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ON THE HOMEOMORPHISM PROBLEM FOR 4-MANIFOLDS
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Abstract. We show that there is no algorithm to decide whether or not a given
4-manifold is homeomorphic to the connected sum of 12 copies of S2 × S2.

This paper is dedicated to the memory of Vaughan Jones. Vaughan had a
huge impact on mathematics, and on the community of mathematicians. His New
Zealand summer conferences, some of which I had the good fortune to attend, were
legendary. Breakfast, talks until lunch, afternoons free to indulge in the activity of
your choice (of course for Vaughan it was windsurfing), dinner, followed by another
talk, enlivened by the prandial and postprandial wine. Then there was the famous
Knots in Hellas ’98 Conference in Delphi, where (among other things) Vaughan was
presented with the keys to the city by the Mayor of Delphi, and where one evening
his Fields Medal went missing (but luckily showed up again the next morning). I
also enjoyed our many games of squash over the years, in many different locations.
We will miss Vaughan, and will remember him with fondness and respect.

1. Introduction

In [Mar] Markov showed that the homeomorphism problem for closed 4-manifolds
is algorithmically unsolvable. In fact he showed that for some integer k the recog-
nition problem for #k(S2 × S2), the connected sum of k copies of S2 × S2, is
unsolvable, i.e. there is no algorithm to decide whether or not a given 4-manifold
is homeomorphic to #k(S2 × S2).

To describe this in more detail, let us define a k-relator Adjan-Rabin set to be a
recursively enumerable set P of finite k-relator group presentations, such that there
is no algorithm to decide whether or not the group presented by a given P ∈ P is
trivial. Such sets were shown to exist, for some k, by Adjan [A] and Rabin [Ra],
using the existence, proved by Novikov [N] and Boone [Boo], of a finitely presented
group with unsolvable word problem. Markov showed that if there exists a k-relator
Adjan-Rabin set then the recognition problem for #kS

2 × S2 is unsolvable.
The author showed [G] that from a finite m-relator presentation of a group with

unsolvable word problem one can construct an (m + 2)-relator Adjan-Rabin set;
there is also an account of this work in the survey article [Mi]. In [Bor] Borisov
constructed a finite 12-relator presentation of a group with unsolvable word prob-
lem. It follows that the recognition problem for #14(S2 × S2) is unsolvable. See
[S1],[S2],[CL].

The purpose of the present note is to offer the following improvement.

Theorem 1.1. The recognition problem for #12(S2 × S2) is unsolvable.

A natural question is whether k can be reduced further, in particular whether it
can be reduced to 0.
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Question 1.2. Is the recognition problem for S4 unsolvable?

The recognition problem for Sn is unsolvable for n ≥ 5 [VKF, Appendix by S.P.
Novikov], and solvable for n ≤ 3 [Ru],[T].

The proof of Theorem 1.1 has two parts, one algebraic and the other topological,
each enabling k to be reduced by 1. The first is discussed in Section 2, and the
second in Section 3.

2. The Algebra

Let (x1, ..., xn : r1, ..., rm) be a finite presentation of a group G. Let x̄i denote
the image of xi in G/[G,G].

Consider the following property:
(2.1) there exists p, 1 ≤ p ≤ n, such that for 1 ≤ i ≤ p, x̄i has finite order

qi ≥ 1, where gcd(q1, ..., qp) = 1.

Lemma 2.1. If there exists a group with unsolvable word problem having a finite m-
relator presentation that satisfies (2.1), then there exists an (m+ 1)-relator Adjan-
Rabin set.

Proof. We modify the construction given in [G]. Let (x1, ..., xn : r1, ..., rm) be a
presentation of a group G with unsolvable word problem that satisfies (2.1). By
taking a minimal set {x1, ..., xp} with property (2.1) we may assume that the qi are
all distinct. Let q = max{q1, ..., qp}.

Let W (x1, ..., xn) denote the set of words in {x1, ..., xn}, i.e. the set of expressions
of the form xε1i1 ...x

εr
ir

, xij ∈ {x1, ..., xn}, εj = ±1. For w ∈W (x1, ..., xn}, let Qw be
the presentation with generators x1, ..., xn, a, α, b, β, and relators r1, ..., rm together
with

(i) aαa−1 = b2

(ii) αaα−1 = bβb−1

(iii) a−qixiα
qi = β−ibβi, 1 ≤ i ≤ p

(iv) a−(q+i)xiα
(q+i) = β−ibβi, p+ 1 ≤ i ≤ n

(v) [w,α2] = β−(n+1)bβ(n+1)

where [x, y] means xyx−1y−1.
Let Gw be the group presented by Qw. We can apply the following Tietze

transformations to Qw. Using (i), express α in terms of a and b, substitute this
expression for the occurrences of α in the other relations, then delete α from the
generators and (i) from the relations. Now from (ii) express β in terms of a and
b, substitute for β into the other relations, and delete β and relation (ii). Using
relations (iii) and (iv) we can now write the xi as words in a and b, substitute these
into the relators rj , getting relators r′j that are words in a and b, substitute for the
xi in w in (v), and finally delete the xi and relations (iii) and (iv).

We are left with a presentation Pw of Gw with two generators, a and b, and
(m+ 1) relations: the relators r′j , 1 ≤ j ≤ m, and the transformed relation (v). We
claim that {Pw : w ∈W (x1, ..., xn)} is an Adjan-Rabin set.

Let U denote the set of elements listed on the right-hand side of the relations
(i) - (v). By examining the possible cancellation in uε11 u

ε2
2 , where u1 and u2 are

distinct elements of U and εi = ±1, i = 1, 2, it is easy to see that a non-empty
reduced word in the elements of U has positive length when expressed as a reduced
word in b and β. Thus U is a basis for a free subgroup of the free group F (b, β).
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Similarly, if [w] 6= 1 in G, one sees that the set of elements on the left-hand side of
the relations is a basis for a free subgroup of the free product G ∗F (a, α). Hence if
[w] 6= 1 in G then Gw is a free product with amalgamation (G∗F (a, α))∗F F (b, β),
where F is free of rank (n+ 3). In particular Gw 6= 1.

If [w] = 1 in G then (v), together with the relators r′1, ..., r
′
m, implies that

b = 1, and therefore Gw is cyclic, generated by a. Also, α = 1 by (i). Relations
(iii) give xi = aqi , 1 ≤ i ≤ p. By condition (2.1) xi maps to an element in Gw
of order dividing qi; hence in Gw we have the relations aq

2
i , 1 ≤ i ≤ p. Since

gcd(q1, ..., qp) = 1, this implies a = 1, and hence Gw = 1.
Thus Gw = 1 if and only if [w] = 1 in G. Since G has unsolvable word problem,

{Pw : w ∈W (x1, ..., xn)} is an Adjan-Rabin set. �

Theorem 2.2. There exists a 13-relator Adjan-Rabin set.

Proof. Matijasevič [Mat] has shown that there exists a semigroup S having a
presentation with two generators and three relations, and a positive word W0 in
the generators, such that there is no algorithm to decide, for an arbitrary positive
word W in the generators, whether or not W and W0 represent the same element of
S. Borisov shows that this may be used to construct a presentation, with generators
a, b, c, d, and e and 12 relations, of a group Γ′ with unsolvable word problem; see
[Bor, §3]. Among the relations are

µidµ
−1
i = dα, µ−1i eµi = eα, i = 1, 2

where µ1 and µ2 are words in a and b and α is an arbitrary integer > 3. However,
an examination of the proof in [Bor] that Γ′ has unsolvable word problem shows
that these relations may be replaced by

µidµ
−1
i = du, µ−1i eµi = ev, i = 1, 2

for any integers u, v > 3.
So, taking u = 4, v = 5, we get a 12-relator presentation of a group with

unsolvable word problem where the generators d and e have the property that the
order of d̄ divides 3 and the order of ē divides 4. The result now follows from
Lemma 2.1. �

3. The Topology

We briefly summarize Markov’s argument [Mar]. For other discussions see [S1],
[CL], [K]. We will not discuss the algorithmic aspects of the PL constructions in-
volved; these are dealt with in [BHP]; see also [S1].

Let P = (x1, ..., xn : ri, ..., rk) be a finite presentation of a group GP .
Attach n 1-handles to B5 so as to get an orientable 5-manifold V with π1(V ) ∼=

F (xi, ..., xn). Let γ1, ..., γk be disjoint circles in ∂V such that [γj ] is conjugate to
rj in π1(V ) ∼= π1(∂V ), 1 ≤ j ≤ k. Since homotopy implies isotopy for 1-manifolds

in a 4-manifold by general position, γ =
⋃k
j=1 γj is well-defined up to isotopy in

∂V . Let NP be obtained by attaching 2-handles H(γj) to V along γj , 1 ≤ j ≤ k.
We express this as NP = V ∪H(γ). Clearly π1(NP ) ∼= GP . Also, since NP has a
2-dimensional spine, a general position argument shows that inclusion ∂NP → NP
induces an isomorphism on fundamental groups.
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The homeomorphism type of NP depends only on P and a choice of framing of
the normal bundle of γj in ∂V , 1 ≤ j ≤ k. The set of such framings is a Z2-torsor.
To ensure that NP depends only on P we note that there is an obvious embedding
of V in R5. Then any circle in ∂V bounds a disk in R5, and in attaching a 2-handle
along such a circle we will always choose the framing that extends over the normal
bundle of the disk, and call this the 0-framing.

Let α1, ..., αn be disjoint circles in a 4-ball in ∂NP ∩∂V , and let WP be the result
of attaching 2-handles H(αi) to NP along αi, 1 ≤ i ≤ n (with the 0-framing). Let
MP = ∂WP . Then π1(MP ) ∼= π1(WP ) ∼= π1(NP ) ∼= GP .

Markov’s key observation is the following.

Lemma 3.1. (Markov) GP = 1 if and only if MP
∼= #k(S2 × S2).

Proof. Since π1(MP ) ∼= GP the “if”direction is clear.
For the converse, suppose GP = 1. Let β1, ..., βn be disjoint circles in ∂V that

are dual to the co-cores of the 1-handles and disjoint from γ. Then we may regard
β1, ..., βn as lying in ∂NP . Recalling that π1(∂NP ) ∼= GP = 1, α =

⋃n
i=1 αi is

isotopic to β =
⋃n
i=1 βi in ∂NP . Therefore

WP = NP ∪H(α)

∼= NP ∪H(β)

= (V ∪H(γ)) ∪H(β)

= (V ∪H(β)) ∪H(γ)

∼= B5 ∪H(γ)

∼= \k(S2 ×D3)

where \ denotes boundary connected sum.
Hence MP = ∂WP

∼= #k(S2 × S2). �

The above construction gives an algorithm that takes a finite k-relator presen-
tation P of a group GP and produces a closed 4-manifold MP such that GP = 1
if and only if MP

∼= #k(S2 × S2). To complete the proof of Markov’s theorem we
note that if P is a k-relator Adjan-Rabin set then an algorithm to decide, for a
given P ∈ P, whether or not the manifold MP is homeomorphic to #k(S2 × S2)
would give an algorithm to decide whether or not GP = 1, a contradiction.

We now describe a modification of the proof of Lemma 3.1 that enables us to
replace #k(S2 × S2) by #(k−1)(S

2 × S2).

Let α′ =
⋃n−1
i=1 αi, β

′ =
⋃n−1
i=1 βi, define W ′P = NP ∪H(α′), and let M ′P = ∂W ′P .

Note that π1(M ′P ) ∼= π1(W ′P ) ∼= π1(NP ) ∼= GP .

Lemma 3.2. GP = 1 if and only if M ′P
∼= #(k−1)(S

2 × S2).

Proof. As before, the “if” direction is clear.
Assume GP = 1. Then, since π1(∂NP ) = 1 α′ is isotopic to β′ in ∂NP , and as

in the proof of Lemma 3.1

W ′P
∼= (V ∪H(β′)) ∪H(γ)

which is homeomorphic to (S1 ×D4) ∪H(γ).
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Let aj = [γj ] ∈ π1(S1 × D4) ∼= Z, 1 ≤ j ≤ k. Orient γj so that aj ≥ 0. Since
π1(W ′P ) = 1, gcd(a1, ..., ak) = 1. Therefore, by a sequence of moves of the form

ar 7→ ar − as
aj 7→ aj , j 6= r,

for some r and some s 6= r with as ≤ ar, followed by a permutation, we can
transform (a1, ..., ak) to (1, 0, ..., 0).

Since the above move can be realized by sliding H(γr) over H(γs),

W ′P
∼= (S1 ×D4) ∪H(γ′)

where ([γ′1], ..., [γ′k]) = (1, 0, ..., 0). Thus W ′P is homeomorphic to B5 with (k−1) 2-
handles attached with the 0-framing, i.e. \(k−1)(S

2×D3). HenceM ′P
∼= #(k−1)(S

2×
S2). �

Proof of Theorem 1.1. This follows from Theorem 2.2 and Lemma 3.2. �
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