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Abstract. We give a counterexample in this amendment to show that there is

an error in consideration of the statement “if f : X → Y and J is an ideal on

Y , then f−1(J) = {f−1(J) : J ∈ J} is an ideal on X” by Hamlett in his paper
“Lindelöf with respect to an ideal” [New Zealand J. Math. 42, 115-120, 2012].

We also modify it here in a new way and henceforth put forward correctly all
the results that were based on the said statement derived therein.

1. Clarification and Amendment

We use here notation and terminology from [1]. In [1], Page 117, Section 4, Line
3, the following statement has been considered by Hamlett:

“If f : X → Y and J is an ideal on Y , then f−1(J) = {f−1(J) : J ∈ J} is an
ideal on X.”

In this amendment, we give a counterexample to clarify the above statement.

Example 1.1. Consider the map f : Z→ N∪{0} as x 7→ |x|. Here, Z and N denote
the set of all integers and the set of all positive integers, respectively, and | · | is
the modulus function. Consider the subset O of all odd positive integers, and take
J = ℘(O), the power set of O. Then J is an ideal on N∪{0}. Now, {1} ∈ J implies
f−1({1}) = {−1,+1} ∈ f−1(J). Though {−1} ⊆ {−1,+1}, {−1} /∈ f−1(J). Thus,
f−1(J) is not an ideal on Z.

In view of the above example, we can say that the statement “if f : X → Y and
J is an ideal on Y , then f−1(J) = {f−1(J) : J ∈ J} is an ideal on X” is not true.
Here, we give a modification of this statement in the following theorem:

Theorem 1.2. Let f : X → Y be a map, and J an ideal on Y . Define

f←(J) = {A : A ⊆ f−1(J) ∈ f−1(J)}.
Then f←(J) is an ideal on X. Moreover, f←(J) contains f−1(J).

Proof. (i). Since ∅ ∈ J, ∅ = f−1(∅) ∈ f−1(J), and hence ∅ ∈ f←(J).
(ii) Let A ⊆ B and B ∈ f←(J). Then there exists J ∈ J such that B ⊆ f−1(J).

Clearly, A ⊆ f−1(J), and hence A ∈ f←(J).
(iii) Let A, B ∈ f←(J). Then there exist J1, J2 ∈ J such that A ⊆ f−1(J1) and

B ⊆ f−1(J2). Now, A∪B ⊆ f−1(J1)∪ f−1(J2) = f−1(J1 ∪ J2). Since J1 ∪ J2 ∈ J,
A ∪B ∈ f←(J).

Hence f←(J) is an ideal on X.
From the definition of f←(J), it is clear that f−1(J) is contained in f←(J). �

2010 AMS Mathematics Subject Classification: 54D20, 54D30.

Key words and phrases: Ideal; codense ideal; I-Lindelöf space; compact space.
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In his paper [1], Hamlett derived the results Theorem 4.2, Lemma 4.3, Theorem
4.4, Lemma 4.5 and Theorem 4.7, where f was a surjection map. It is very clear
that the map considered in Example 1.1 is a surjection but f−1(J) is, still now,
not an ideal on X. Thus, the statements considered in Theorem 4.2, Lemma 4.3,
Theorem 4.4, Lemma 4.5 and Theorem 4.7 of [1] become meaningless for arbitrary
ideal J on Y . The results will be valid whenever f−1(J) becomes an ideal on X in
its first appearance.

In this amendment, we modify the results one by one with the help of f←(J).

Theorem 1.3 (Modification of Theorem 4.2, [1]). Let f : X → (Y, σ,J) be a
surjection onto a J-Lindelöf space. If f−1(σ) is the weak topology induced by f and
σ, then (X, f−1(σ)) is f←(J)-Lindelöf space.

Before entering to the proof of Theorem 1.3, we give the explicit meaning of ‘the
weak topology f−1(σ) induced by f and σ’ here. Let (Y, σ) be a topological space,
X a non-empty set, and f : X → (Y, σ) a map. Then f−1(σ) = {f−1(U) : U ∈ σ}
gives a topology (one can easily verify this) on X. This topology is called the weak
topology induced by f and σ.

Proof of Theorem 1.3 : Let U = {f−1(Vα) : α ∈ ∆} be an open cover
of X, where each Vα ∈ σ. Then X =

⋃
α∈∆

f−1(Vα). Now, f being surjective,

we have Y = f(X) = f(
⋃
α∈∆

f−1(Vα)) =
⋃
α∈∆

f(f−1(Vα)) =
⋃
α∈∆

Vα yielding that

V = {Vα : α ∈ ∆} is an open cover of Y . Since Y is J-Lindelöf, so there is a
countable subcollection V0 = {Vi : i ∈ N} of V and a J ∈ J such that Y =
(
⋃
i∈N

Vi)∪ J . Therefore, X = f−1(Y ) = f−1((
⋃
i∈N

Vi)∪ J) = f−1(
⋃
i∈N

Vi)∪ f−1(J) =

(
⋃
i∈N

f−1(Vi)) ∪ f−1(J). Take U0 = {f−1(Vi) : i ∈ N}. Then U0 is a countable

subcollection of U. On the other side, f−1(J) ∈ f←(J). Therefore, (X, f−1(σ)) is
f←(J)-Lindelöf.

Lemma 1.4 (Modification of Lemma 4.3, [1]). If f : X → (Y, σ,J) is a
surjection and J is σ-codense, then f←(J) is f−1(σ)-codense.

Proof. Assume on the contrary, that f←(J) is not f−1(σ)-codense. Then there
is an A ∈ (f←(J) ∩ f−1(σ)) \ {∅}. Now, choose J ∈ J \ {∅} and V ∈ σ \ {∅}
such that A ⊆ f−1(J) and A = f−1(V ). Now, f being surjective, we have V =
f(f−1(V )) = f(A) ⊆ f(f−1(J)) = J implying that V ∈ J \ {∅}. Therefore,
V ∈ (J \ {∅}) ∩ (σ \ {∅}) witnesses that J is not σ-codense, a contradiction. �

Besides the problem of f−1(J) to be an ideal, after a deep observation to the proof
of Theorem 4.4 of [1], we reach the decision that the conditions ‘continuous’ and
‘openness’ of f are redundant. A correction is presented in the following theorem:

Theorem 1.5 (Modification of Theorem 4.4, [1]). Let f : (X, τ) → (Y, σ,J)
be a closed surjection and has compact fibers. If (Y, σ) is J-Lindelöf, then (X, τ) is
f←(J)-Lindelöf.

Proof. To show that (X, τ) is f←(J)-Lindelöf, let U = {Uα : α ∈ ∆} be an
open cover of X. For each y ∈ Y , U is then also an open cover of f−1(y), a
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compact subset of X. Therefore, for each y ∈ Y , there is a finite subcollection

Uy = {Uyαi
: i = 1, 2, . . . , ny} of U such that f−1(y) ⊆

ny⋃
i=1

Uyαi
. Take Uy =

ny⋃
i=1

Uyαi
.

Then Uy is open in X and f−1(y) ⊆ Uy. Each f(X \ Uy) is closed in Y , and
note that y /∈ f(X \ Uy) (if y ∈ f(X \ Uy), then there exists x∗ ∈ X \ Uy such
that f(x∗) = y implying that x∗ ∈ f−1(y) ⊆ Uy, a contradiction). Take Vy =
Y \ f(X \ Uy). Then Vy is open in Y , y ∈ Vy and f−1(Vy) ⊆ Uy (since p /∈ Uy
implies f(p) ∈ f(X \ Uy) and hence f(p) /∈ Vy gives p /∈ f−1(Vy)). The collection
V = {Vy : y ∈ Y } is then an open cover of Y . So there is a countable subcollection
V0 = {Vyj : j ∈ N} and a J ∈ J such that Y = (

⋃
j∈N

Vyj ) ∪ J . Now, let x ∈ X is

arbitrary. Let f(x) = y∗ ∈ Y . Then y∗ ∈ Vyj ∪ J for some yj . Now, x ∈ f−1(y∗) ⊆

f−1(Vyj ) ∪ f−1(J) ⊆ Uyj ∪ f−1(J) = (
nyj⋃
i=1

U
yj
αi ) ∪ f−1(J) ⊆ (

⋃
j∈N

nyj⋃
i=1

U
yj
αi ) ∪ f−1(J).

Take U0 = {Uyjαi : i = 1, 2, . . . , nyj and j = 1, 2, . . . }. Then U0 is a countable

subcollection of U such that X = (
⋃
j∈N

nyj⋃
i=1

U
yj
αi ) ∪ f−1(J), where f−1(J) ∈ f←(J).

This completes the proof. �

Lemma 1.6 (Modification of Lemma 4.5, [1]). If f : (X, τ) → (Y, σ,J) is an
open surjection and J is σ-codense, then f←(J) is τ -codense.

Proof. Assume on the contrary, that f←(J) is not τ -codense. Then there are an
A ∈ τ \ {∅} and a J ∈ J such that A ⊆ f−1(J). Now, f(A) ⊆ f(f−1(J)) = J ∈ J
gives f(A) ∈ J. Also, f(A) ∈ σ. Therefore, ∅ 6= f(A) ∈ J ∩ σ, and hence J is not
τ -codense. �

Theorem 1.7 (Modification of Theorem 4.7, [1]). If (X, τ, I) is I-Lindelöf and
(Y, σ) is compact, then (X × Y, η) is p←(I)-Lindelöf, where η is the usual product
topology and p : X × Y → X is the projection map onto X defined by p(x, y) = x.

Proof. Follows from Theorem 1.5. �
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