NEW ZEALAND JOURNAL OF MATHEMATICS Volume 54 (2023), 9-11 https://doi.org/10.53733/218

AMENDMENT TO "LINDELÖF WITH RESPECT TO AN IDEAL" [NEW ZEALAND J. MATH. 42, 115-120, 2012]

JIARUL HOQUE AND SHYAMAPADA MODAK (Received 18 April, 2022)

Abstract. We give a counterexample in this amendment to show that there is an error in consideration of the statement "if $f: X \to Y$ and **J** is an ideal on Y, then $f^{-1}(\mathbf{J}) = \{f^{-1}(J) : J \in \mathbf{J}\}\$ is an ideal on X" by Hamlett in his paper "Lindelöf with respect to an ideal" [New Zealand J. Math. 42, 115-120, 2012]. We also modify it here in a new way and henceforth put forward correctly all the results that were based on the said statement derived therein.

1. Clarification and Amendment

We use here notation and terminology from [1]. In [1], Page 117, Section 4, Line 3, the following statement has been considered by Hamlett:

"If $f: X \to Y$ and **J** is an ideal on Y, then $f^{-1}(\mathbf{J}) = \{f^{-1}(J) : J \in \mathbf{J}\}$ is an ideal on X."

In this amendment, we give a counterexample to clarify the above statement.

Example 1.1. Consider the map $f: \mathbb{Z} \to \mathbb{N} \cup \{0\}$ as $x \mapsto |x|$. Here, \mathbb{Z} and \mathbb{N} denote the set of all integers and the set of all positive integers, respectively, and $|\cdot|$ is the modulus function. Consider the subset O of all odd positive integers, and take $\mathbf{J} = \wp(O)$, the power set of O. Then **J** is an ideal on $\mathbb{N} \cup \{0\}$. Now, $\{1\} \in \mathbf{J}$ implies $f^{-1}(\{1\}) = \{-1, +1\} \in f^{-1}(\mathbf{J})$. Though $\{-1\} \subseteq \{-1, +1\}, \{-1\} \notin f^{-1}(\mathbf{J})$. Thus, $f^{-1}(\mathbf{J})$ is not an ideal on \mathbb{Z} .

In view of the above example, we can say that the statement "if $f: X \to Y$ and **J** is an ideal on Y, then $f^{-1}(\mathbf{J}) = \{f^{-1}(J) : J \in \mathbf{J}\}$ is an ideal on X" is not true. Here, we give a modification of this statement in the following theorem:

Theorem 1.2. Let $f: X \to Y$ be a map, and **J** an ideal on Y. Define

$$f^{\leftarrow}(\mathbf{J}) = \{A : A \subseteq f^{-1}(J) \in f^{-1}(\mathbf{J})\}.$$

Then $f^{\leftarrow}(\mathbf{J})$ is an ideal on X. Moreover, $f^{\leftarrow}(\mathbf{J})$ contains $f^{-1}(\mathbf{J})$.

Proof. (i). Since $\emptyset \in \mathbf{J}$, $\emptyset = f^{-1}(\emptyset) \in f^{-1}(\mathbf{J})$, and hence $\emptyset \in f^{\leftarrow}(\mathbf{J})$.

(ii) Let $A \subseteq B$ and $B \in f^{\leftarrow}(\mathbf{J})$. Then there exists $J \in \mathbf{J}$ such that $B \subseteq f^{-1}(J)$. Clearly, $A \subseteq f^{-1}(J)$, and hence $A \in f^{\leftarrow}(\mathbf{J})$.

(iii) Let $A, B \in f^{\leftarrow}(\mathbf{J})$. Then there exist $J_1, J_2 \in \mathbf{J}$ such that $A \subseteq f^{-1}(J_1)$ and $B \subseteq f^{-1}(J_2)$. Now, $A \cup B \subseteq f^{-1}(J_1) \cup f^{-1}(J_2) = f^{-1}(J_1 \cup J_2)$. Since $J_1 \cup J_2 \in \mathbf{J}$, $A \cup B \in f^{\leftarrow}(\mathbf{J}).$ Hence $f^{\leftarrow}(\mathbf{J})$ is an ideal on X.

From the definition of $f^{\leftarrow}(\mathbf{J})$, it is clear that $f^{-1}(\mathbf{J})$ is contained in $f^{\leftarrow}(\mathbf{J})$. \Box

2010 AMS Mathematics Subject Classification: 54D20, 54D30.

Key words and phrases: Ideal; codense ideal; I-Lindelöf space; compact space.

J. HOQUE and S. MODAK

In his paper [1], Hamlett derived the results Theorem 4.2, Lemma 4.3, Theorem 4.4, Lemma 4.5 and Theorem 4.7, where f was a surjection map. It is very clear that the map considered in Example 1.1 is a surjection but $f^{-1}(\mathbf{J})$ is, still now, not an ideal on X. Thus, the statements considered in Theorem 4.2, Lemma 4.3, Theorem 4.4, Lemma 4.5 and Theorem 4.7 of [1] become meaningless for arbitrary ideal \mathbf{J} on Y. The results will be valid whenever $f^{-1}(\mathbf{J})$ becomes an ideal on X in its first appearance.

In this amendment, we modify the results one by one with the help of $f^{\leftarrow}(\mathbf{J})$.

Theorem 1.3 (Modification of Theorem 4.2, [1]). Let $f : X \to (Y, \sigma, \mathbf{J})$ be a surjection onto a \mathbf{J} -Lindelöf space. If $f^{-1}(\sigma)$ is the weak topology induced by f and σ , then $(X, f^{-1}(\sigma))$ is $f^{\leftarrow}(\mathbf{J})$ -Lindelöf space.

Before entering to the proof of Theorem 1.3, we give the explicit meaning of 'the weak topology $f^{-1}(\sigma)$ induced by f and σ ' here. Let (Y, σ) be a topological space, X a non-empty set, and $f: X \to (Y, \sigma)$ a map. Then $f^{-1}(\sigma) = \{f^{-1}(U) : U \in \sigma\}$ gives a topology (one can easily verify this) on X. This topology is called the weak topology induced by f and σ .

Proof of Theorem 1.3: Let $\mathbf{U} = \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ be an open cover of X, where each $V_{\alpha} \in \sigma$. Then $X = \bigcup_{\alpha \in \Delta} f^{-1}(V_{\alpha})$. Now, f being surjective, we have $Y = f(X) = f(\bigcup_{\alpha \in \Delta} f^{-1}(V_{\alpha})) = \bigcup_{\alpha \in \Delta} f(f^{-1}(V_{\alpha})) = \bigcup_{\alpha \in \Delta} V_{\alpha}$ yielding that $\mathbf{V} = \{V_{\alpha} : \alpha \in \Delta\}$ is an open cover of Y. Since Y is \mathbf{J} -Lindelöf, so there is a countable subcollection $\mathbf{V}_0 = \{V_i : i \in \mathbb{N}\}$ of \mathbf{V} and a $J \in \mathbf{J}$ such that $Y = (\bigcup_{i \in \mathbb{N}} V_i) \cup J$. Therefore, $X = f^{-1}(Y) = f^{-1}((\bigcup_{i \in \mathbb{N}} V_i) \cup J) = f^{-1}(\bigcup_{i \in \mathbb{N}} V_i) \cup f^{-1}(J) = (\bigcup_{i \in \mathbb{N}} f^{-1}(V_i)) \cup f^{-1}(J)$. Take $\mathbf{U}_0 = \{f^{-1}(V_i) : i \in \mathbb{N}\}$. Then \mathbf{U}_0 is a countable subcollection of \mathbf{U} . On the other side, $f^{-1}(J) \in f^{\leftarrow}(\mathbf{J})$. Therefore, $(X, f^{-1}(\sigma))$ is $f^{\leftarrow}(\mathbf{J})$ -Lindelöf.

Lemma 1.4 (Modification of Lemma 4.3, [1]). If $f : X \to (Y, \sigma, \mathbf{J})$ is a surjection and \mathbf{J} is σ -codense, then $f^{\leftarrow}(\mathbf{J})$ is $f^{-1}(\sigma)$ -codense.

Proof. Assume on the contrary, that $f^{\leftarrow}(\mathbf{J})$ is not $f^{-1}(\sigma)$ -codense. Then there is an $A \in (f^{\leftarrow}(\mathbf{J}) \cap f^{-1}(\sigma)) \setminus \{\emptyset\}$. Now, choose $J \in \mathbf{J} \setminus \{\emptyset\}$ and $V \in \sigma \setminus \{\emptyset\}$ such that $A \subseteq f^{-1}(J)$ and $A = f^{-1}(V)$. Now, f being surjective, we have V = $f(f^{-1}(V)) = f(A) \subseteq f(f^{-1}(J)) = J$ implying that $V \in \mathbf{J} \setminus \{\emptyset\}$. Therefore, $V \in (\mathbf{J} \setminus \{\emptyset\}) \cap (\sigma \setminus \{\emptyset\})$ witnesses that \mathbf{J} is not σ -codense, a contradiction. \Box

Besides the problem of $f^{-1}(\mathbf{J})$ to be an ideal, after a deep observation to the proof of Theorem 4.4 of [1], we reach the decision that the conditions 'continuous' and 'openness' of f are redundant. A correction is presented in the following theorem:

Theorem 1.5 (Modification of Theorem 4.4, [1]). Let $f : (X, \tau) \to (Y, \sigma, \mathbf{J})$ be a closed surjection and has compact fibers. If (Y, σ) is \mathbf{J} -Lindelöf, then (X, τ) is $f^{\leftarrow}(\mathbf{J})$ -Lindelöf.

Proof. To show that (X, τ) is $f^{\leftarrow}(\mathbf{J})$ -Lindelöf, let $\mathbf{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be an open cover of X. For each $y \in Y$, **U** is then also an open cover of $f^{-1}(y)$, a

compact subset of X. Therefore, for each $y \in Y$, there is a finite subcollection $\mathbf{U}_{y} = \{U_{\alpha_{i}}^{y} : i = 1, 2, \dots, n_{y}\}$ of **U** such that $f^{-1}(y) \subseteq \bigcup_{i=1}^{n_{y}} U_{\alpha_{i}}^{y}$. Take $U_{y} = \bigcup_{i=1}^{n_{y}} U_{\alpha_{i}}^{y}$. Then U_{y} is open in X and $f^{-1}(y) \subseteq U_{y}$. Each $f(X \setminus U_{y})$ is closed in Y, and note that $y \notin f(X \setminus U_{y})$ (if $y \in f(X \setminus U_{y})$, then there exists $x_{*} \in X \setminus U_{y}$ such that $f(x_{*}) = y$ implying that $x_{*} \in f^{-1}(y) \subseteq U_{y}$, a contradiction). Take $V_{y} =$ $Y \setminus f(X \setminus U_{y})$. Then V_{y} is open in Y, $y \in V_{y}$ and $f^{-1}(V_{y}) \subseteq U_{y}$ (since $p \notin U_{y}$ implies $f(p) \in f(X \setminus U_{y})$ and hence $f(p) \notin V_{y}$ gives $p \notin f^{-1}(V_{y})$). The collection $\mathbf{V} = \{V_{y} : y \in Y\}$ is then an open cover of Y. So there is a countable subcollection $\mathbf{V}_{0} = \{V_{y_{j}} : j \in \mathbb{N}\}$ and a $J \in \mathbf{J}$ such that $Y = (\bigcup_{j \in \mathbb{N}} V_{y_{j}}) \cup J$. Now, let $x \in X$ is arbitrary. Let $f(x) = y_{*} \in Y$. Then $y_{*} \in V_{y_{j}} \cup J$ for some y_{j} . Now, $x \in f^{-1}(y_{*}) \subseteq$ $f^{-1}(V_{y_{j}}) \cup f^{-1}(J) \subseteq U_{y_{j}} \cup f^{-1}(J) = (\bigcup_{i=1}^{n_{y_{j}}} U_{\alpha_{i}}^{y_{j}}) \cup f^{-1}(J) \subseteq (\bigcup_{j \in \mathbb{N}} \bigcup_{i=1}^{n_{y_{j}}} U_{\alpha_{i}}^{y_{j}}) \cup f^{-1}(J)$. Take $\mathbf{U}_{0} = \{U_{\alpha_{i}}^{y_{j}} : i = 1, 2, \dots, n_{y_{j}}$ and $j = 1, 2, \dots$ }. Then \mathbf{U}_{0} is a countable subcollection of **U** such that $X = (\bigcup_{j \in \mathbb{N}} \bigcup_{i=1}^{n_{y_{j}}} U_{\alpha_{i}}^{y_{j}}) \cup f^{-1}(J) \in f^{\leftarrow}(\mathbf{J})$. This completes the proof.

Lemma 1.6 (Modification of Lemma 4.5, [1]). If $f : (X, \tau) \to (Y, \sigma, \mathbf{J})$ is an open surjection and \mathbf{J} is σ -codense, then $f^{\leftarrow}(\mathbf{J})$ is τ -codense.

Proof. Assume on the contrary, that $f^{\leftarrow}(\mathbf{J})$ is not τ -codense. Then there are an $A \in \tau \setminus \{\varnothing\}$ and a $J \in \mathbf{J}$ such that $A \subseteq f^{-1}(J)$. Now, $f(A) \subseteq f(f^{-1}(J)) = J \in \mathbf{J}$ gives $f(A) \in \mathbf{J}$. Also, $f(A) \in \sigma$. Therefore, $\varnothing \neq f(A) \in \mathbf{J} \cap \sigma$, and hence \mathbf{J} is not τ -codense.

Theorem 1.7 (Modification of Theorem 4.7, [1]). If (X, τ, \mathbf{I}) is I-Lindelöf and (Y, σ) is compact, then $(X \times Y, \eta)$ is $p^{\leftarrow}(\mathbf{I})$ -Lindelöf, where η is the usual product topology and $p: X \times Y \to X$ is the projection map onto X defined by p(x, y) = x.

Proof. Follows from Theorem 1.5.

References

 T. R. Hamlett, Lindelöf with respect to an ideal, New Zealand J. Math., 42 (2012), 115-120.

Jiarul Hoque Gangarampur Government Polytechnic, Gangarampur 733 124, West Bengal, India	Shyamapada Modak University of Gour Banga Malda 732 103, West Bengal, India
jiarul8435@gmail.com	spmodak2000@yahoo.co.ir