AMENDMENT TO "LINDELÖF WITH RESPECT TO AN IDEAL" [NEW ZEALAND J. MATH. 42, 115-120, 2012]

Jiarul Hoque and Shyamapada Modak

(Received 18 April, 2022)

Abstract

We give a counterexample in this amendment to show that there is an error in consideration of the statement "if $f: X \rightarrow Y$ and \mathbf{J} is an ideal on Y, then $f^{-1}(\mathbf{J})=\left\{f^{-1}(J): J \in \mathbf{J}\right\}$ is an ideal on X " by Hamlett in his paper "Lindelöf with respect to an ideal" [New Zealand J. Math. 42, 115-120, 2012]. We also modify it here in a new way and henceforth put forward correctly all the results that were based on the said statement derived therein.

1. Clarification and Amendment

We use here notation and terminology from [1]. In [1], Page 117, Section 4, Line 3, the following statement has been considered by Hamlett:
"If $f: X \rightarrow Y$ and \mathbf{J} is an ideal on Y, then $f^{-1}(\mathbf{J})=\left\{f^{-1}(J): J \in \mathbf{J}\right\}$ is an ideal on X."

In this amendment, we give a counterexample to clarify the above statement.
Example 1.1. Consider the map $f: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}$ as $x \mapsto|x|$. Here, \mathbb{Z} and \mathbb{N} denote the set of all integers and the set of all positive integers, respectively, and $|\cdot|$ is the modulus function. Consider the subset O of all odd positive integers, and take $\mathbf{J}=\wp(O)$, the power set of O. Then \mathbf{J} is an ideal on $\mathbb{N} \cup\{0\}$. Now, $\{1\} \in \mathbf{J}$ implies $f^{-1}(\{1\})=\{-1,+1\} \in f^{-1}(\mathbf{J})$. Though $\{-1\} \subseteq\{-1,+1\},\{-1\} \notin f^{-1}(\mathbf{J})$. Thus, $f^{-1}(\mathbf{J})$ is not an ideal on \mathbb{Z}.

In view of the above example, we can say that the statement "if $f: X \rightarrow Y$ and \mathbf{J} is an ideal on Y, then $f^{-1}(\mathbf{J})=\left\{f^{-1}(J): J \in \mathbf{J}\right\}$ is an ideal on X " is not true. Here, we give a modification of this statement in the following theorem:
Theorem 1.2. Let $f: X \rightarrow Y$ be a map, and \mathbf{J} an ideal on Y. Define

$$
f^{\leftarrow}(\mathbf{J})=\left\{A: A \subseteq f^{-1}(J) \in f^{-1}(\mathbf{J})\right\} .
$$

Then $f \leftarrow(\mathbf{J})$ is an ideal on X. Moreover, $f \leftarrow(\mathbf{J})$ contains $f^{-1}(\mathbf{J})$.
Proof. (i). Since $\varnothing \in \mathbf{J}, \varnothing=f^{-1}(\varnothing) \in f^{-1}(\mathbf{J})$, and hence $\varnothing \in f^{\leftarrow}(\mathbf{J})$.
(ii) Let $A \subseteq B$ and $B \in f^{\leftarrow}(\mathbf{J})$. Then there exists $J \in \mathbf{J}$ such that $B \subseteq f^{-1}(J)$. Clearly, $A \subseteq f^{-1}(J)$, and hence $A \in f^{\leftarrow}(\mathbf{J})$.
(iii) Let $A, B \in f^{\leftarrow}(\mathbf{J})$. Then there exist $J_{1}, J_{2} \in \mathbf{J}$ such that $A \subseteq f^{-1}\left(J_{1}\right)$ and $B \subseteq f^{-1}\left(J_{2}\right)$. Now, $A \cup B \subseteq f^{-1}\left(J_{1}\right) \cup f^{-1}\left(J_{2}\right)=f^{-1}\left(J_{1} \cup J_{2}\right)$. Since $J_{1} \cup J_{2} \in \mathbf{J}$, $A \cup B \in f^{\leftarrow}(\mathbf{J})$.

Hence $f^{\leftarrow}(\mathbf{J})$ is an ideal on X.
From the definition of $f^{\leftarrow}(\mathbf{J})$, it is clear that $f^{-1}(\mathbf{J})$ is contained in $f^{\leftarrow}(\mathbf{J})$.

In his paper [1], Hamlett derived the results Theorem 4.2, Lemma 4.3, Theorem 4.4, Lemma 4.5 and Theorem 4.7, where f was a surjection map. It is very clear that the map considered in Example 1.1 is a surjection but $f^{-1}(\mathbf{J})$ is, still now, not an ideal on X. Thus, the statements considered in Theorem 4.2, Lemma 4.3, Theorem 4.4, Lemma 4.5 and Theorem 4.7 of [$\mathbf{1}]$ become meaningless for arbitrary ideal \mathbf{J} on Y. The results will be valid whenever $f^{-1}(\mathbf{J})$ becomes an ideal on X in its first appearance.

In this amendment, we modify the results one by one with the help of $f^{\leftarrow}(\mathbf{J})$.
Theorem 1.3 (Modification of Theorem 4.2, [1]). Let $f: X \rightarrow(Y, \sigma, \mathbf{J})$ be a surjection onto a \mathbf{J}-Lindelöf space. If $f^{-1}(\sigma)$ is the weak topology induced by f and σ, then $\left(X, f^{-1}(\sigma)\right)$ is $f^{\leftarrow(\mathbf{J}) \text {-Lindelöf space. }}$

Before entering to the proof of Theorem 1.3, we give the explicit meaning of 'the weak topology $f^{-1}(\sigma)$ induced by f and σ^{\prime} here. Let (Y, σ) be a topological space, X a non-empty set, and $f: X \rightarrow(Y, \sigma)$ a map. Then $f^{-1}(\sigma)=\left\{f^{-1}(U): U \in \sigma\right\}$ gives a topology (one can easily verify this) on X. This topology is called the weak topology induced by f and σ.

Proof of Theorem 1.3: Let $\mathbf{U}=\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in \Delta\right\}$ be an open cover of X, where each $V_{\alpha} \in \sigma$. Then $X=\bigcup_{\alpha \in \Delta} f^{-1}\left(V_{\alpha}\right)$. Now, f being surjective, we have $Y=f(X)=f\left(\bigcup_{\alpha \in \Delta} f^{-1}\left(V_{\alpha}\right)\right)=\bigcup_{\alpha \in \Delta} f\left(f^{-1}\left(V_{\alpha}\right)\right)=\bigcup_{\alpha \in \Delta} V_{\alpha}$ yielding that $\mathbf{V}=\left\{V_{\alpha}: \alpha \in \Delta\right\}$ is an open cover of Y. Since Y is J-Lindelöf, so there is a countable subcollection $\mathbf{V}_{0}=\left\{V_{i}: i \in \mathbb{N}\right\}$ of \mathbf{V} and a $J \in \mathbf{J}$ such that $Y=$ $\left(\bigcup_{i \in \mathbb{N}} V_{i}\right) \cup J$. Therefore, $X=f^{-1}(Y)=f^{-1}\left(\left(\bigcup_{i \in \mathbb{N}} V_{i}\right) \cup J\right)=f^{-1}\left(\bigcup_{i \in \mathbb{N}} V_{i}\right) \cup f^{-1}(J)=$ $\left(\bigcup_{i \in \mathbb{N}} f^{-1}\left(V_{i}\right)\right) \cup f^{-1}(J)$. Take $\mathbf{U}_{0}=\left\{f^{-1}\left(V_{i}\right): i \in \mathbb{N}\right\}$. Then \mathbf{U}_{0} is a countable subcollection of \mathbf{U}. On the other side, $f^{-1}(J) \in f^{\leftarrow}(\mathbf{J})$. Therefore, $\left(X, f^{-1}(\sigma)\right)$ is $f \leftarrow(\mathbf{J})$-Lindelöf.

Lemma 1.4 (Modification of Lemma 4.3, [1]). If $f: X \rightarrow(Y, \sigma, \mathbf{J})$ is a surjection and \mathbf{J} is σ-codense, then $f^{\leftarrow}(\mathbf{J})$ is $f^{-1}(\sigma)$-codense.

Proof. Assume on the contrary, that $f^{\leftarrow}(\mathbf{J})$ is not $f^{-1}(\sigma)$-codense. Then there is an $A \in\left(f^{\leftarrow}(\mathbf{J}) \cap f^{-1}(\sigma)\right) \backslash\{\varnothing\}$. Now, choose $J \in \mathbf{J} \backslash\{\varnothing\}$ and $V \in \sigma \backslash\{\varnothing\}$ such that $A \subseteq f^{-1}(J)$ and $A=f^{-1}(V)$. Now, f being surjective, we have $V=$ $f\left(f^{-1}(V)\right)=f(A) \subseteq f\left(f^{-1}(J)\right)=J$ implying that $V \in \mathbf{J} \backslash\{\varnothing\}$. Therefore, $V \in(\mathbf{J} \backslash\{\varnothing\}) \cap(\sigma \backslash\{\varnothing\})$ witnesses that \mathbf{J} is not σ-codense, a contradiction.

Besides the problem of $f^{-1}(\mathbf{J})$ to be an ideal, after a deep observation to the proof of Theorem 4.4 of [$\mathbf{1}]$, we reach the decision that the conditions 'continuous' and 'openness' of f are redundant. A correction is presented in the following theorem:
Theorem 1.5 (Modification of Theorem 4.4, [1]). Let $f:(X, \tau) \rightarrow(Y, \sigma, \mathbf{J})$ be a closed surjection and has compact fibers. If (Y, σ) is \mathbf{J}-Lindelöf, then (X, τ) is $f \leftarrow(\mathbf{J})$-Lindelöf.

Proof. To show that (X, τ) is $f \leftarrow(\mathbf{J})$-Lindelöf, let $\mathbf{U}=\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an open cover of X. For each $y \in Y, \mathbf{U}$ is then also an open cover of $f^{-1}(y)$, a
compact subset of X. Therefore, for each $y \in Y$, there is a finite subcollection $\mathbf{U}_{y}=\left\{U_{\alpha_{i}}^{y}: i=1,2, \ldots, n_{y}\right\}$ of \mathbf{U} such that $f^{-1}(y) \subseteq \bigcup_{i=1}^{n_{y}} U_{\alpha_{i}}^{y}$. Take $U_{y}=\bigcup_{i=1}^{n_{y}} U_{\alpha_{i}}^{y}$. Then U_{y} is open in X and $f^{-1}(y) \subseteq U_{y}$. Each $f\left(X \backslash U_{y}\right)$ is closed in Y, and note that $y \notin f\left(X \backslash U_{y}\right)$ (if $y \in f\left(X \backslash U_{y}\right)$, then there exists $x_{*} \in X \backslash U_{y}$ such that $f\left(x_{*}\right)=y$ implying that $x_{*} \in f^{-1}(y) \subseteq U_{y}$, a contradiction). Take $V_{y}=$ $Y \backslash f\left(X \backslash U_{y}\right)$. Then V_{y} is open in $Y, y \in V_{y}$ and $f^{-1}\left(V_{y}\right) \subseteq U_{y}$ (since $p \notin U_{y}$ implies $f(p) \in f\left(X \backslash U_{y}\right)$ and hence $f(p) \notin V_{y}$ gives $\left.p \notin f^{-1}\left(V_{y}\right)\right)$. The collection $\mathbf{V}=\left\{V_{y}: y \in Y\right\}$ is then an open cover of Y. So there is a countable subcollection $\mathbf{V}_{0}=\left\{V_{y_{j}}: j \in \mathbb{N}\right\}$ and a $J \in \mathbf{J}$ such that $Y=\left(\bigcup_{j \in \mathbb{N}} V_{y_{j}}\right) \cup J$. Now, let $x \in X$ is arbitrary. Let $f(x)=y_{*} \in Y$. Then $y_{*} \in V_{y_{j}} \cup J$ for some y_{j}. Now, $x \in f^{-1}\left(y_{*}\right) \subseteq$ $f^{-1}\left(V_{y_{j}}\right) \cup f^{-1}(J) \subseteq U_{y_{j}} \cup f^{-1}(J)=\left(\bigcup_{i=1}^{n_{y_{j}}} U_{\alpha_{i}}^{y_{j}}\right) \cup f^{-1}(J) \subseteq\left(\bigcup_{j \in \mathbb{N} i=1}^{n_{y_{j}}} \bigcup_{\alpha_{i}}^{y_{j}}\right) \cup f^{-1}(J)$. Take $\mathbf{U}_{0}=\left\{U_{\alpha_{i}}^{y_{j}}: i=1,2, \ldots, n_{y_{j}}\right.$ and $\left.j=1,2, \ldots\right\}$. Then \mathbf{U}_{0} is a countable subcollection of \mathbf{U} such that $X=\left(\bigcup_{j \in \mathbb{N}} \bigcup_{i=1}^{n_{y_{j}}} U_{\alpha_{i}}^{y_{j}}\right) \cup f^{-1}(J)$, where $f^{-1}(J) \in f^{\leftarrow}(\mathbf{J})$. This completes the proof.
Lemma 1.6 (Modification of Lemma 4.5, [1]). If $f:(X, \tau) \rightarrow(Y, \sigma, \mathbf{J})$ is an open surjection and \mathbf{J} is σ-codense, then $f^{\leftarrow}(\mathbf{J})$ is τ-codense.

Proof. Assume on the contrary, that $f \leftarrow(\mathbf{J})$ is not τ-codense. Then there are an $A \in \tau \backslash\{\varnothing\}$ and a $J \in \mathbf{J}$ such that $A \subseteq f^{-1}(J)$. Now, $f(A) \subseteq f\left(f^{-1}(J)\right)=J \in \mathbf{J}$ gives $f(A) \in \mathbf{J}$. Also, $f(A) \in \sigma$. Therefore, $\varnothing \neq f(A) \in \mathbf{J} \cap \sigma$, and hence \mathbf{J} is not τ-codense.

Theorem 1.7 (Modification of Theorem 4.7, [1]). If (X, τ, \mathbf{I}) is \mathbf{I}-Lindelöf and (Y, σ) is compact, then $(X \times Y, \eta)$ is $p^{\leftarrow}(\mathbf{I})$-Lindelöf, where η is the usual product topology and $p: X \times Y \rightarrow X$ is the projection map onto X defined by $p(x, y)=x$.
Proof. Follows from Theorem 1.5.

References

[1] T. R. Hamlett, Lindelöf with respect to an ideal, New Zealand J. Math., 42 (2012), 115-120.

Jiarul Hoque
Gangarampur Government
Polytechnic,
Gangarampur 733 124,
West Bengal,

India

jiarul8435@gmail.com

Shyamapada Modak
University of Gour Banga,
Malda 732 103,
West Bengal,
India
spmodak2000@yahoo.co.in

