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ON A THEOREM OF COOPER
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Abstract. The classical result of Cooper states that every pure strongly contin-

uous semigroup of isometries {Vt}t≥0 on a Hilbert space is unitarily equivalent

to the shift semigroup on L2([0,∞)) with some multiplicity. The purpose of
this note is to record a proof which has an algebraic flavour. The proof is

based on the groupoid approach to semigroups of isometries initiated in [8].

We also indicate how our proof can be adapted to the Hilbert module setting
and gives another proof of the main result of [3].

1. Introduction

Two classical results in the theory of semigroups of isometries are Wold decompo-
sition for a single isometry and its generalisation, by Cooper ([5]), to the continuous
case. Let {St}t≥0 be the shift semigroup on L2([0,∞)) defined by

St(ξ)(s) :=

{
ξ(s− t) if s ≥ t,

0 if s < t.
(1.1)

for ξ ∈ L2([0,∞)).
Cooper’s result asserts that if {Vt}t≥0 is a strongly continuous semigroup of

isometries on a Hilbert space H which is pure, i.e. V ∗t → 0 strongly as t → ∞,
then up to unitary equivalence, H = L2([0,∞))⊗ L for some Hilbert space L and
Vt = St ⊗ 1. The traditional proofs of Cooper’s result available in the literature
([5], [15] and [7]) make essential use of unbounded operators. A proof relying only
on bounded operators can be found in [16]. Another such proof can be found in
[3], where Cooper’s result was generalised to the Hilbert C∗-module setting. The
purpose of this note is to add another such proof, based on the groupoid approach
to semigroup C∗-algebras initiated by Muhly and Renault in [8]. Also, the proof
adapts well to the Hilbert module setting and gives another proof of the main result
of [3].

We hope to convince the reader that Cooper’s result is yet another reflection
of the fundamental fact regarding the representation theory of the C∗-algebra of
compact operators that asserts that any non-degenerate representation of K(H) is
unitarily equivalent to the ‘natural standard representation’ of K(H) on H, with
some multiplicity. This fact, not difficult to prove, has many powerful implications.
Two well known corollaries, when viewed from the ‘correct algebraic perspective’,
are the following.

(i) A finite group has only finitely many irreducible representations, up to unitary
equivalence.
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(ii) Stone-von Neumann theorem that asserts the uniqueness of the irreducible
family of two 1-parameter unitary groups that obey the Weyl commutation
relation.

We wish to demonstrate that Cooper’s result is a third such corollary, when the
result is cast in operator algebraic terms. Moreover, we wish to convey that the
algebraic reason for the validity of Cooper’s result in the Hilbert module setting is
the fact that K(L2([0,∞))) and C are Morita equivalent.

Next, we explain the strategy that we pursue. We imitate the operator algebraic
proof, which is folklore, of the Wold decomposition for a single pure isometry. The
proof for a single isometry proceeds as follows. Let T be the universal C∗-algebra
generated by a single isometry v. Set p := 1− vv∗. Then, the ideal generated by p
in T is isomorphic to the algebra of compact operators K := K(`2(N)).

By the universal property of T , isometries on Hilbert spaces are in bijective
correspondence with unital representations of T . Moreover, pure isometries cor-
respond to representations π of T for which the restriction π|K is non-degenerate.
Cleary, if π|K is non-degenerate, then the restriction π|K determines π. Applying
the representation theory of K, it follows immediately that if V is a pure isometry
on a Hilbert space H, then H = `2(N)⊗L for some Hilbert space L and V = S⊗1,
where S is the standard shift on `2(N).

The Wold decomposition for a generic isometry as a direct sum of a shift with
multiplicity and a unitary can be proved, as indicated above, by making use of the
following fundamental short exact sequence

0 −→ K −→ T −→ C(T) −→ 0.

The above proof can be imitated in the continuous case if we have the analog of
the Toeplitz algebra in the continuous case. Such a universal algebra1 that encodes
semigroups of isometries, indexed by an Ore semigroup P , with commuting range
projections, is provided by Theorem 7.4 of [13] which is the main theorem of [13].
Thanks to the total order structure on [0,∞), it follows that any 1-parameter
semigroup of isometries has commuting range projections. Thus, we can apply
Theorem 7.4 of [13]. We take Theorem 7.4 of [13] as our starting point and work
exactly as in the discrete setup. To keep this paper as much self-contained as
possible, we include details concerning the main points of Theorem 7.4 of [13] in
the special case when the semigroup P = [0,∞). We have repeated some details
from [13].

The idea of exploiting groupoids to study C∗-algebras associated to semigroups
was due to Muhly and Renault ([8]), where the Wiener-Hopf algebra associated to
a cone was shown to be isomorphic to the C∗-algebra of the Wiener-Hopf groupoid.
We use the Wiener-Hopf groupoid, considered in [8], in the base case when the cone
is 1-dimensional. It is probable that the proof presented in this paper is already
known to many experts. Nevertheless, the author is unable to locate a reference
and believes that the proof is worth recording. A few reasons for recording this
proof are given at the end of this paper.

1It is well known that such a universal algebra is nothing but the Wiener-Hopf algebra. However,
the proofs found in the literature, for example [16], always derives the universal picture of the
Wiener-Hopf algebra from Cooper’s result. The proof given in [13] does not a priori assume

Cooper’s result.
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Since we will talk about Hilbert C∗-modules at the end of this article, our con-
vention is that inner products on Hilbert spaces and Hilbert modules are linear in
the second variable.

2. Proof of Cooper’s Theorem

We make essential use of the Wiener-Hopf groupoid first considered in [8]. We
refer the reader to Section 2 of [8] for the basics on groupoids and their C∗-algebras.
In this paper, we make use of only one groupoid and its associated ∗-algebra (it
is not even necessary to complete it) whose multiplication and adjoint formula we
recall first.

Let [0,∞] be the one point compactification of [0,∞). Let

G := {(x, t) ∈ [0,∞]× R : x+ t ≥ 0}.

We use the standard convention that ∞ + t = ∞ for t ∈ R. Then, G is a locally
compact Hausdorff groupoid with multiplication and inversion given by

(x, t)(y, s) := (x, t+ s) if x+ t = y

(x, t)−1 := (x+ t,−t).

The groupoid G is called the Wiener-Hopf groupoid associated to the semigroup
[0,∞). The unit space of G can be identified with [0,∞]. Let r and s be the range
and source maps respectively. Then, r(x, t) = x and s(x, t) = x+ t. For x ∈ [0,∞],
observe that the fibre

G(x) := r−1(x) ∼= [−x,∞) ∩ R.

For x ∈ [0,∞], let λ(x) be the restriction of the Lebesgue measure to the set
G(x) = [−x,∞) ∩ R. Then, λ := {λ(x)}x∈[0,∞] is a Haar system for G. Denote the
associated ∗-algebra, w.r.t λ, of G by Cc(G).

To be more precise, denote the space of continuous complex valued functions on
G with compact support by Cc(G). Then, Cc(G) is a ∗-algebra with multiplication
and involution given by

f ∗ g(x, t) : =

∫
f(x, r)g(x+ r, t− r)1[−x,∞)(r)dr,

f∗(x, t) : = f(x+ t,−t).

Let us fix notation that we will use throughout. For f ∈ Cc(R), define f̃ ∈ C([0,∞])
by

f̃(x) :=

∫ x

−∞
f(t)dt.

For φ ∈ C([0,∞]) and f ∈ Cc(R), let φ⊗ f ∈ Cc(G) be defined by

φ⊗ f(x, t) := φ(x)f(t).

Fix a strongly continuous semigroup of isometries V = {Vt}t≥0 on a Hilbert
space H. The semigroup of isometries V will be fixed until further mention. It is
not difficult to show that [0,∞) 3 t → V ∗t ∈ B(H) is strongly continuous. For a
proof, see Proposition 3.4 of [3]. For t ≥ 0, let Et be the range projection of Vt.
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For t ∈ R, set

Wt :=

{
Vt if t ≥ 0,
V ∗−t if t < 0.

(2.2)

For t ∈ R, the operator Wt is a partial isometry whose range projection we denote
by Et. Note that if s ≥ t, then Es ≤ Et (for a proof, see Example 7.7 of [13]).
This implies in particular that {Et : t ∈ R} is a commuting family of projections.
Moreover the maps R 3 t → Wt ∈ B(H) and R 3 t → Et ∈ B(H) are strongly
continuous. For a proof of this assertion, we refer the reader to Proposition 3.4 of
[13].

The main result of [13], i.e. Theorem 7.4 in the one parameter situation, asserts
the following.

Theorem 2.1. Keep the foregoing notation.
(1) There exists a unique unital ∗-homomorphism π : C([0,∞])→ B(H) such that

π(f̃) =

∫
f(t)Etdt

for f ∈ Cc(R).
(2) There exists a unique ∗-homomorphism λ : Cc(G)→ B(H) such that

λ(φ⊗ f) = π(φ)

∫
f(t)W−tdt

for φ ∈ C([0,∞]) and f ∈ Cc(R). Moreover, the map λ is continuous when
Cc(G) is given the inductive limit topology and B(H) is given the norm topol-
ogy.

Proof of uniqueness: Since {f̃ : f ∈ Cc(R)} generates C([0,∞]), it is clear that
the homomorphism π is unique. To show that λ is unique, it suffices to show that
{φ ⊗ f : φ ∈ C([0,∞]), f ∈ Cc(R)} is total in Cc(G), when Cc(G) is given the
inductive limit topology.

Let S be the linear span of {φ ⊗ f : φ ∈ C([0,∞]), f ∈ Cc(R)}. Let G ∈ Cc(G)
be given. We claim that there exists a compact subset K of R such that for every
n ≥ 1, there exists Gn ∈ S such that
(1) the support of Gn is contained in [0,∞]×K, and
(2) for (x, t) ∈ G, |Gn(x, t)−G(x, t)| ≤ 1

n .

By Tietze extension theorem, we can extendG to a continuous function G̃ defined

on [0,∞]× R. Multiplying G̃ by a compactly supported function that equals 1 on

supp(G), we can assume that G̃ is compactly supported. Choose M > 0 such that

supp(G̃) is contained in [0,∞]× [−M,M ].

Let n ≥ 1 be given. By the uniform continuity of G̃, there exists δn > 0 such
that if |t− s| < δn, then

|G̃(x, t)− G̃(x, s)| ≤ 1

n
for all x ∈ [0,∞].

Cover R by open intervals {Ik}∞k=1 of length atmost δn such that the following
holds. There exists N such that

(1) I1, I2, · · · , IN cover [−M,M ] and

N⋃
k=1

Ik is contained in (−M − 1,M + 1).
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(2) For k ≥ N + 1, the interval Ik and [−M,M ] are disjoint.
Let {fk}∞k=1 be a partition of unity subordinate to the cover {Ik}∞k=1. For each k,

pick a point tk ∈ Ik. Note that G̃(x, tk) = 0 if k ≥ N + 1.
Define Gn : G → C by

Gn(x, t) :=

N∑
k=1

G̃(x, tk)fk(t).

Then, Gn ∈ S and supp(Gn) ⊂ [0,∞]× [−M − 1,M + 1].
Let (x, t) ∈ G be given. Calculate as follows to observe that

|G(x, t)−Gn(x, t)| =
∣∣∣G̃(x, t)−

N∑
k=1

G̃(x, tk)fk(t)
∣∣∣

=
∣∣∣ ∞∑
k=1

fk(t)G̃(x, t)−
∞∑
k=1

G̃(x, tk)fk(t)
∣∣∣

≤
∞∑
k=1

fk(t)|G̃(x, t)− G̃(x, tk)|

≤ 1

n

∞∑
k=1

fk(t)

≤ 1

n
.

This proves the claim. Therefore, S is dense in Cc(G) when Cc(G) is given the
inductive limit topology. This completes the proof of uniqueness.

Remark 2.2. The validity of Theorem 2.1 is well known for a long time. If we
assume Cooper’s result, then Theorem 3.7 of [8], for the case P = [0,∞), gives the
desired result. However, the proof of Theorem 2.1 given in [13] does not a priori
assume Cooper’s theorem.

The homomorphisms π and λ of Theorem 2.1 depend on the isometric represen-
tation V . If we wish to stress their dependence on V , we denote π and λ by πV
and λV respectively.

To keep the paper self-contained (as much as possible), we include the main
details of the proof of Theorem 2.1. We repeat some details from [13]. Let

D := C∗
{∫

f(t)Etdt : f ∈ Cc(R)
}
⊂ B(H).

Then, D is a unital commutative C∗-subalgebra of B(H). We first determine the

spectrum D̂.

Lemma 2.3. Let χ ∈ D̂ be given. Then, there exists a unique x =: xχ ∈ [0,∞]
such that, for every f ∈ Cc(R),

χ
(∫

f(t)Etdt
)

=

∫ x

−∞
f(t)dt.
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Proof. Observe that the map

Cc(R) 3 f → χ
(∫

f(t)Etdt
)
∈ C

extends to a bounded linear functional on L1(R). Thus, there exists φ ∈ L∞(R)
such that

χ
(∫

f(t)Etdt
)

=

∫
f(t)φ(t)dt (2.3)

for every f ∈ Cc(R). Since Et = 1 if t ≤ 0, it follows that for every f ∈ Cc(R) with
supp(f) ⊂ (−∞, 0), we have∫

f(t)φ(t)dt = χ
(∫

f(t)Etdt
)

=

∫ 0

−∞
f(t)dt.

Therefore, φ(t) = 1 for almost all t ∈ (−∞, 0].
Define

A := {a ∈ R : φ(t) = 1 for almost all t ∈ (−∞, a]}.
We have shown that 0 ∈ A. Set x := sup(A). Clearly, φ(t) = 1 for almost all
t ∈ (−∞, x]. If x =∞, then φ = 1 a.e. and we are done. Suppose that x <∞.

We claim that φ(t) = 0 for almost all t ∈ (x,∞). Suppose not. Then, there exist
real numbers a, b with b > a > x and a function g ∈ Cc(R) with supp(g) ⊂ (a, b) and∫ b
a
g(s)φ(s)ds = 1. Let f ∈ Cc(R) be any function such that supp(f) ⊂ (−∞, a).

Note that EtEs = Es whenever t < a < s. Therefore,(∫
f(t)Etdt

)(∫
g(s)Esds

)
=
(∫ a

−∞
f(t)Etdt

)(∫ b

a

g(s)Esds
)

=
(∫

(t,s)∈(−∞,a)×(a,b)
f(t)g(s)EtEsdtds

)
=
(∫ a

−∞
f(t)dt

)∫ ∞
−∞

g(s)Esds.

Applying χ to the above equation and appealing to the fact that χ is a character,
we deduce that ∫ a

−∞
f(t)dt =

(∫ a

−∞
f(t)dt

)(∫ b

a

g(s)φ(s)ds
)

=
(∫ a

−∞
f(t)dt

)
χ
(∫

g(s)Esds
)

= χ
((∫ a

−∞
f(t)dt

)(∫
g(s)Esds

))
= χ

((∫
f(t)Etdt

)(∫
g(s)Esds

))
= χ

(∫
f(t)Etdt

)
χ
(∫

g(s)Esds
)

=

∫ a

−∞
f(t)φ(t)dt

∫ b

a

g(s)φ(s)ds

=

∫ a

−∞
f(t)φ(t)dt.
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Since f is arbitrary, we can conclude that φ(t) = 1 for almost all t ∈ (−∞, a]. This
implies that A 3 a > x = sup(A), which is a contradiction. Hence the claim is true.
Therefore, φ = 1(−∞,x]. Hence the proof. 2

As
{∫

f(t)Etdt : f ∈ Cc(R)
}

generates D, it follows that the map, which we

denote by T ,

D̂ 3 χ→ xχ ∈ [0,∞]

is 1-1. Clearly, the map χ→ xχ is continuous.
We are now in a position to define the unital homomorphism π of Theorem 2.1.

For φ ∈ C([0,∞]), set
π(φ) := G(φ ◦ T ).

Here, G : C(D̂)→ D ⊂ B(H) is the Gelfand transformation.

Let χ ∈ D̂ and f ∈ Cc(R) be given. Then, by Lemma 2.3, we have

χ
(∫

f(t)Etdt
)

=

∫ xχ

0

f(t)dt = f̃(xχ) = (f̃ ◦ T )(χ).

The above equality implies that for f ∈ Cc(R), G(f̃ ◦ T ) =
∫
f(t)Etdt. Hence, for

f ∈ Cc(R),

π(f̃) =

∫
f(t)Etdt.

The proof of Statement (1) of Theorem 2.1 is now complete.
Let B([0,∞]) be the algebra of complex valued bounded Borel functions on

[0,∞]. Denote the extension of the homomorphism π : C([0,∞])→ B(H), obtained
via the measurable functional calculus, to B([0,∞]) by π itself. Note that π is the
unique extension that satisfies DCT in the following sense.

Let (fn) be a sequence in B([0,∞]) and f ∈ B([0,∞]) be given. Suppose fn → f
pointwise and there exists M > 0 such that |fn| ≤ M . Then, π(fn) → π(f)
strongly.

For f ∈ Cc(R), let Rs(f) ∈ Cc(R) be defined by Rs(f)(t) := f(t + s). For
φ ∈ B([0,∞]) and s ∈ R, let Rs(φ) ∈ B([0,∞]) be defined by

Rs(φ)(x) :=


φ(x+ s) if x+ s ≥ 0,

0 if x+ s < 0.

(2.4)

Proposition 2.4. With the above notation, we have the following covariance rela-
tion. Let s ∈ R be given. For φ ∈ B([0,∞]),

W ∗s π(φ)Ws = π(Rs(φ)).

Proof. We split into cases.
Case 1: Suppose s ≥ 0. Observe that {Et}t∈R and {π(φ) : φ ∈ C([0,∞])}
commute. Consequently, {Et : t ∈ R} and {π(φ) : φ ∈ B([0,∞])} commute.
Therefore, the map, denoted π1,

B([0,∞]) 3 φ→ V ∗s π(φ)Vs ∈ B(H)

is a unital ∗-homomorphism. Moreover, π1 satisfies DCT. Also, the homomorphism
φ→ π(Rs(φ)), denoted π2, satisfies DCT.
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Thus, it suffices to check that V ∗s π(φ)Vs = π(Rs(φ)) for φ ∈ C([0,∞]). However,

{f̃ : f ∈ Cc(R)} generates C([0,∞]). Thus, it is enough to verify the equality

V ∗s π(f̃)Vs = π(Rs(f̃)).

Let f ∈ Cc(R) be given. Note that

V ∗s

(∫
f(t)Etdt

)
Vs =

∫
f(t)V ∗s EtVsdt =

∫
f(t)Et−sdt =

∫
f(t+s)Etdt = π

(
R̃s(f)

)
.

A similar computation shows thatRs(f̃) = R̃s(f). Therefore, V ∗s π(f̃)Vs = π(Rs(f̃)).
The proof in Case 1 is complete.
Case 2: Suppose s = −t < 0. We claim that VtV

∗
t = π(1[t,∞]). Choose a sequence

fn ∈ Cc(R) such that fn ≥ 0, supp(fn) ⊂ (t − 1
n , t] and

∫
fn(r)dr = 1. Then,

0 ≤ f̃n ≤ 1 and f̃n → 1[t,∞]. Thus, in the strong operator topology,∫
fn(r)Erdr = π(f̃n)→ π(1[t,∞]).

However, as the map R 3 r → Er ∈ B(H) is strongly continuous and (fn) is a
sequence of ‘bump functions’ supported around t, it is clear that

∫
fn(r)Erdr → Et.

This proves the claim.
Let φ ∈ B([0,∞]) be given. Calculate as follows, by using Case 1, to observe

that

Vtπ(φ)V ∗t = VtV
∗
t π(R−t(φ))VtV

∗
t

= Etπ(R−t(φ))Et

= π(1[t,∞])π(R−t(φ))π(1[t,∞])

= π(1[t,∞]R−t(φ))

= π(R−t(φ)).

The proof is complete. 2

We are all set to define the homomorphism λ : Cc(G) → B(H) of Theorem 2.1.
Let φ ∈ Cc(G) be given. For t ∈ R, let φt ∈ B([0,∞]) be defined by

φt(x) :=


φ((x, t)) if x+ t ≥ 0,

0 if x+ t < 0.

It is not difficult to check that the map R 3 t → π(φt)W
∗
t ∈ B(H) is compactly

supported and is measurable. This is true for linear combinations of functions of
the form φ ⊗ f where φ ∈ C([0,∞]) and f ∈ Cc(R) and when Cc(G) is given the
inductive limit topology, the set {φ ⊗ f : φ ∈ C([0,∞]), f ∈ Cc(R)} is total in
Cc(G). Define

λ(φ) :=

∫
π(φt)W

∗
t dt.

It is routine to check using Proposition 2.4 that λ is the desired homomorphism.
We refer the reader to Theorem 6.7 of [13] where the verification is carried out in
complete detail. This completes the proof of Theorem 2.1.



ON A THEOREM OF COOPER 19

Let us fix more notation. Let U be the open subgroupoid of G defined by

U := {(x, t) ∈ G : x ∈ [0,∞)}.

Note that Cc(U) is a ∗-ideal of Cc(G). For f, g ∈ Cc([0,∞)), define θ̃f,g ∈ Cc(U) by

θ̃f,g(x, t) := f(x)g(x+ t).

Then, {θ̃f,g : f, g ∈ Cc([0,∞))} forms a set of ‘matrix units’, i.e.

(i) the map Cc([0,∞))×Cc([0,∞)) 3 (f, g)→ θ̃f,g ∈ Cc(U) is linear in the second
variable and conjugate linear in the first variable, and

(ii) for f1, f2, g1, g2 ∈ Cc([0,∞)),

θ̃f1,g1 ∗ θ̃f2,g2 = 〈f2|g1〉L2([0,∞))θ̃f1,g2 .

(iii) for f, g ∈ Cc([0,∞)), θ̃∗f,g = θ̃g,f .

For f, g ∈ Cc([0,∞)), let θf,g be the rank one operator on L2([0,∞)) defined by

θf,g(ξ) = f〈g|ξ〉.

Proposition 2.5. Suppose that V = {Vt}t≥0 is pure, i.e. V ∗t → 0 strongly as
t → ∞. Then, the homomorphism λ, of Theorem 2.1, restricted to Cc(U) is non-
degenerate.

Proof. Note that V ∗s → 0 strongly as s → ∞ is equivalent to the assertion that
E⊥s → 1 as s→∞.

Choose a sequence fn ∈ Cc(R) such that fn ≥ 0,
∫
fn(t)dt = 1 and supp(fn) is

contained in (n, n+ 1). Set φn = 1− f̃n. Then, φn ∈ Cc([0,∞)). Also, 0 ≤ φn ≤ 1.
Therefore, π(φn) has norm atmost 1. Let (gn) be a sequence in Cc(R) such that
gn ≥ 0,

∫
gn(t)dt = 1 and supp(gn) ⊂ (− 1

n ,
1
n ). Note that φn ⊗ gn ∈ Cc(U).

Observe that

||λ(φn ⊗ gn)|| ≤ ||π(φn)||
∣∣∣∣∣∣ ∫ gn(t)W ∗t dt

∣∣∣∣∣∣ ≤ ||π(φn)||
∫
gn(t)dt ≤ 1.

We complete the proof by showing that λ(φn ⊗ gn) = π(φn)Wn → 1 strongly.
Here, Wn :=

∫
gn(t)W ∗t dt. Using the fact that the map R 3 t → Wt ∈ B(H) is

strongly continuous, it is easy to verify that Wn → 1 strongly. Thus, it suffices
to show that π(φn) → 1 strongly. Since π(φn) has norm atmost one and the set
{E⊥s ξ : s > 0, ξ ∈ H} is total in H, it suffices to verify that for each s > 0 and
ξ ∈ H, π(φn)E⊥s ξ → E⊥s ξ.

Let s > 0 and ξ ∈ H be given. Observe that, for large n, π(φn)E⊥s = E⊥s ,

equivalently π(f̃n)E⊥s = 0. This is because, EtE
⊥
s = 0 if t > s. Therefore, if n > s,

then

π(f̃n)E⊥s =

∫ n+1

n

fn(t)EtE
⊥
s dt = 0.

Therefore, π(φn)E⊥s ξ → E⊥s ξ for every s > 0 and ξ ∈ H. Hence the proof. 2

Theorem 2.6 (Cooper). Let V := {Vt}t≥0 be a strongly continuous semigroup of
isometries on a Hilbert space H. Suppose that V is pure, i.e. V ∗t → 0 strongly as
t → ∞. Then, up to a unitary equivalence, H = L2([0,∞)) ⊗ L for some Hibert
space L and for t ≥ 0, Vt = St ⊗ 1.
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Proof. Denote the homomorphism λ of Theorem 2.1 associated to V by λV . This

is to stress the dependence of λ on V . For f, g ∈ Cc([0,∞)), let θf,g := λV (θ̃f,g).

Observe that {θf,g : f, g ∈ Cc([0,∞))} form a system of ‘matrix units’ in B(H).
Moreover, Cc([0,∞)) is a dense subspace of L2([0,∞)). Since K := K(L2([0,∞)))
is the universal C∗-algebra generated by such a system of matrix units, it follows
that there exists a unique ∗-homomorphism λV : K(L2([0,∞)))→ B(H) such that

λV (θf,g) = λV (θ̃f,g)

for f, g ∈ Cc([0,∞)).

Since, {θ̃f,g : f, g ∈ Cc([0,∞))} is total in Cc(U) and λV is continuous, when

Cc(U) is given the inductive limit topology, it follows that λV (Cc(U)) ⊂ λV (K).
This, together with Proposition 2.5, imply that the representation λV is non-
degenerate. It is well known that any non-degenerate representation of K is a
multiple of the representation of K on L2([0,∞)) given by the inclusion K ⊂
B(L2([0,∞))). Thus, we can assume that, up to a unitary equivalence, H =
L2([0,∞)) ⊗ L for some Hilbert space L and we can assume that λV is of the
form

λV (T ) = T ⊗ 1

for T ∈ K = K(L2([0,∞))). Therefore, for f, g ∈ Cc([0,∞)),

λV (θ̃f,g) = θf,g ⊗ 1. (2.5)

Let S := {St}t≥0 be the usual shift semigroup on L2([0,∞)). Set S̃t := St ⊗ 1.

Then, S̃ := {S̃t}t≥0 is a pure strongly continuous semigroup of isometries on the
Hilbert space H = L2([0,∞))⊗ L.

By a routine direct computation, which we omit, we can deduce that for every
f, g ∈ Cc([0,∞)),

λS̃(θ̃f,g) = θf,g ⊗ 1. (2.6)

From Equation 2.5 and Equation 2.6 and the fact that {θ̃f,g : f, g ∈ Cc([0,∞))}
is total in Cc(U), we see that λV and λS̃ agree on Cc(U). However, Cc(U) is an
ideal in Cc(G) and it acts non-degenerately on H through λV = λS̃ . Therefore,
λV = λS̃ on Cc(G).

Consequently, for every f ∈ Cc((0,∞)),∫
f(t)V ∗t dt = λV (1⊗ f) = λS̃(1⊗ f) =

∫
f(t)S̃∗t dt.

As the above equality holds for every f ∈ Cc((0,∞)) and the maps t → V ∗t and

t→ S̃∗t are strongly continuous, we deduce that for every t > 0, Vt = St⊗ 1. Hence
the proof. 2

We end this article by showing how our proof of Theorem 2.6 can be adapted
to the Hilbert module setting. We start by collecting some definitions concerning
vector valued integrals.
(a) Let E be a Banach space and let f : R → E be a compactly supported

continuous function. Then, there exists a unique vector denoted
∫
f(t)dt ∈ E

such that for ρ ∈ E∗,

ρ
(∫

f(t)dt
)

=

∫
ρ(f(t))dt.
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We can prove the existence of
∫
f(t)dt by making use of the Krein-Smulian

theorem ([4]).
(b) Let B be a C∗-algebra and let E be a Hilbert B-module. Denote the algebra

of adjointable operators on E by LB(E). For x ∈ E, define a seminorm || ||x
on LB(E) by setting

||T ||x := ||Tx||+ ||T ∗x||.

The topology on LB(E) generated by the family of seminorms {|| ||x : x ∈ E}
is called the ∗-strong topology.
Let f : R→ LB(E) be continuous, when LB(E) is given the ∗-strong topology.
This means that for every x ∈ E, the maps

R 3 t→ f(t)x ∈ E ; and R 3 t→ f(t)∗x ∈ E

are continuous. Assume that f is compactly supported. Define an operator,
denoted

∫
f(t)dt, on E by setting(∫

f(t)dt
)
x :=

∫
f(t)xdt.

Then,
∫
f(t)dt is adjointable and it is the unique adjointable operator on E

such that for x, y ∈ E,〈(∫
f(t)dt

)
x|y
〉

=

∫
〈f(t)x|y〉dt.

Let B be a C∗-algebra which will be fixed for the rest of this section. Let E
be a Hilbert B-module. Suppose V := {Vt}t≥0 is a strongly continuous semigroup
of adjointable isometries on E. Then, the map R 3 t → Vt ∈ LB(E) is ∗-strong
continuous. Define, for t ∈ R, the partial isometries Wt and the range projections
Et as in the Hilbert space setting.

Assume for the moment that we have proved Theorem 2.1 in the setting of
Hilbert modules, i.e. with E in place of H and with B(H) replaced with LB(E).
The proof of Proposition 2.5 works well and establishes the analogous result with
H replaced with E. Similarly, the proof of Theorem 2.6 adapts well to establish
the following analogous result proved in [3].

Theorem 2.7 ([3]). Let V := {Vt}t≥0 be a strongly continuous semigroup of ad-
jointable isometries on a Hilbert B-module E. Suppose that V is pure, i.e. V ∗t → 0
strongly as t → ∞. Then, up to a unitary equivalence, E = L2([0,∞)) ⊗ F for
some Hibert B-module F and for t ≥ 0, Vt = St ⊗ 1.

Remark 2.8. In the statement of Theorem 2.7, the tensor product L2([0,∞))⊗F
is the external tensor product. While adapting the proof of Theorem 2.6, we need
to know the non-degenerate representations of K := K(L2([0,∞))) on Hilbert B-
modules, which we do know, as the Hilbert space L2([0,∞)) is an imprimitivity
module implementing the Morita equivalence between K and C. Therefore, thanks to
Rieffel ([10]), if π : K → LB(E) is non-degenerate, then up to unitary equivalence,
E = L2([0,∞))⊗ F for some Hilbert module F and π is of the form

π(T ) = T ⊗ 1

for T ∈ K.
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Next, we explain why Theorem 2.1 is valid in the Hilbert module setting. For
simplicity, we assume that the C∗-algebra B is separable. Suppose E is a Hilbert
B-module. Suppose V := {Vt}t≥0 is a strongly continuous semigroup of isometries
in LB(E). Define the partial isometries {Wt}t∈R as in the Hilbert space setting,
i.e.

Wt :=

{
Vt if t ≥ 0,
V ∗−t if t < 0.

(2.7)

For t ∈ R, we denote the range projection of Wt by Et.

Theorem 2.9. Keep the foregoing notation.
(1) There exists a unique unital ∗-homomorphism π : C([0,∞]) → LB(E) such

that

π(f̃) =

∫
f(t)Etdt

for f ∈ Cc(R).
(2) There exists a unique ∗-homomorphism λ : Cc(G)→ LB(E) such that

λ(φ⊗ f) = π(φ)

∫
f(t)W−tdt

for φ ∈ C([0,∞]) and f ∈ Cc(R). Moreover, the map λ is continuous when
Cc(G) is given the inductive limit topology and LB(E) is given the norm topol-
ogy.

Proof. Fix a faithful state ω on B. Define a C-valued inner product on E by
setting

〈x|y〉ω := ω(〈x|y〉).
The completion of E w.r.t. the inner product 〈 | 〉ω is denoted by Eω. An element
x ∈ E when viewed in Eω will be denoted x. It is not difficult to show that for
T ∈ LB(E), there exists a unique bounded operator T on Eω such that

T (x) = Tx

for x ∈ E. Moreover, the map LB(E) 3 T → T , denoted ρ, is a faithful unital
representation.

Note that V := {V t}t≥0 is a strongly continuous semigroup of isometries on the

Hilbert space Eω. Let π and λ be the homomorphisms of Theorem 2.1 associated
to V := {V t}t≥0.

Observe that for f ∈ Cc(R),

ρ
(∫

f(t)Etdt
)

=

∫
f(t)Etdt = π(f̃).

Since {f̃ : f ∈ Cc(R)} generates C([0,∞]), it follows that the range of π is contained
in ρ

(
LB(E)

)
. Since ρ is faithful, there exists a unique unital ∗-homomorphism

π : C([0,∞])→ LB(E) such that ρ ◦ π = π.
Similarly, for f ∈ Cc(R),

ρ
(∫

f(t)W−tdt
)

=

∫
f(t)W−tdt.

Therefore, for φ ∈ C([0,∞]) and f ∈ Cc(R), λ(φ⊗f) ∈ ρ
(
LB(E)

)
. As the collection

{φ⊗f : φ ∈ C([0,∞]), f ∈ Cc(R)} is total in Cc(G) and λ is continuous when Cc(G)
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is given the inductive limit topology and when B(Eω) is given the norm topology,
it follows that the range of λ is contained in ρ

(
LB(E)

)
. Consequently, there exists

a unique ∗-homomorphism λ : Cc(G)→ LB(E) such that ρ ◦ λ = λ.
It is clear that π and λ are the desired homomorphisms which completes the

proof. 2

3. Concluding Remarks

We end this article with a few remarks especially about the history of the
groupoid approach to semigroups of isometries.
(1) Analysing semigroups of isometries from a groupoid perspective was initiated

in the seminal paper [8], where Muhly and Renault, with great success, demon-
strated the use of groupoids in understanding the Wiener-Hopf algebra asso-
ciated to a closed convex cone P in Rd for d ≥ 1. The groupoid that we have
used in this paper is the groupoid in [8] used for the base case P = [0,∞).
In the 1-parameter situation, the Wiener-Hopf algebra W([0,∞)) is the C∗-
algebra generated by the Wiener-Hopf operators {Wf : f ∈ Cc(R)}. The
Wiener-Hopf operator with symbol f , where f ∈ Cc(R), is the operator on
L2([0,∞)) defined by the equation

Wfξ(s) :=

∫ ∞
0

f(s− t)ξ(t)dt.

The main result of [8], in the base case P = [0,∞), is that the Wiener-Hopf
algebra W([0,∞)) = C∗({Wf : f ∈ Cc(R)}) ∼= C∗(G), where G is the Wiener-
Hopf groupoid associated to the semigroup [0,∞).
Note that, in general, WfWg 6= Wf∗g, where f ∗ g is the usual convolution.
However, the remarkable insight due to Muhly and Renault is that the formula

WfWg = Wf∗g

is valid if we interpret the symbols f and g not as functions on R, but as
functions on the Wiener-Hopf groupoid G. All the credit for the approach
presented in this paper must therefore go to Muhly and Renault for this great
insight.
As already mentioned in the introduction, it is probable that the approach
presented in this article is already known to many experts. Neverthless, the
author could not find it recorded in the literature and the author believes it
is worth recording not only for its own intrinsic interest, but also for reasons
that are mentionned below.

(2) The subtleties involving the Wiener-Hopf groupoid associated to a cone in
the higher dimensional case, especially the subtle points around the Haar sys-
tem of the Wiener-Hopf groupoid, was noted and clarified by Nica in [9]. The
groupoid approach to Wiener-Hopf operators was later generalised to Lie semi-
groups by Hilgert and Neeb in [6].
The Wiener-Hopf groupoid encodes only the left regular representation of a
semigroup. What about other isometric representations? It soon became clear
that there should be an universal groupoid encoding all isometric represen-
tations of a semigroup, or at least those with commuting range projections.
This was carried out in the discrete setting for the semigroup Nk by Salas in
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[11] and by the author for a topological Ore semigroup with mild assumptions
in [13]. Thus, for example, if P is a closed convex cone in Rd, then a cer-
tain universal groupoid Gu was constructed in [13] whose C∗-algebra encodes
all the isometric representations of P with commuting range projections. If
P = [0,∞), then the groupoid Gu is the Wiener-Hopf groupoid.
This also provides a conceptual reason why it is hard to think of a ‘complete
classification’ of semigroups of isometries if we replace R+ by a higher dimen-
sional cone, even if we restrict attention to those isometric representations that
have commuting range projections. For, if P is a pointed spanning cone in Rd,
where d ≥ 2, then it is not difficult to prove that the C∗-algebra C∗(Gu) is
not of type I. However, in the 1-dimensional case, C∗(Gu) is of type I. This,
the author believes, is one algebraic reason why we lack ‘a good classification’
of semigroups of isometries in the higher dimensional case and why we have
complete classification in the 1-parameter case.

(3) A third point why the author believes it is worth recording the groupoid proof
of Cooper’s result is the following. Cooper’s result is a fundamental result that
gets exploited heavily in the 1-parameter theory of E0-semigroups. Arveson’s
remarkable efforts that resulted in the classification and the characterisation of
1-parameter CCR flows ([2]) rest deeply on Cooper’s theorem which provides
a ‘good coordinatization’ of a 1-parameter semigroup of isometries. Such a
coordinatization is not available in the multiparameter case which makes the
theory of multiparameter E0-semigroups both interesting and complicated.
In the recent works on multiparameter CCR flows done, in collaboration, by
the author ([1], [12],[14]), the universal groupoid Gu (or the associated trans-
formation groupoid) was exploited heavily to show that “There are enough
multiparameter CCR flows exhibiting behaviour different from (and similar
to) that of the 1-parameter case”. The key is that C∗(Gu) is not of type I, and
hence, there are enough semigroups of isometries exhibiting ’wild’ behaviour.
Having the groupoid proof of Cooper’s result recorded and available in the lit-
erature will help those working in the theory of E0-semigroups appreciate that
groupoids provide a natural framework to analyse the semigroups of isometries
appearing in the theory. This is another reason why this proof is recorded.
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