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Abstract. We investigate integer partitions λ of n that are nearly self-conjugate
in the sense that there are n−1 overlapping cells among the Ferrers diagram of

λ and its transpose, by establishing a correspondence, through the method of
combinatorial telescoping, to partitions of n in which (i). there exists at least

one even part; (ii). any even part is of size 2; (iii). the odd parts are distinct;

and (iv). no odd part is of size 1. In particular, this correspondence confirms
a conjecture that had been given in the OEIS.

1. Introduction

A partition of a natural number n is a nonincreasing sequence of positive integers
that sum to n. We say that an integer partition λ is self-conjugate if λ is the same
as its transpose λT obtained by reflecting the Ferrers diagram of λ about the main
diagonal. Given the elegant simplicity of this definition, it is not surprising that
there are many attractive results concerning the family of self-conjugate integer
partitions. In this regard, there is an intimate connection between these integer
partitions and the representation theory of the symmetric group. For example, the
number sc(n) of self-conjugate integer partitions of n is the minimal row sum in
the character table of Sn, which corresponds to the one-dimensional alternating
representation of Sn, and also sc(n) is the number of conjugacy classes of Sn that
split into two classes under restriction to An ≤ Sn; see [8, A000700]. Since the
family of self-conjugate integer partitions possesses such interesting combinatorial
and representation-theoretic properties, it is natural to consider variations of the
definition of a self-conjugate partition.

Our paper is inspired in part by [9], in which the concept of a “nearly self-
conjugate” set partition is introduced. The term almost self-conjugate partition
is used in [4] in reference to integer partitions of the form (α1 + 1, . . . , αd +
1
∣∣ α1, . . . , αd) in Frobenius notation. Since there are important applications of

these latter kinds of integer partitions in representation theory, the exploration of
combinatorial properties associated with analogous families of integer partitions
could conceivably establish new representation-theoretic connections.

Definition 1.1 (Nearly self-conjugate partitions). An integer partition λ is nearly
self-conjugate if the Ferrers diagrams of λ and its transpose have exactly n−1 cells
in common.
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Example 1.2. There are four nearly self-conjugate partitions of 7, as illustrated
below using Ferrers diagrams.

The object of this paper is to confirm a conjecture that was given in 2016, in the
OEIS [8] entry indexed as A246581.

Theorem 1.3 (Conjecture in [8, A246581]). Let nsc(n) count the number of nearly
self-conjugate partitions of n. Then∑

n≥0

nsc(n)qn =
2q2

1− q2
∏
r≥1

(
1 + q2r+1

)
. (1.1)

2. Proof of Theorem 1.3

2.1. Nearly self-conjugate partitions. Let N (n) denote the set of nearly self-
conjugate partitions of n. Let O(n) denote the set of partitions of n with exactly
one even part such that the differences between parts are at least 2.

We begin by transplanting the proof of Sylvester’s well-known relation [1, p. 14,
Entry 8], claiming that self-conjugate partitions of n are equinumerous with parti-
tions of n into distinct odd parts.

Lemma 2.1. The number of nearly self-conjugate partitions of n is equal to twice
the number of partitions of n with exactly one even part such that the differences
between parts are at least 2.

Proof. Define the equivalence relation ∼ on N (n) so that for partitions µ and ν
in N (n), µ ∼ ν if and only if µ and ν are equal or are transposes of one another.
Notice that in each equivalence class, there are exactly two partitions in N (n).

Given a partition λ ∈ O(n), let φn(λ) denote the partition obtained by:
(i). Folding any odd part of size 2k − 1 in λ (which is a stripe of 2k − 1 cells) as

a hook shape so that there are k − 1 cells below the corner of the hook and
k − 1 cells to the right of the corner;

(ii). Folding any even part of size 2k in λ (which is a stripe of 2k cells) as a hook
shape so that there are k cells below the corner of the hook and k− 1 cells to
the right of the corner;

(iii). Nesting these hook shapes by aligning their corners.
It is easily seen that the mapping φn induces a well-defined bijection from O(n) to
the quotient N (n)/ ∼. �

Example 2.2. We see that the quadruple (9, 7, 4, 1) is an integer partition of 23
with exactly one even part such that the differences between parts are at least
2. The application of the above procedure to this partition in O(23) is illustrated
below.
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2.2. Symplectic partitions. To make use of Lemma 2.1 for a proof of Theorem
1.3, we shift our attention to the right hand side of (1.1).

Definition 2.3 (Symplectic partitions). A symplectic partition is an integer par-
tition λ such that

(i). There exists at least one even part in λ;
(ii). Any even part in λ is of size 2,;

(iii). The odd parts in λ are distinct;
(iv). No odd part in λ is of size 1.

Example 2.4. There are three symplectic partitions of 9. Namely, (7, 2), (5, 2, 2)
and (3, 2, 2, 2).

Let Sp(n) count the number of symplectic partitions of n. Then∑
n≥0

Sp(n)qn =
q2

1− q2
∏
r≥1

(
1 + q2r+1

)
, (2.1)

which is exactly half the right hand side of (1.1).

Remark 2.5. The name of symplectic partitions is borrowed from a result of
Rudvalis and Shinoda [7]. Let Sp be the classical symplectic group acting on an n-
dimensional vector space V over a finite field Fp in its natural way. Let PSp,n(2, p)
be the chance that an element of Sp fixes a two-dimensional subspace and let
PSp,∞(2, p) be the n→∞ limit of PSp,n(2, p). Then, with q = 1

p ,

PSp,∞(2, p) =
q3

(1− q)(1− q2)

∏
r≥1

1

1 + qr
.

See [6, p. 70, eq. (3) with k = 2]. Notice also that as a formal power series in q,∑
n≥0

Sp(n)(−q)n =
q2

1− q2
∏
r≥1

(
1− q2r+1

)
=

q2

(1− q)(1− q2)

∏
r≥1

1

1 + qr
.

One may compare their resemblance.

Our object here is the following relation.

Lemma 2.6. The number of partitions of n with exactly one even part such that
the differences between parts are at least 2 is equal to the number of symplectic
partitions of n.

Its proof can be understood as an instance of the method of combinatorial tele-
scoping [3].

Proof. Let S (n) denote the set of symplectic partitions of n. Recall also that O(n)
is the set of partitions of n with exactly one even part such that the differences
between parts are at least 2. We are going to establish a bijective correspondence
between S (n) and O(n).
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First, for each positive odd integer 2m − 1, we denote by A2m−1(n) the set of
partitions λ of n such that

(i). Any even part in λ is of size 2;
(ii). The uncolored odd parts in λ are distinct;

(iii). There is always an extra colored part of size 1, denoted by 1c;
(iv). No uncolored part in λ is of size 2m− 1.
For example, there are three partitions in A3(9). Namely, (7, 1, 1c), (5, 2, 1, 1c) and
(2, 2, 2, 2, 1c).

We also denote by O2m(n) the subset of partitions in O(n) with the only even
part of size 2m.

Our next objective is to establish a correspondence between A2m+1(n) and
A2m−1(n)∪O2m(n) for each m ≥ 1. We observe that the partitions λ of n satisfying
the above conditions (i)–(iii) and the new condition
(iv♦). No part in λ is of size 2m− 1 or 2m+ 1,

are in both A2m+1(n) and A2m−1(n). Let A ♦2m−1(n) be the set of such partitions

of n. We subtract A ♦2m−1(n) from the two partition sets A2m+1(n) and A2m−1(n),
respectively. For what are left, we denote by A M2m−1(n) the set of partitions λ of n
satisfying the conditions (i)–(iii) and
(ivM). 2m+ 1 is not a part in λ and 2m− 1 is a part in λ.
Also, we denote by A O2m−1(n) the set of partitions λ of n satisfying the conditions
(i)–(iii) and
(ivO). 2m− 1 is not a part in λ and 2m+ 1 is a part in λ.

Now it suffices to establish a correspondence between A M2m−1(n) and A O2m−1(n)∪
O2m(n). For any partition in A O2m−1(n), we have a part of size (2m + 1), and
therefore we may split it into a part of size (2m− 1) and a part of size 2, thereby
yielding a partition in A M2m−1(n) with 2 appearing at least once.

Thus, it remains to establish a correspondence between partitions in O2m(n) and
partitions in A M2m−1(n) with no even parts. For any partition of the latter form,
it has no part of size (2m + 1), one part of size (2m− 1) and one colored part 1c.
Combining the parts (2m−1) and 1c then gives a part of size 2m. For this resulting
partition, there are no parts of sizes (2m± 1). Thus, it is in O2m(n).

Since we have a correspondence between A2m+1(n) and A2m−1(n) ∪ O2m(n)
for each m ≥ 1, we may bijectively map tm≥1A2m+1(n) to (tm≥1A2m−1(n)) ∪
(tm≥1O2m(n)). Subtracting tm≥1A2m−1(n) from tm≥1A2m+1(n), we are left with
partitions of n satisfying the conditions (i)–(iii) in this proof, with an extra con-
straint that an uncolored 1 must appear as a part and it appears exactly once. But
for such partitions, we also have a colored part 1c. Combining the parts 1 and 1c
gives a part of size 2. In other words, we arrive at partitions of n such that any even
part is of size 2 (appearing at least once by the condition (i) and the construction
of 2 = 1 + 1c), the odd parts are distinct (by the condition (ii)) and 1 does not
appear as a part (by the fact that 1 and 1c are absorbed in the construction of
2 = 1 + 1c). Such partitions are exactly in S (n).

Hence, we have a correspondence between O(n) = tm≥1O2m(n) and S (n). Our
lemma is therefore established. �

2.3. Proof of Theorem 1.3. By Lemmas 2.1 and 2.6, we have

nsc(n) = 2 Sp(n).
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Theorem 1.3 follows by recalling (2.1).
We also want to point out that the proof of Lemma 2.6 establishes combinatori-

ally the following relation:∏
r≥1

(
1 + q2r−1

)∑
m≥1

q2m

(1 + q2m−1)(1 + q2m+1)
=

q2

1− q2
∏
r≥1

(
1 + q2r+1

)
.

This identity can also be shown analytically as follows. For simplicity, we first
divide by

∏
r≥1(1 + q2r−1) on both sides of the above. Then∑

m≥1

q2m

(1 + q2m−1)(1 + q2m+1)
=

1

q − q−1
∑
m≥1

(
1

1 + q2m−1
− 1

1 + q2m+1

)

=
q

q2 − 1

(
1

1 + q
− 1

)
=

q2

1− q2
· 1

1 + q
,

as proposed.

3. Overlapping Differences

In general, it is natural to investigate partitions of n such that the Ferrers dia-
grams of the partition and its transpose have exactly n− k cells in common when
k ≥ 2. For these cases, although we seem to have no generating function identi-
ties as neat as (2.1), it is still possible to make a connection with other partition
statistics.

Given an integer partition λ, we define its overlapping difference, denoted by
Diff(λ), as the size of λ minus the number of overlapping cells among the Ferrers
diagrams of λ and its transpose. For example, the overlapping difference of any self-
conjugate partition is 0, and the overlapping difference of any nearly self-conjugate
partition is 1.

In [2], Atkin extended Dyson’s partition rank [5] and introduced the k-th rank
of a partition λ, denoted by Rankk(λ), as the k-th largest part minus the number
of parts greater than or equal to k, i.e. Rankk(λ) := λk − λTk . Then Dyson’s rank
is the first rank in Atkin’s terminology.

Proposition 3.1. For any partition λ,

Diff(λ) =

D(λ)∑
k=1

|Rankk(λ)|, (3.1)

where D(λ) is the size of the Durfee square of λ.

Proof. We make use of the Frobenius symbol of a partition, which is a two-rowed
array (

s1 s2 · · · sd
t1 t2 · · · td

)
with s1 > s2 > · · · > sd ≥ 0 and t1 > t2 > · · · > td ≥ 0, where sk (resp. tk)
counts the number of cells to the right of (resp. below) the k-th diagonal entry of
the Durfee square of the partition in its Ferrers diagram.
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Assume that a partition λ has the above Frobenius symbol representation. Then

|λ| =
d∑
k=1

(
1 + sk + tk

)
.

Also, D(λ) = d, and for each 1 ≤ k ≤ d,

Rankk(λ) = sk − tk.
Now we observe that the number of overlapping cells on the k-th diagonal hooks

of λ and its transpose equals 1 + 2 min(sk, tk). Hence,

Diff(λ) = |λ| −
d∑
k=1

(
1 + 2 min(sk, tk)

)
=

d∑
k=1

(
1 + sk + tk

)
−

d∑
k=1

(
1 + sk + tk − |sk − tk|

)
=

d∑
k=1

|sk − tk|

=

d∑
k=1

|Rankk(λ)|,

thereby establishing the desired result. �

4. Conclusion

We conclude with a combinatorial problem given as follows. Recall that the
number sc(n) of self-conjugate integer partitions of n has the generating function∑

n≥0

sc(n)qn =
∏
r≥0

(
1 + q2r+1

)
.

Therefore, we observe from Theorem 1.3 that∑
n≥0

nsc(n)qn =
2q2

(1 + q)(1− q2)

∑
n≥0

sc(n)qn.

Noticing that

q2

(1 + q)(1− q2)
=
∑
n≥0

(−1)n
⌊n

2

⌋
qn,

we have the following relation concerning nsc(n) and sc(n).

Proposition 4.1. For n ≥ 0,

1

2
nsc(n) =

n∑
k=0

(−1)n−k
⌊
n− k

2

⌋
sc(k). (4.1)

A combinatorial proof of this relation would be appealing.
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