finite quotients that can distinguish

one triangle group from another. Unfortunately, part of the latter direct proof
was flawed. In this paper two new direct proofs are given, one being a cor-

rected version using the same approach as before (involving direct products of

small quotients), and the other being a shorter one that uses the same prelim-
inary observations as in the earlier version but then takes a different direction

(involving further use of the ‘Macbeath trick’).

1. Introduction

For any positive integers r, s and t, the ordinary (r, s, t) triangle group is the
abstract group ∆(r, s, t) with presentation 〈x, y, z | xr = ys = zt = xyz = 1 〉.

In a recent paper [2], it was shown that if Γ is a finitely-generated Fuchsian
group and Σ is a lattice in a connected Lie group, such that Γ and Σ have exactly
the same finite quotients, then Γ is isomorphic to Σ. As a consequence, two triangle
groups ∆(r, s, t) and ∆(u, v, w) have the same finite quotients if and only if (u, v, w)
is a permutation of (r, s, t). The main theorems in the first seven sections of [2],
including these, were proved using the theory of profinite groups, without reference
to explicit finite quotients. A second proof of the fact concerning triangle groups
was given in the final section of [2], with the purpose of exhibiting explicit finite
quotients that can distinguish one triangle group from another.

Unfortunately, this second proof (given as the proof of Theorem 8.1 in [2]) was
flawed. In particular, Lemma 8.11 is incorrect, even when restricted to triples
(r, s, t) and (u, v, w) that survive Lemmas 8.3, 8.4, 8.5 and 8.7, Proposition 8.6 and
Corollaries 8.8 and 8.10, as it fails for the triples (15, 105, 126) and (21, 30, 315) with
(q2, q2) = (7, 45), as well as for similar triples. Also there were gaps in the argument
used in the proof of Theorem 8.1. The situation is somewhat more complicated
than was indicated. In particular, the use of direct products of two quotients each
isomorphic to PSL(2, p) for some prime p did not cover all possibilities remaining
after simpler methods were applied. Please note, however, that the main findings
of [2] are unaffected by these flaws, as Section 8 of [2] is independent of the earlier
sections.
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Here we must sincerely thank Frankie Chan, who pointed out the problems with
Lemma 8.11, and provided an effective version of Theorem 8.1 of [2] in his recent
PhD thesis [3], while developing an algorithm for distinguishing finite quotients
between cocompact triangle groups and lattices of constant-curvature symmetric
2-spaces, with specific attention paid to the case where these lattices are Fuchsian
groups.

In this paper we give two new direct proofs of Theorem 8.1 of [2], without
requiring Lemma 8.11. The first one is rather intricate, showing how the approach
involving direct products of quotients isomorphic to PSL(2, p) for some prime p can
be undertaken correctly and extended in some exceptional cases (by using quotients
that are direct products of the form PSL(2, p1)×PSL(2, p2)×A where A is cyclic,
in those cases).

The second proof is quite a lot shorter, using certain smooth quotients of triangle
groups ∆(k, l,m), where k, l and m divide either r, s and t, or u, v and w (in some
order). This is an approach we considered earlier and were able to use successfully
to deal with the vast majority of triple pairs, but completed only with the help of
a key observation made by Frankie Chan in [3] for the remaining pairs, and again
we owe a debt of gratitude to him for that.

Here we note that both proofs show that any two non-isomorphic hyperbolic
triangle groups ∆(r, s, t) and ∆(u, v, w) can be distinguished by finite quotients
that are abelian, dihedral, isomorphic to PSL(2, p) for some prime p, or a direct
product PSL(2, p1) × PSL(2, p2) × A where p1 and p2 are distinct primes and A
is cyclic (or trivial), or an extension of a homocyclic abelian group by one of the
preceding groups.

Before giving the two new proofs, we repeat and extend some of the background
to this topic, in order to make the paper self-contained.

2. Further Background

Each triangle group ∆(r, s, t) is called spherical, Euclidean or hyperbolic accord-
ing to whether the quantity 1/r+ 1/s+ 1/t is greater than, equal to or less than 1,
respectively. Note that ∆(r, s, t) is isomorphic to ∆(u, v, w) if and only if the triple
(u, v, w) is a permutation of the triple (r, s, t).

The spherical triangle groups are ∆(1, n, n), ∆(2, 2, n), ∆(2, 3, 3), ∆(2, 3, 4) and
∆(2, 3, 5), which are isomorphic to Cn (cyclic), Dn (dihedral of order 2n), A4, S4

and A5, respectively. The Euclidean triangle groups are ∆(2, 3, 6), ∆(2, 4, 4) and
∆(3, 3, 3), each which is an extension of a free abelian group of rank 2 by a cyclic
group (C6, C4 and C3, respectively). In particular, the spherical triangle groups
are finite, while the Euclidean triangle groups are infinite but soluble. See [4] for
further details. In contrast, all hyperbolic triangle groups are infinite and insoluble,
and have a wealth of finite quotients (see [5] for example).

The latter categorisation makes the spherical and Euclidean triangle groups easy
to distinguish from others by their finite quotients, and so we will focus our attention
on the hyperbolic ones, namely those with 1/r + 1/s+ 1/t < 1.

As in [2], we define a finite group G to be (k, l,m)-generated if G can be generated
by elements a, b and c of (precise) orders k, l and m such that abc = 1. In this case
we say that G is a smooth quotient of the triangle group ∆(k, l,m), noting that
the corresponding epimorphism from ∆(k, l,m) to G preserves the orders of the
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canonical generators of ∆(k, l,m), and has torsion-free kernel. For any hyperbolic
triple (k, l,m), the set of (k, l,m)-generated groups is non-empty because of the
residual finiteness of the hyperbolic triangle group ∆(k, l,m), but in most cases
∆(k, l,m) can also have ‘non-smooth’ quotients, in which the orders of the canonical
generators of ∆(k, l,m) are not preserved.

We will make use of the following important but relatively straightforward ob-
servation, the proof of which we leave as an exercise for the reader:

Lemma 2.1. For any integers k, l and m, all greater than 1, let ∆ be the triangle
group ∆(k, l,m). Then the abelianisation ∆/∆′ = ∆/[∆,∆] of ∆ is isomorphic
to the direct product Ce × Cd, where e = lcm(gcd(k, l), gcd(k,m), gcd(l,m)) and
d = gcd(k, l,m), and also de = klm lcm(k, l,m). Moreover, ∆/[∆,∆] is (k′, l′,m′)-
generated, where k′ = gcd(k, lm), l′ = gcd(l, km) and m′ = gcd(m, kl).

Also a theorem below by Macbeath [6] on triangle-generation of the finite simple
groups PSL(2, q) is critical to this work:

Theorem 2.2. Let (k, l,m) be any hyperbolic triple other than (2, 5, 5), (3, 4, 4),
(3, 3, 5), (3, 5, 5) or (5, 5, 5). Then for any given odd prime p, the group PSL(2, pf )
is (k, l,m)-generated if and only if pf is the smallest power of p for which PSL(2, pf )
contains elements of orders k, l and m.

The triples (2, 5, 5), (3, 4, 4), (3, 3, 5), (3, 5, 5) and (5, 5, 5), together with the
spherical triples and the triple (3, 3, 3), were called exceptional by Macbeath. Note
that the spherical group ∆(2, 3, 5) ∼= A5

∼= PSL(2, 5) is also (2, 5, 5)-, (3, 3, 5)-,
(3, 5, 5)- and (5, 5, 5)-generated, while the spherical group ∆(2, 3, 4) ∼= S4 is also
(3, 4, 4)-generated.

We also make use of the fact that if the finite group G is (k, l,m)-generated,
then G is a group of conformal automorphisms of a compact Riemann surface S of
genus g, where

2− 2g = |G|
(
1
k + 1

l + 1
m − 1

)
as a consequence of the Riemann-Hurwitz formula. The kernel K of the correspond-
ing smooth homomorphism from ∆(k, l,m) onto G is the fundamental group of S,
and is itself a Fuchsian group, with signature (2g;−). In particular, if g ≥ 1 then
K is generated by 2g elements a1, b1, . . . , ag, bg subject to a single defining relation

[a1, b1] . . . [ag, bg] = 1. Now for any positive integer n, the subgroup K ′K(n) gener-
ated by the derived subgroup K ′ and the nth powers of all elements of K is charac-
teristic in K and hence normal in ∆(k, l,m), and the quotient ∆(k, l,m)/K ′K(n) is
then isomorphic to an extension by G of an abelian subgroup K/K ′K(n) of rank 2g
and exponent n (and order n2g). This observation is often known as ‘the Macbeath
trick’.

Hence for any (k, l,m)-generated group G, we can construct an infinite family
of smooth quotients of ∆(k, l,m), to help distinguish ∆(k, l,m) from other triangle
groups.

In what follows, we will also require some information about the groups PSL(2, p),
for p prime. When p is odd, the orders of the elements of PSL(2, p) are precisely the
divisors of p, p−1

2 and p+1
2 (see [7, Chapter 3.6] for example). The integers p, p−1

2
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and p+1
2 are pairwise coprime, so the order of any non-trivial element of PSL(2, p)

divides exactly one of them.

Next, define the L2-set of a triple (k, l,m) to be the (unique) set of pairwise co-
prime positive integers whose least common multiple is the same as that of {k, l,m}
and which has the property that each of k, l and m divides exactly one member of
that set. For example, if k, l and m are themselves pairwise coprime, then the L2-
set of the triple (k, l,m) is just {k, l,m}, while if gcd(k, lm) = 1 but gcd(l,m) > 1
then its L2-set is {k, lcm(l,m))}, and if gcd(k, l) > 1 and gcd(l,m) > 1 then its L2-
set is {lcm(k, l,m))}. Note that every maximal prime-power divisor of lcm(k, l,m)
divides exactly one member of the L2-set.

Accordingly, we have the following corollary of Macbeath’s theorem (Theo-
rem 2.2):

Corollary 2.3.

(a) If (k, l,m) is a hyperbolic triple and p is an odd prime, then the group PSL(2, p)
is (k, l,m)-generated if and only if every member of the L2-set of the triple (k, l,m)
is equal to p or a divisor of p±1

2 .

(b) Let (k, l,m) be any triple of integers greater than 1. Then for every integer
q > 3 that does not divide any of the members of the L2-set of (k, l,m), there
exists a smooth finite quotient G of the (k, l,m) triangle group such that G has no
element of order q. Similarly, for every integer q > 1 that is coprime to 6 and to
every member of the L2-set of (k, l,m), there exists a smooth finite quotient G of
the (k, l,m) triangle group such that G has no non-trivial element of order dividing
q. Moreover, when the triple (k, l,m) is hyperbolic, in both cases G can be taken as
PSL(2, p) for some prime p > 5.

(c) If two triples of integers greater than 1 have the same least common multiple
but different L2-sets, then the corresponding triangle groups have different sets of
smooth quotients.

Proof. Part (a) is an immediate consequence of Theorem 2.2.
Both cases of part (b) are easy for all non-hyperbolic triples and exceptional

triples: we can take G = Dm for (k, l,m) = (2, 2,m) whenever m ≥ 2, or G = A4

for (k, l,m) = (2, 3, 3), or G = S4 for (k, l,m) = (2, 3, 4) or (3, 4, 4), or G = A5 for
(k, l,m) = (2, 3, 5), (2, 5, 5), (3, 3, 5), (3, 5, 5) or (5, 5, 5), or G = C6 for (k, l,m) =
(2, 3, 6), or G = C4 for (k, l,m) = (2, 4, 4), or G = C3 for (k, l,m) = (3, 3, 3). For
any non-exceptional hyperbolic triple (k, l,m), we can take G = PSL(2, p), where
p is a prime such that p ≡ ±1 modulo twice each of the members of the L2-set of
(k, l,m), but p 6≡ ±1 modulo 2q in the first case, and p 6≡ ±1 modulo h for every
prime divisor h of q in the second case. In both cases, the existence of such a prime
p is guaranteed by the Chinese Remainder Theorem and Dirichlet’s theorem on
primes in arithmetic progression.

Finally, for part (c), the L2-set of one of the two triples must contain an integer
q > 3 that does not divide any of the members of the L2-set of the other triple,
and then the assertion follows from part (b). �
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3. Main Theorem and Preliminary Steps for its New Proofs

We can now begin to prove the following, in which we use the notation (r, s, t) '
(u, v, w) to mean that (r, s, t) is a permutation of (u, v, w).

Theorem 3.1. If Γ = ∆(r, s, t) and Σ = ∆(u, v, w) are triangle groups having
exactly the same finite quotients, then (r, s, t) ' (u, v, w) and so Γ ∼= Σ.

As a first step, we may suppose that (r, s, t) and (u, v, w) are hyperbolic triples.
Next, we present a key observation that generalises part of Lemma 8.4 of [2],
followed by combination of the remainder of Lemmas 8.3 to 8.5 and 8.7 of [2]
and some further helpful properties.

Lemma 3.2. Under the given assumptions, Γ = ∆(r, s, t) and Σ = ∆(u, v, w) have
the same (k, l,m)-generated quotients, for every triple (k, l,m) of integers greater
than 1.

Proof. This follows easily from the assumption that Γ and Σ have exactly the
same finite quotients. �

Lemma 3.3. Under the given assumptions,

(a) gcd(r, s, t) = gcd(u, v, w),

(b)
rst

lcm(r, s, t)
=

uvw

lcm(u, v, w)
,

(c) lcm(gcd(r, s), gcd(r, t), gcd(s, t)) = lcm(gcd(u, v), gcd(u,w), gcd(v, w)),

(d) 1
r + 1

s + 1
t = 1

u + 1
v + 1

w ,

(e) a finite group is (r, s, t)-generated if and only if it is (u, v, w)-generated,

(f) rst = uvw, and lcm(r, s, t) = lcm(u, v, w), and rs+ rt+ st = uv + uw + vw,

(g) v2(s− u)(w − s) = s2(v − r)(t− v), and similarly for every permutation of

(r, s, t) and every permutation of (u, v, w),

(h) if r ≤ s ≤ t and u ≤ v ≤ w, and (r, s, t) and (u, v, w) have no common entry,

then either r < u ≤ v < s ≤ t < w or u < r ≤ s < v ≤ w < t, and

(i) the triples (r, s, t) and (u, v, w) have the same L2-set.

Proof. Parts (a) to (c) follow immediately from Lemma 2.1.
For part (d), we may suppose without loss of generality that 1

r + 1
s + 1

t ≤
1
u + 1

v + 1
w , and let G be any (r, s, t)-generated finite quotient of Γ. Then G is also

a quotient of Σ. So now let u′, v′ and w′ be divisors of u, v and w (respectively)
chosen such that G is (u′, v′, w′)-generated, and 1

u′ + 1
v′ + 1

w′ is as small as possible

subject to those conditions. Then in particular, 1
u′ + 1

v′ + 1
w′ ≥ 1

u+ 1
v+ 1

w ≥
1
r+ 1

s+ 1
t .

Next, for any n coprime to |G|, the largest quotient of Γ that is an extension of an
abelian group of exponent n by G has order n2g|G|, where 2−2g = |G|( 1

r+ 1
s+ 1

t−1),
by comments made in the previous section. On the other hand, the largest quotient
of Σ that is an extension of an abelian group of exponent n by G is a smooth
quotient of the (u′, v′, w′) triangle group and so has order n2g

′ |G|, where 2−2g′ =
|G|( 1

u′ + 1
v′ + 1

w′ − 1). Since Γ and Σ have the same quotients, we find that g′ = g,

so 1
u′ + 1

v′ + 1
w′ = 1

r + 1
s + 1

t . The final observation in the previous paragraph now

gives us 1
u + 1

v + 1
w = 1

r + 1
s + 1

t , as required.
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The latter also implies that (u′, v′, w′) = (u, v, w), and hence that G is (u, v, w)-
generated. The converse holds by the same argument, with the roles of (r, s, t) and
(u, v, w) reversed, and this proves (e).

For part (f), let p be any prime divisor of rst, and let pα, pβ and pγ be the
largest powers of p dividing r, s and t, ordered in such a way that α ≤ β ≤ γ.
Then pα must be the largest power of p dividing gcd(r, s, t), while pβ is the largest
power of p dividing lcm(gcd(r, s), gcd(r, t), gcd(s, t)), and pγ is the largest power of
p dividing lcm(r, s, t). Also pα+β+γ is the largest power of p dividing rst, and so
pα+β is the largest power of p dividing rst

lcm(r,s,t) . Furthermore, either γ = β, or pγ

is the largest power of p dividing the denominator of 1
r + 1

s + 1
t = rs+rt+st

rst when the
latter is expressed in reduced form. (To verify the last claim, note that rs+ rt+ st
is divisible by pα+β but not pα+β+1 when α ≤ β < γ.)

Hence the largest powers of p dividing r,s and t are determined by the quantities
gcd(r, s, t), rst

lcm(r,s,t) and 1
r + 1

s + 1
t . By parts (a), (b) and (d), these three quantities

are the same for the triple (u, v, w), and hence the largest powers of p dividing u,
v and w are equal to those for r, s and t, in some order. As this holds for all p, the
stated identities follow easily.

Part (g) follows from expanding and simplifying v2(s−u)(w−s)−s2(v−r)(t−v)
using the identities rst = uvw and rs+ rt+ st = uv + uw + vw from part (f), and
noting that those two identities are invariant under all permutations of (r, s, t)
and/or (u, v, w).

To prove part (h), let us suppose that r < u, so that r = min{r, s, t, u, v, w}.
Then since (r, s, t) and (u, v, w) have no common entry, we have only the following
five possibilities, with others ruled out by the identity rst = uvw:

r ≤ s < u ≤ v ≤ w < t, or r < u < s < v ≤ w < t, or r < u ≤ v < s ≤ t < w,

or r < u ≤ v < s < w < t, or r < u ≤ v ≤ w < s ≤ t.
The first, second, fourth and fifth of these possibilities can be eliminated, however,
as they imply v2(s− u)(w − s) < 0 < s2(v − r)(t− v), which contradicts part (g).
The analogous argument works also when u < r.

Finally, part (i) follows immediately from part (c) of Corollary 2.3. �

At this stage we have enough to prove what happens in certain special cases,
some of which were covered by Lemma 8.6 and Corollaries 8.8 and 8.10 of [2].

Proposition 3.4. If u, v and w have divisors u′, v′ and w′, all greater than 1,
such that at least one of r, s and t is coprime to each of 6, u′, v′ and w′, then there
exists a finite group that is a quotient of ∆(u, v, w) but not a quotient of ∆(r, s, t).
In particular, this holds when one of r, s and t is a power of some prime p > 3
such that none of u, v and w is a power of p. Also the analogous statements hold
when (r, s, t) and (u, v, w) are interchanged.

Proof. Suppose k ∈ {r, s, t} is coprime to 6, u′, v′ and w′. Then by part (b)
of Corollary 2.3, there exists a smooth finite quotient G of the triangle group
∆(u′, v′, w′) such that G has no non-trivial element of order dividing k, and so
G is a quotient of ∆(u, v, w) but cannot be a quotient of ∆(r, s, t). The rest follows
easily. �



DISTINGUISHING TRIANGLE GROUPS 833

Proposition 3.5. Theorem 3.1 holds in each of the following cases (or its equivalent
form when r, s and t are permuted, or (r, s, t) and (u, v, w) are interchanged ):

(a) (r, s, t) is one of the exceptional triples (2, 5, 5), (3, 4, 4), (3, 3, 5), (3, 5, 5),

(5, 5, 5);

(b) (r, s, t) and (u, v, w) have a common entry ;

(c) two or more of (r, s, t) are even ;

(d) one of r, s, t is coprime to each of the other two ;

(e) one of r, s, t is a power of 2;

(f) one or more of r, s, t, u, v and w is equal to gcd(r, s, t).

Proof. First, case (a) follows from parts (a) and (f) of Lemma 3.3, because (2, 5, 5)
is the only hyperbolic triple with rst = 50, and (3, 4, 4) is the only hyperbolic
triple with rst = 48, lcm(r, s, t) = 12 and gcd(r, s, t) = 1, and (3, 3, 5) is the only
hyperbolic triple with rst = 45, and (3, 5, 5) is the only hyperbolic triple with
rst = 75, and finally, (5, 5, 5) is the only hyperbolic triple with rst = 125.

For case (b), suppose for example that t = w. Then rs = rst
t = uvw

w = uv, and

then since rs + (r + s)t = rs + rt + st = rst( 1
r + 1

s + 1
t ) = uvw( 1

u + 1
v + 1

w ) =
uv + uw + vw = uv + (u+ v)w, we find that r + s = u+ v. Hence r and s are the
zeroes of the same quadratic x2 − bx + c as u and v (namely with b = u + v and
c = uv), so {r, s} = {u, v}, and then (r, s, t) ' (u, v, w). The same argument works
for all other coincidences between entries of (r, s, t) and (u, v, w).

Case (c) follows from the fact that for every integer m ≥ 2, the only triangle
group having the dihedral group Dm of order 2m as a smooth quotient is ∆(2, 2,m).
For suppose that two or more of r, s and t are even. Then lcm(gcd(r, s), gcd(r, t), gcd(s, t))
is even, and therefore so is lcm(gcd(u, v), gcd(u,w), gcd(v, w)), and hence two or
more of u, v and w are even. Also if all three of r, s and t are even, then gcd(r, s, t)
is even, and then so is gcd(u, v, w), and hence all three of u, v and w are even. Now
let m = max(r, s, t, u, v, w) if all three of r, s and t are even, or otherwise let m be
the largest odd integer among r, s, t, u, v and w. Then the dihedral group Dm is a
(2, 2,m)-generated quotient of Γ or Σ, and hence must also be a (2, 2,m)-generated
quotient of the other. By definition of m, and the fact mentioned at the start of
this paragraph, it follows that m appears in both triples (r, s, t) and (u, v, w), and
hence by case (b) we know that (r, s, t) ' (u, v, w).

In case (d), suppose first that gcd(r, st) = 1. Then the L2-set of (r, s, t) is
either {r, s, t} or {r, st}, and is the same as the L2-set of (u, v, w), by part (i) of
Lemma 3.3. It follows that each of u, v and w divides r or st. If one of them
divides r and the other two divide st, then since gcd(r, st) = 1, one of them is
equal to r and then (r, s, t) ' (u, v, w) by case (b). On the other hand, suppose
two of them divide r, while the other one divides st and hence is coprime to the
other two. Then A = lcm(gcd(u, v), gcd(u,w), gcd(v, w)) divides r, while B =
lcm(gcd(r, s), gcd(r, t), gcd(s, t)) = gcd(s, t) which divides st, and then because
gcd(r, st) = 1, and A = B (by part (c) of Lemma 3.3), we find A = B = 1, and so
gcd(s, t) = 1. Thus r, s and t are pairwise coprime, and it follows that the L2-sets
of (r, s, t) and (u, v, w) are both equal to {r, s, t}, and therefore (r, s, t) ' (u, v, w).
The other two possibilities gcd(s, rt) = 1 and gcd(t, sr) = 1 can be handled in the
same way.
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Case (e) now follows immediately from cases (c) and (d).
Finally, for case (f), suppose that d = gcd(r, s, t) = r, say, with r ≤ s ≤ t and

u ≤ v ≤ w. If (r, s, t) and (u, v, w) have no common entry, then r < u ≤ v < s ≤
t < w by part (h) of Lemma 3.3, and then uvw = rst = dst, so st = uvw

d , and then
because t ≥ s ≥ v+1 it follows that rs+rt+st = d(s+ t)+ uvw

d ≥ 2d(v+1)+ uvw
d .

Now if u ≥ 3d, then rs+ rt+ st > uvw
d ≥ 3vw > uv + uw+ vw, while on the other

hand, if u < 3d then u = 2d, and therefore 2d(v + 1) = u(v + 1) > uv and
uvw
d = 2vw ≥ uw+ vw, which together imply that rs+ rt+ st ≥ 2d(v+ 1) + uvw

d >
uv + uw + vw, another contradiction. Thus (r, s, t) and (u, v, w) have a common
entry, and case (b) applies. �

4. The First New Proof, using Direct Products

For our first new proof of Theorem 3.1, we may suppose that (r, s, t) and (u, v, w)
are non-exceptional hyperbolic triples for which Γ = ∆(r, s, t) and Σ = ∆(u, v, w)
have exactly the same finite quotients, and hence satisfy the conclusions of Lemma 3.3
but not the principal hypothesis of Proposition 3.4, and do not satisfy any of the
sufficient conditions (b) to (f) given in Proposition 3.5.

In particular, we suppose that (r, s, t) and (u, v, w) have no entry in common,
no entry that is a power of 2, no entry equal to gcd(r, s, t), and no more than
one even entry each, and also that no element of one of the triples is coprime
to each of the other two, and no element of one of the triples is coprime to 6
and to proper divisors of the elements of the other triple. Furthermore, we let
M = lcm(r, s, t) = lcm(u, v, w), the maximal prime-power divisors of which will be
a key to what follows.

For interested readers, we also give an indication of the relative numbers of
triple-pairs in each situation considered, among the set T of 542970 distinct triple-
pairs {(r, s, t), (u, v, w)} satisfying the hypotheses two paragraphs above, with 2 ≤
r < u ≤ v < s ≤ t < w and rst = uvw ≤ 12000000d 3, where d = gcd(r, s, t) =
gcd(u, v, w). (Here we note that dropping the condition given in Proposition 3.4
would add another 830030 triple-pairs, which gives an indication of the importance
of that condition.)

We consider four separate cases, which depend on the distribution of the maximal
prime-power divisors of M among the divisors of the integers r, s, t, u, v and w,
and we derive contradictions in all four cases. To do this, we consider a wider class
of finite quotients of Γ and Σ, namely direct products of the form G = Q1 × Q2

or Q1 × Q2 × A, where each Qi is PSL(2, pi) for some prime pi, and A is abelian
(indeed cyclic of order d = gcd(r, s, t)).

In the first three of our four cases, Q1 and Q2 will be determined by a ‘factorisa-
tion’ of one of the triples, say (r, s, t), as a kind of product of two triples (r1, s1, t1)
and (r2, s2, t2) of integers greater than 1, with the following properties:

(a) lcm(r1, r2) = r and lcm(s1, s2) = s and lcm(t1, t2) = t,

(b)Q1 andQ2 are smooth quotients of the triangle groups ∆(r1, s1, t1) and ∆(r2, s2, t2),

respectively, so that Q1 ×Q2 is a smooth quotient of Γ = ∆(r, s, t), but

(c) at least one of u, v and w is not the order of some element of Q1 ×Q2, and

therefore

(d) Q1 ×Q2 is not a smooth quotient of Σ = ∆(u, v, w).



DISTINGUISHING TRIANGLE GROUPS 835

In the fourth case, we do the same but using three triples (r1, s1, t1), (r2, s2, t2)
and (r3, s3, t3), and a smooth abelian quotientA of ∆(r3, s3, t3), such that lcm(r1, r2, r3) =
r and lcm(s1, s2, s3) = s and lcm(t1, t2, t3) = t, but at least one of u, v and w is not
the order of some element of Q1 ×Q2 × A. In this case Q1 ×Q2 × A is a smooth
quotient of Γ but not one of Σ. (In fact we take A = Cd and (r3, s3, t3) = (d, d, d),
where d = gcd(r, s, t).)

The first two cases cover the vast majority of the triple-pairs in our set T of
‘small’ triples, but each of them has a special sub-case which despite involving
no triple-pairs from T , appeared to need special treatment. (It may be possible
to simplify the proof for those two cases by a more thorough application of the
condition rs+ rt+ st = uv + uw + vw.)

Case (1): Suppose that some maximal prime-power divisor of M = lcm(r, s, t)
greater than 3 divides just one of r, s and t, and hence also divides just one of u,
v and w.

In this case, let q be the largest such maximal prime-power divisor of M .
By swapping the triples (r, s, t) and (u, v, w) and/or re-ordering each one if nec-

essary, we may suppose that q divides both t and w but divides none of r, s, u and
v, and that t

q <
w
q , noting that t 6= w because (r, s, t) and (u, v, w) have no entry

in common.
When this happens, let m = q, let p be the prime divisor of m, so that m = pγ ,

say, and let m′ = M
q . Then mm′ = M and gcd(m,m′) = 1, with m = q > 1 and

also m′ ≥ w
q > 1. Furthermore, t 6= p, for otherwise t = m = q, and so t is coprime

to each of r and s.
Next, let (r1, s1, t1) and (r2, s2, t2) be the triples defined for each x ∈ {r, s, t} as

follows:

• x1 = x and x2 = p if x divides m, or

• x1 = m and x2 = x
m if x is a proper multiple of m (in which case x = t), or

• x1 = x and x2 is a small prime divisor of x if x divides m′

(so p does not divide x), or

• x1 = gcd(x,m′) and x2 = gcd(x,m) if 1 < gcd(x,m) < m and gcd(x,m′) > 1.

Then clearly x1 > 1 and x2 > 1 and lcm(x1, x2) = x for all x ∈ {r, s, t}.
Moreover, each xi is a divisor of either m or m′, and in particular, t1 = m and
t2 = t

m or p, but on the other hand, none of r2, s2 and t2 is divisible by m. (To see
this, note that if x divides m, and p = x2 = m, then x = m = p and so t = x = p,
but we showed above that t 6= p.)

Hence the L2-set of (r1, s1, t1) is {m, b} or {m, b, c} where b and c are divisors of
m′, while the prime-power m = pγ divides no member of the L2-set of (r2, s2, t2).

In fact, the L2-set L of (r2, s2, t2) has one of the following forms, where α satisfies
1 ≤ α < γ, and k and l are prime divisors of m′ :

(a) {pα} or {pα, tm}, if p divides r and s,

(b) {pα, tm} or {pα, k} or {pα, tm , k}, if p divides just one of r and s,

(c) { tm} or { tm , k} or { tm , k, l}, if p divides neither r nor s.
(Note that in case (c), we cannot have t2 = p, again because t is not coprime to

r and s.)
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Now if w
m divides no element of the L2-set of (r2, s2, t2), then primes p1 and p2

can be found such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (r1, s1, t1)- and
(r2, s2, t2)-generated, but Q2 contains no element of order divisible by m or w

m . It
then follows that Q1 × Q2 is (r, s, t)-generated, but Q1 × Q2 contains no element
of order divisible by m w

m = w, and hence Q1 ×Q2 cannot be (u, v, w)-generated, a
contradiction.

(For example, when (r, s, t) = (21, 270, 441) and (u, v, w) = (27, 63, 1470), with
M = 2 · 27 · 5 · 49, we take m = q = 49 and m′ = 270, and then (r1, s1, t1) =
(3, 270, 49) and (r2, s2, t2) = (7, 2, 9), with L2-sets {49, 270} and {2, 7, 9}, and we
can choose p2 so that Q2 = PSL(2, p2) has elements of order 14 and 9 but no
element of order m = 49 or w

m = 30, and so Q1 × Q2 has no element of order
49 · 30 = 1470 = w.)

Case (1) special sub-case: To complete case (1), we show that no element
of the L2-set of (r2, s2, t2) is divisible by w

m . This is the most intricate part of the
proof.

Assume the contrary. Then since w
m divides neither pα nor t

m , it must divide k
or l, and so we may suppose that w = mk, where k is a prime divisor of m′ but
not one of t

m and hence not one of t. Also because k ∈ L we may suppose from the
definition of (r2, s2, t2) that at least one of r and s divides m′ and is divisible by k
(but not by p). Moreover, if every x ∈ {r, s} with this property were divisible by
another prime divisor k′ of m′, then we could re-define x2 as k′, and thereby alter
L so it contains no element divisible by k = w

m . Hence we may suppose that one of
r and s, say r, is a power of k.

Next, because k is coprime to t, but r is not coprime to both s and t, we find
that s is divisible by k as well. Also gcd(r, s) is divisible by k, so k is odd (because r
and s cannot both be even), and gcd(u, v, w) = gcd(r, s, t) = 1 because r is coprime
to t, and then since gcd(r, s) = k we find by part (c) of Lemma 3.3 that exactly two
of u, v and w are divisible by k. Hence we may suppose without loss of generality
that v is divisible by k, but u is not. In particular, if we let kλ be the largest power
of k dividing M = lcm(r, s, t), then the k-part of v is kλ, and the k-parts of r and
s are k and kλ in some order.

Now assume for the moment that s is coprime to p (and hence to m), and let
f = gcd(s, t). Then f > 1, because t is coprime to k and hence to r, and so cannot
be coprime to s. But then f is odd (as it divides both s and t), so f ≥ 3, and f
is coprime to p (as f divides s), and so km = w > t ≥ mf ≥ 3m, which implies
that k ≥ 5. Moreover, f must divide two of u, v and w, but is coprime to w, so f
divides v, which then cannot be a power of k. Hence Proposition 3.4 applies to r,
because r (= k or kλ) is coprime to 6 while none of u, v and w is a power of k. This
contradiction shows that gcd(p, s) > 1, and puts us in case (b) of the possibilities
for the set L.

In particular, s must be divisible by pα, and so p is odd (because t is divisible
by p as well), and also pα divides exactly one of u and v (because it divides s and
t and w but not r).

Thus (r, s, t) = (k, kλpαs′,mt′) or (kλ, kpαs′,mt′) for some positive integers s′

and t′, both coprime to k and m, and (u, v, w) = (pαu′, kλv′, km) or (u′, pαkλv′, km)
for some positive integers u′ and v′, both coprime to k and m. Also k1+λpαs′mt′ =
rst = uvw = pαk1+λu′v′m and therefore s′t′ = u′v′.
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Moreover, gcd(r, s) = k and gcd(r, t) = 1 and gcd(s, t) = pα gcd(s′, t′), the least
common multiple of which is kpα gcd(s′, t′), while gcd(u, v) = gcd(u′, v′), and either
gcd(u,w) = pα and gcd(v, w) = k, or gcd(u,w) = 1 and gcd(v, w) = pα, with least
common multiple kpα gcd(u′, tv). Hence by part (c) of Lemma 3.3 we find that
gcd(s′, t′) = gcd(u′, v′). In particular, it follows that if gcd(s′, t′) = 1 then u is
divisible by pα, for otherwise u = u′ which is coprime to each of v and w.

We can now complete this sub-case by considering possibilities for s′ and t′.
Case (i): Suppose s′t′ = 1. Then u′v′ = s′t′ = 1 and so s′ = t′ = u′ = v′ = 1,

which gives (r, s, t) = (k, kλpα,m) and (u, v, w) = (pα, kλ, km) because u > 1,
and then also λ > 1, because r 6= v and u > 1. Next, dividing the identity
rs+rt+st = uv+uw+vw by kpα gives kλ+pγ−α+kλ−1m = kλ−1+kλpγ−α+m, and
it follows that kλ ≡ kλ−1 mod pγ−α and pγ−α ≡ m mod kλ−1, and therefore k ≡ 1
mod pγ−α and 1 ≡ pα mod kλ−1. Accordingly, we find that pα > kλ−1 ≥ k > pγ−α,
which gives α > γ − α > 0, and so α > 1.

Now we can define (u1, v1, w1) = (pα, kλ,m) and (u2, v2, w2) = (p, k, k), so that
y1 > 1 and y2 > 1 and lcm(y1, y2) = y for all y ∈ {u, v, w}, and the L2-sets of
(u1, v1, w1) and (u2, v2, w2) are {kλ,m} and {k, p}, respectively. Hence there exist
primes p1 and p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (u1, v1, w1)-
and (u2, v2, w2)-generated, respectively, but Q1 contains no element of order kλpα,
and Q2 contains no element of order kλ or pα (since λ > 1 and α > 1). It follows
that Q1 ×Q2 is (u, v, w)-generated, but contains no element of order kλpα = s, so
cannot be (r, s, t)-generated, a contradiction.

Case (ii): Suppose s′t′ > 1. Here the situation depends on whether k = 3 or
k > 3.

If k > 3, then v cannot be a proper multiple of kλ, for otherwise Proposition 3.4
would apply to r (= k or kλ), and therefore v = kλ (and v′ = 1), and pα divides
u. Then since r 6= v we find that (r, s, t) = (k, kλpαs′,mt′) while (u, v, w) =
(pαs′t′, kλ, km), and λ > 1.

If s′ = 1, then t′ > 1, and we can take (u1, v1, w1) = (pα, kλ,m) and (u2, v2, w2) =
(t′, k, k), with L2-sets {kλ,m} and {k, t′}, and accordingly there exist primes p1 and
p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (u1, v1, w1)- and (u2, v2, w2)-
generated, but Q1 has no element of order kλpα (even if α = 1), and Q2 has no
element of order kλ or pα. It follows that Q1 ×Q2 is (u, v, w)-generated, but con-
tains no element of order kλpα = s, and so Q1 ×Q2 cannot be (r, s, t)-generated, a
contradiction.

Hence s′ > 1. But now we can take (u1, v1, w1) = (pαs′t′, kλ,m) and (u2, v2, w2) =
(p, k, k), as in case (i) above, with L2-sets {kλ,ms′t′} and {k, p}, and there exist
primes p1 and p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (u1, v1, w1)-
and (u2, v2, w2)-generated, but Q1 has no element of order kλs′, and Q2 has no
element of order kλ or pαs′, and again Q1 × Q2 is (u, v, w)-generated, but has no
element of order kλpαs′ = s, so cannot be (r, s, t)-generated, another contradiction.

On the other hand, suppose k = 3. Then p > 3, so s ≥ kpα > 3, and since
t < w = 3m, we have t = m or 2m, and then u′v′ = s′t′ = s′ or 2s′, with s′ coprime
to 3 (= k) and p.

Now if t = m = pγ , then t′ = 1, so u′v′ = s′t′ = s′ > 1. Also if u 6= pα, then
none of u, v and w is a power of p, in which case Proposition 3.4 applies to t,
and therefore u = pα (with u′ = 1) and v = kλv′ = kλs′. Accordingly, we have
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(r, s, t) = (3, 3λpαs′,m) or (3λ, 3pαs′,m), and (u, v, w) = (pα, 3λs′, 3m). Hence we
can take (u1, v1, w1) = (pα, 3λ,m) and (u2, v2, w2) = (p, s′, 3), with L2-sets {3λ,m}
and {3, p, s′}, and find there are primes p1 and p2 such that Q1 = PSL(2, p1) and
Q2 = PSL(2, p2) are (u1, v1, w1)- and (u2, v2, w2)-generated, but Q1 has no element
of order 3p, 3s′ or ps′, and Q2 has no element of order 3s′ or ps′. It follows that
Q1 × Q2 has no element of order 3ps′ and hence no element of order s, so again
Q1 ×Q2 is (u, v, w)-generated but not (r, s, t)-generated, another contradiction.

Thus t = 2m = 2pγ , with t′ = 2, and then s is odd, so gcd(s′, t′) = 1, and
it follows that u is divisible by pα, by observations made before case (i) above.
Accordingly, we have (r, s, t) = (3, 3λpαs′, 2m) or (3λ, 3pαs′, 2m), where p > 3, and
s′ is coprime to 2, 3 and p, while (u, v, w) = (pαu′, 3λv′, 3m) and 2s′ = u′v′. Also
u′ is even, for otherwise u′ divides s′ and then u = pαu′ strictly divides s = 3λpαs′

or 3pαs′, so Proposition 3.4 applies to u. Hence we can write s′ as gh where
g = gcd(s′, u′) and h = gcd(s′, v′), and then we have (r, s, t) = (3, 3λpαgh, 2m) or
(3λ, 3pαgh, 2m) and (u, v, w) = (2pαg, 3λh, 3m).

Finally, rs+rt+st = 3λ+1pαgh+6m+3λpα2ghm or 3λ+1pαgh+3λ2m+6pαghm,
while uv + uw + vw = 3λpα2gh + 3mpα2g + 3λ+1mh, and in each case dividing
by 3pα and then taking residues mod p gives 3λgh ≡ 3λ−12gh mod p, so p divides
3λ−1gh(3− 2) = 3λ−1gh, which is impossible.

Case (2): Suppose that some maximal prime-power divisor q of M = lcm(r, s, t)
divides just one of r, s and t, and just one of u, v and w, but the largest such q is
2 or 3.

Here we may suppose that q divides t and w, but divides none of r, s, u and v,
while every maximal prime-power divisor of M greater than 3 divides at least two
of r, s and t, and least two of u, v and w. Also neither t nor w can be equal to
q, for otherwise case (d) of Proposition 3.5 would hold, and so each of them is a
proper multiple of q.

We claim that t and w are not divisible by the same maximal prime-power
divisors of M. Assume the contrary, and that (say) t < w. Then w has a non-trivial
prime-power divisor k 6= q such that k does not divide t. If k > q then k cannot be
a maximal prime-power divisor of M (for otherwise by assumption k would divide
t), and so k strictly divides some maximal prime-power divisor of M , which then
divides both u and v. But this implies that k divides all three of u, v and w, and
so divides gcd(u, v, w) = gcd(r, s, t), a contradiction (again since k does not divide
t). Hence the only possibility is k = 2, giving q = 3, and then (t, w) = (3c, 6c} for
some odd c. Also one of r and s must be even, say s, so s = 2b for some b coprime
to 6. Now 6rbc = rst = uvw = 6uvc, and so rb = uv, which is coprime to 6, and
yet 2rb ≡ rs ≡ rs+ rt+ st ≡ uv+uw+ vw ≡ uv ≡ rb mod 3, from which it follows
that 3 divides 2rb− rb = rb, a contradiction.

Hence we may suppose that there exists a maximal prime-power divisor m of M
that divides w but not t. Then since m does not divide t, it divides r and s, so
cannot be even, and as it does not divide gcd(r, s, t) = gcd(u, v, w), it divides just
one of u and v, say v. It follows that m 6= 3, for otherwise q = 2 and then u is
coprime to 6 while r, s and t are divisible by 3, 3 and 2, so Proposition 3.4 applies
to u. Thus m is odd and m > 3.
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With this choice of m, again let m′ = M
m , so mm′ = M and gcd(m,m′) = 1.

This time m′ is divisible by w
m and hence by q, and so gcd(t,m′) is divisible by q,

giving gcd(t,m′) > 1.
Now let p be the prime divisor of m, and let (r1, s1, t1) = (m,m, gcd(t,m′)),

and let r2 = p or r
m , depending on whether or not r = m, and let s2 = p or s

m ,
depending on whether or not s = m, and let t2 be gcd(t,m) or the smallest prime
divisor of t

q , depending on whether or not gcd(t,m) > 1. Then x1 > 1 and x2 > 1

and lcm(x1, x2) = x for all x ∈ {r, s, t}. Note also that r2 6= p and s2 6= p when
m = p, because otherwise r or s is equal to p and then Proposition 3.4 applies to r
or s.

Next, the L2-set of (r1, s1, t1) is {m, gcd(t,m′)}, while the L2-set of (r2, s2, t2)
contains no element divisible by m or q, and hence no element of order w

m = q w
qm ,

since none of r2, s2 and t2 is divisible by m or q. It follows that unless w
m = 2 or

3, there exist primes p1 and p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2)
are (r1, s1, t1)- and (r2, s2, t2)-generated, respectively, but Q1 contains no element
of order mq, and Q2 contains no element of order divisible by m or w

m . When that
happens, Q1 × Q2 is (r, s, t)-generated but has no element of order m w

m = w, and
so Q1 ×Q2 cannot be (u, v, w)-generated, a contradiction.

(For example, when (r, s, t) = (175, 1225, 1470) and (u, v, w) = (245, 3675, 350),
with M = 2 · 3 · 25 · 49, we take q = 2, m = 25 and m′ = 294, and then (r1, s1, t1) =
(25, 25, 294) and (r2, s2, t2) = (7, 49, 5), with L2-sets {25, 294} and {5, 49}, and we
can choose p2 so that PSL(2, p2) has elements of order 5 and 49 but no element of
order m = 25 or w

m = 14.)

Case (2) special sub-case: To complete case (2), we suppose that w
m = 2 or

3. Then we have w = qm = 2m or 3m, while every maximal prime-power divisor
of M not in {2, q,m} divides both u and v. So now let B be the product of those
other maximal prime-power divisors of M . Then B is odd and divides both u and
v, while q does not divide u or v, and since m divides at least two of u, v and w, we
may suppose without loss of generality that v = mB and u = pαB for some α ≥ 0.

It follows that (r, s, t) = (mr′,ms′, qpαt′) for some divisors r′, s′ and t′ of B,
while (u, v, w) = (pαB,mB, qm). Then from qpαm2r′s′t′ = rst = uvw = qpαm2B2

we find that r′s′t′ = B2. Also each of r′, s′ and t′ must be greater than 1, since for
example if r′ = 1 then s′t′ = B2 and so s′ = t′ = B, but then s = mB = v, which
is impossible. Moreover, pα < m, for otherwise t = qpαt′ ≥ qm = w.

Now if α > 0, then we can take (u1, v1, w1) = (B,B, q) and (u2, v2, w2) =
(pα,m,m), which have L2-sets {q,B} and {m} respectively, and then find primes
p1 and p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (u1, v1, w1)- and
(u2, v2, w2)-generated, but so that Q1 has no element of order qt′, and Q2 has no
element of order pαt′ or pαq. It then follows that Q1 × Q2 is (u, v, w)-generated,
but has no element of order qpαt′ = t and so cannot be (r, s, t)-generated, a con-
tradiction.

Thus α = 0, which gives u = B and t = qt′. In particular, u = B is coprime to
qm = w, and so gcd(r, s, t) = gcd(u, v, w) = 1. (It also follows that B is divisible
by 3, for otherwise Proposition 3.4 applies to u, with r, s and t being divisible by
m, m and q, and hence in particular, q = 2; but we do not need to know these
things.)
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Next, consider the maximal prime-power divisors of M that divide B. Every
such divisor k is coprime to at least one of r′, s′ and t′, because 1 = gcd(r, s, t) =
gcd(r′, s′, t′), and so must divide exactly two of them. It follows that there exist
pairwise coprime odd positive integers f , g and h such that (r′, s′, t′) = (fg, fh, gh),
namely f = gcd(r′, s′), g = gcd(r′, t′) and h = gcd(s′, t′), so that B = fgh.
Moreover, g > 1, for otherwise we find that v = mB = mfgh = mfh = ms′ = s,
and similarly h > 1. Also f > 1, for otherwise (r, s, t) = (mg,mh, qgh) and
(u, v, w) = (gh,mgh, qm) and then since at least two of m, g and h are coprime to
3 and hence to 6, we find that Proposition 3.4 applies to r or s or u.

But now it follows that we can take (r1, s1, t1) = (mf,mf, gh) and (r2, s2, t2) =
(g, h, q), which have L2-sets {mf, gh} and {q, g, h} respectively, and then find
primes p1 and p2 such that Q1 = PSL(2, p1) and Q2 = PSL(2, p2) are (r1, s1, t1)-
and (r2, s2, t2)-generated, but Q1 has no element of order mfg or mfh, and Q2

has no element of order mf or gh. Then Q1 × Q2 is (r, s, t)-generated, but has
no element of order mfgh = mB = v and so cannot be (u, v, w)-generated, a final
contradiction.

Remarks: Cases (1) and (2) considered above apply to 535695 and 6507 of the
542695 triple-pairs in the set T given earlier, leaving just 768 of those triple-pairs
to be covered.

For the remaining possibilities, we may suppose that every maximal prime-power
divisor k of M divides two or more of r, s and t, and two or more of u, v and w.
In particular, every such k is odd, and therefore M is odd, so each of r, s, t, u, v
and w is odd.

Now for the moment, assume that gcd(r, s, t) = gcd(u, v, w) = 1. Then each
prime divisor k of r must be coprime to one of s and t, say s, and furthermore, if
m = kλ is the maximum power of k dividing M , then m must divide r and t but
be coprime to s. The analogous argument works for each of s, t, u, v and w, and
hence every one of r, s, t, u, v and w is a product of maximal prime-power divisors
of M . Next, let x be the smallest one of r, s, t, u, v and w that is not divisible by
3, and suppose without loss of generality that x ∈ {u, v, w}. Then x is coprime to
6, and cannot be a multiple of any of r, s and t, and so each of r, s and t is divisible
by some odd prime that does not divide x, but in that case Proposition 3.4 applies
to x, a contradiction.

Thus gcd(r, s, t) = gcd(u, v, w) > 1, and in particular, no two of r, s and t are
coprime, and the same holds for u, v and w.

Case (3): Suppose that no maximal prime-power divisor q of M = lcm(r, s, t)
divides just one of r, s and t (or just one of u, v and w), but that some such q
divides exactly two of r, s and t, and is coprime to the third.

In this case, q is coprime to gcd(r, s, t) = gcd(u, v, w), and hence also q divides
two of u, v and w and is coprime to the third. By swapping the triples (r, s, t) and
(u, v, w) and/or re-ordering each one if necessary, we may suppose that gcd(r, q) =
gcd(u, q) = 1, so that s, t, v and w are the elements of {r, s, t, u, v, w} divisible by
q. Also we may suppose also that w is the largest of these.

Now let m = q and m′ = M
q , and define the triples (r1, s1, t1) and (r2, s2, t2) as

follows:

• s1 = m and s2 = s
m = gcd(s,m′),
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• t1 = t
m = gcd(t,m′) and t2 = m, and

• r1 = gcd(r, t1) and r2 = gcd(r, s2).

Clearly s1 = m > 1 and t2 = m > 1, and s = s1 s2 and t = t1 t2. Also
s2 = gcd(s,m′) > 1, for otherwise s = m and then gcd(r, s) = 1, which contradicts
the observation made above that gcd(r, s, t) > 1. Similarly t1 = gcd(t,m′) > 1.
Thus s = ms2 > m and t = mt1 > m, and so s ≥ 3m and t ≥ 3m, and it follows
that w > 3m.

Next, every maximal prime-power divisor of M divides s or t (or both) and
hence every maximal prime-power divisor of r divides s

m = s2 or t
m = t1, and

so lcm(r1, r2) = r. Moreover, r1 = gcd(r, t1) = gcd(r, t1m) = gcd(r, t) > 1, and
similarly r2 = gcd(r, s2) > 1.

The L2-set of (r1, s1, t1) is {m, t1} since r1 = gcd(r, t1) divides t1, which is
coprime to m, and similarly, the L2-set of (r2, s2, t2) is {m, s2}.

It follows that there exist primes p1 and p2 such that Q1 = PSL(2, p1) and
Q2 = PSL(2, p2) are (r1, s1, t1)- and (r2, s2, t2)-generated, but each of Q1 and Q2

has no element of order k such that k divides M = mm′ and is strictly divisible by
m.

In particular, Q1 × Q2 is (r, s, t)-generated. But on the other hand, the only
orders of elements of Q1×Q2 that are divisors of M and strictly divisible by m are
divisors of ms2 (= s) or t1m (= t), or perhaps 3m, and then because w is greater
than 3m, s and t, it follows that Q1×Q2 has no element of order w, and so Q1×Q2

is not (u, v, w)-generated, a contradiction.
(For example, when (r, s, t) = (105, 585, 819) and (u, v, w) = (315, 117, 1365),

with M = 9 · 5 · 7 · 13, we can take m = 13 and m′ = 315, and then (r1, s1, t1) =
(21, 13, 63) and (r2, s2, t2) = (15, 45, 13), with L2-sets {13, 63} and {13, 45}, and we
can choose p1 and p2 so that Q1 ×Q2 has no element of order w = 13 · 105.)

Remarks: This case applies to 766 of the 542695 triple-pairs in our set T ,
leaving just 768 − 766 = 2 triple-pairs in T that need to be covered by case (4).
A computation using Magma [1] shows that in these two cases, there is no direct
product of the form PSL(2, p1) × PSL(2, p2) that is a smooth quotient of one of
∆(r, s, t) and ∆(u, v, w) but not the other, and thereby explains why we need to
consider direct products of three quotients for some triple-pairs.

Case (4): Suppose that every maximal prime-power divisor of M = lcm(r, s, t)
divides exactly two of r, s and t but is not coprime to the third (and hence also
divides exactly two of u, v and w but is not coprime to the third).

In this case, every prime divisor of M divides all six of r, s, t, u, v and w, and
hence divides d = gcd(r, s, t) = gcd(u, v, w) > 1. On the other hand, none of those
six is equal to d, because otherwise case (j) of Proposition 3.5 applies. Also by
swapping and/or re-ordering the triples (r, s, t) and (u, v, w), we may suppose that
w = max({r, s, t, u, v, w}).

Now let D be the product of all maximal prime-power divisors of M that divide
d, let X be the set of all maximal prime-power divisors of M that do not divide d,
and let E be their product. Then D divides d, and M = DE with gcd(D,E) = 1.
Also every q ∈ X divides exactly two of r, s and t but does not divide the third,
and divides exactly two of u, v and w but does not divide the third. Moreover, no
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q ∈ X can be prime, for otherwise q divides d. Hence every q ∈ X is of the form
pα for some odd prime p and some α ≥ 2, and in particular, 3 6∈ X.

Also let X1 be the set of all q ∈ X that divide r and s but not t, let X2 be
the set of all q ∈ X that divide r and t but not s, let X3 be the set of all q ∈ X
that divide s and t but not r, and let m1, m2 and m3 be the product of the
members of X1, X2 and X3, respectively. Then E = m1m2m3, with m1, m2 and
m3 pairwise coprime, and it is easy to see that r = lcm(m1m2, d) = m1m2r

′ for
some r′ dividing d, while s = lcm(m1m3, d) = m1m3s

′ for some s′ dividing d, and
t = lcm(m2m3, d) = m2m3t

′ for some t′ dividing d.
Next, let (r1, s1, t1) = (m1,m1,m3), (r2, s2, t2) = (m2,m3,m2) and (r3, s3, t3) =

(d, d, d). Then xi > 1 for all x ∈ {r, s, t} and all i, and lcm(r1, r2, r3) = lcm(m1m2, d) =
r, and lcm(s1, s2, s3) = lcm(m1m3, d) = s, and lcm(t1, t2, t3) = lcm(m2m3, d) = t.

The L2-sets of (r1, s1, t1) and (r2, s2, t2) are {m1,m3} and {m2,m3}, and it
follows that there exist primes p1 and p2 such that Q1 = PSL(2, p1) and Q2 =
PSL(2, p2) are (r1, s1, t1)- and (r2, s2, t2)-generated respectively, but Q1 has no
element of order k where k divides E but does not divide m1 or m3, and Q2 has
no element of order k where k divides E but does not divide m2 or m3. Then since
3 6∈ X, it follows that if Q1 ×Q2 has an element of order k where k is a product of
members of X, then k divides m1m2, m1m3 or m3m2.

Now Q1×Q2 is (m1m2,m1m3,m2m3)-generated, and hence if A = Cd, which is
(d, d, d)-generated, then also Q1 ×Q2 ×A is (r, s, t)-generated.

On the other hand, w = mw′ = lcm(m, d) for some product m of members of X
and some divisor w′ of d, and as w

d >
x
d for all x ∈ {r, s, t}, we know that m cannot

divide any of m1m2, m1m3 and m3m2, and it follows that Q1×Q2 has no element
of order m.

Thus Q1×Q2×A has no element of order lcm(m, d) = w, and hence Q1×Q2×A
cannot be (u, v, w)-generated, a final contradiction.

(Examples include the two triple-pairs {(28665, 266175, 621075), (47775, 53235, 1863225)}
and {(47775, 266175, 372645), (53235, 143325, 621075)}, not covered by cases (1)
and (2), with d = gcd(r, s, t) = 1365 = 3 · 5 · 7 · 13 and D = 1 and M =
lcm(r, s, t) = 33 52 72 132 for both, and (m1,m2,m3) = (32, 72, 652) and (52, 72, 392)
respectively.)

This case completes the first new proof. �

5. The Second New Proof, using Divisor Triples

Again here we may suppose that (r, s, t) and (u, v, w) are non-exceptional hy-
perbolic triples for which Γ = ∆(r, s, t) and Σ = ∆(u, v, w) have exactly the same
finite quotients, and hence satisfy the conclusions of Lemma 3.3, but not the princi-
pal hypothesis of Proposition 3.4, and do not satisfy any of the sufficient conditions
(b) to (f) given in Proposition 3.5.

In particular, no element of one of the triples can be coprime to each of the other
two, and it follows that the L2-sets of the triples (r, s, t) and (u, v, w) are both equal
to {M}, where M = lcm(r, s, t) = lcm(u, v, w).

The approach we take is to show that for some triple (k, l,m), consisting of
respective divisors of either r, s and t, or u, v and w, there exists a (k, l,m)-
generated group Q that is a quotient of one of just one of Γ and Σ, which contradicts
Lemma 3.2.
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Just as in the first new proof, the choice of triple (k, l,m) depends on the distri-
bution of the maximal prime-power divisors of M among the divisors of r, s, t, u,
v and w. The group Q in each case is an extension of an abelian normal subgroup
N ∼= C 2g

n by G = PSL(2, h), where n > 1 and h is a carefully chosen prime, and
2− 2g = |G|

(
1
k + 1

l + 1
m − 1

)
as described shortly after Theorem 2.2 in Section 2.

We proceed by considering two possibilities, each of which is a combination of
two of the cases from the first new proof. Credit should go to Frankie Chan for the
choice of (k, l,m) in the second possibility, even though it now seems obvious with
the benefit of hindsight! Also the approach for both possibilities further underlines
the value of the Macbeath trick.

Cases (1) and (2): Suppose that some maximal prime-power divisor of M =
lcm(r, s, t) divides just one of r, s and t, and also so divides just one of u, v and w.

Let q = pγ be the smallest such maximal prime-power divisor of M , and also
suppose without loss of generality that q divides t and w, and that t < w.

Now take (k, l,m) = (u, v, wp ). Then by our choice of q = pγ and the assumption

that w is not coprime to both u and v, it follows that w
p is not coprime to both u

and v, and hence the L2-set of (k, l,m) is {Mp }, where M
p is not divisible by q.

Next, let h be an odd prime such that h−1
2 or h+1

2 is divisible by M
p , but not

by q, and hence not by w or M . Then G = PSL(2, h) is a smooth quotient of the
triangle group ∆(u, v, wp ), and accordingly, so is an extension Qn of C 2g

n by G for

any positive integer n, where 2 − 2g = |G|
(
1
u + 1

v + p
w − 1

)
. In particular, every

such Qn is a quotient of Σ = ∆(u, v, w), but has no element of order q (or w).
On the other hand, G is also a quotient of Γ = ∆(r, s, t), but we can show thatQn

is not, for every n > 1. For suppose the contrary. Then G = PSL(2, h) is (k, l,m)-
generated for some divisors k, l and m of r, s and t, respectively, and then for any
such triple (k, l,m), the third entry m must divide t

p because G has no element of

order q. Hence the largest conceivable value of f for which an extension of C 2f
n

by G is a smooth quotient of ∆(k, l,m) is given by 2 − 2f = |G|
(
1
r + 1

s + p
t − 1

)
.

But now since 1
r + 1

s + 1
t = 1

u + 1
v + 1

w and t < w, it follows that 2g−2f =

(2−2f)− (2−2g) = |G|
(
p
t −

1
t −

p
w + 1

w

)
= |G|(p− 1)( 1

t −
1
w ) > 0, so f < g. Thus

Qn cannot be a smooth quotient of ∆(k, l,m), and hence cannot be a quotient of
∆(r, s, t), a contradiction.

Cases (3) and (4): Suppose that no maximal prime-power divisor of M =
lcm(r, s, t) divides just one of r, s and t (or just one of u, v and w).

In this case, every maximal prime-power divisor of M divides two or all three
of r, s and t, and at least one of them divides exactly two of r, s and t, since by
assumption no entry of (r, s, t) is equal to gcd(r, s, t). The analogous properties
hold also for the triple (u, v, w). Moreover, by the remarks following cases (1) and
(2) in our first proof, we can suppose that gcd(r, s, t) = gcd(u, v, w) > 1.

So let q = pγ be the smallest maximal prime-power divisor of M that divides
exactly two of r, s and t, and suppose without loss of generality that q divides s, t,
v and w, and r < u.

Now let (k, l,m) = (r, sp ,
t
p ). Then by our choice of q = pγ and because

gcd(r, s, t) > 1, we find that the L2-set of (k, l,m) is {Mp } once more, and that
M
p is not divisible by q.
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Again let h be an odd prime such that h−1
2 or h+1

2 is divisible by M
p , but not by

q, and hence not by v or w or M . Then G = PSL(2, h) is a smooth quotient of the
triangle group ∆(r, sp ,

t
p ), and accordingly, so is an extension Qn of C 2g

n by G for

any positive integer n, where this time 2− 2g = |G|
(
1
r + p

s + p
t − 1

)
. In particular,

every such Qn is a quotient of Σ = ∆(r, s, t), but has no element of order q (or s
or t).

On the other hand, G is also a quotient of Γ = ∆(u, v, w), but we can show that
Qn is not, for every n > 1. For otherwise G = PSL(2, h) is (k, l,m)-generated for
some divisors k, l and m of u, v and w, respectively, and then for any such triple
(k, l,m), the second and third entries must divide v

p and w
p , as G has no element

of order q. Hence the largest conceivable value of f for which an extension of C 2f
n

by G is a smooth quotient of ∆(k, l,m) is given by 2− 2f = |G|
(
1
u + p

v + p
w − 1

)
.

But now since p
r + p

s + p
t = p

u + p
v + p

w and r < u, it follows that 2g−2f =

(2−2f)− (2−2g) = |G|
(
1
u −

p
u −

1
r + p

r

)
= |G|(p− 1)( 1

r −
1
u ) > 0, so f < g. Thus

Qn cannot be a smooth quotient of ∆(k, l,m), and hence cannot be a quotient of
∆(u, v, w), a contradiction.

This completes the shorter proof. �
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