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Abstract. Around 2004, J. Lovejoy [8] proved three Hecke-type series iden-

tities using Bailey pairs. In this article, we prove Lovejoy’s identities using
transformation formulas for q-series discovered by Z.G. Liu in 2013. Some new

Hecke-type series are also derived. Our approach also allows us to derive some

new Hecke-type identities.

1. Introduction

Let n ∈ Z+ , a, q ∈ C with |q| < 1. Let

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk)

and

(a; q)∞ = lim
n→∞

(a; q)n =

∞∏
k=0

(1− aqk).

Let a1, a2, . . . , am be complex numbers and define

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is a non-negative integer or ∞. The basic hypergeometric series rφs is
defined by

rφs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)
=

∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn.

In this article, we say that a series is a Hecke-type series if it is of the form

∞∑
n=1

n∑
j=−n+1

Cn,j(q)q
an2−bj2 ,

where a, b ∈ Q− {0} and Cn,j(q) are polynomials in q.
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In [8], J. Lovejoy used Bailey pairs to prove three identities involving certain
Hecke-type series. They are

∞∑
n=1

n∑
j=−n+1

(−1)n+j+1q2n
2−j2 =

∞∑
n=1

(q; q)n−1
(−q; q)n

(−1)nqn(n+1)/2, (1.1)

∞∑
n=1

n∑
j=−n+1

(−1)n+j+1q3n
2−2j2 =

∞∑
n=1

(q; q)2n−1
(−q2; q2)n

qn, (1.2)

and

∞∑
n=1

n∑
j=−n+1

(−1)n+j+1q3n
2−j2 =

∞∑
n=1

(q2; q2)n−1
(−q; q)2n

(−1)nqn(n+1). (1.3)

In this article, we give new proofs of (1.1), (1.2) and (1.3) using the following
identities of Z.G. Liu.

Theorem 1.1. [6, Theorem 1.12]1 For max{|uab/q|, |qv/c|, |ua|, |ub|} < 1, we have

(uq, uab/q; q)∞
(ua, ub; q)∞

3φ2

(
q/a, q/b, v

c, d
; q;

uab

q

)
(1.4)

=

∞∑
n=0

(1− uq2n)(u, q/a, q/b, qu/c; q)n
(1− u)(q, ua, ub, c; q)n

(uabc)nqn
2−2n

× 3φ2

(
q−n, uqn, d/v

d, qu/c
; q,

qv

c

)
.

Theorem 1.2. [6, p. 2089] For max{|uab/q|, |ua|, |ub|} < 1, we have

(uq, uab/q; q)∞
(ua, ub; q)∞

3φ2

(
q/a, q/b, v

c, d
; q;

uab

q

)
(1.5)

=

∞∑
n=0

(1− uq2n)(u, q/a, q/b; q)n
(1− u)(q, ua, ub; q)n

(−uab)nqn
2−2n

× 3φ2

(
q−n, uqn, v

c, d
; q, q

)
.

Our method not only provides a systematic approach to proving (1.1), (1.2) and
(1.3) but also leads to their analogues, namely,

∞∑
n=1

n∑
j=−n+1

(1− qn)2(−1)n+j+1q2n
2−n−j2 =

∞∑
n=1

(q; q)n
(−q; q)n

(−1)nqn(n−1)/2, (1.6)

∞∑
n=1

n∑
j=−n+1

(−1)j+1q2n
2−j2 =

∞∑
n=1

(q; q)2n−1
(−q; q)2n

qn, (1.7)

and

∞∑
n=1

n∑
j=−n+1

(1− q2n)2(−1)n+j+1q3n
2−2n−j2 =

∞∑
n=1

(q2; q2)n
(−q; q)2n

(−1)nqn
2−n. (1.8)

1There is a misprint in [6] and the power qn
2−n should be replaced by qn

2−2n.
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In order to prove identities such as (1.1) and (1.3), we first need to establish
some identities which are consequences of Theorem 1.1 and Theorem 1.2. These
are given as follows.

Theorem 1.3. If max{|ab/q|, |a|, |b|} < 1, then

(q, ab/q; q)∞
(a, b; q)∞

∞∑
n=1

(q/a, q/b; q)n
(−q; q)n

(
ab

q

)n

(1.9)

= −
∞∑

n=1

(1− qn)
(q/a, q/b; q)n

(a, b; q)n
(ab)nq3n(n+1)/2

n+1∑
j=−n+1

(−1)jq−j
2

.

Theorem 1.4. For max{|ab/q2|, |a|, |b|} < 1, we have

(q2, ab/q2; q2)∞
(a, b; q2)∞

∞∑
n=1

(q2/a, q2/b; q2)n
(−q; q)2n

(
ab

q2

)n

(1.10)

= −
∞∑

n=1

(1− q2n)
(q2/a, q2/b; q2)n

(a, b; q2)n
(ab)nq2n

2−3n
n∑

j=−n+1

(−1)jq−j
2

.

Theorem 1.3 will be established using Theorem 1.1 in Section 2. This is followed
by proofs of (1.1), (1.2) and (1.6).

Theorem 1.4 will be derived using Theorem 1.2 in Section 3 and will be used to
establish (1.3), (1.7) and (1.8).

We end this introduction by providing our motivation behind this work. In a
recent work of L.Q. Wang and A.J. Yee [9], several new Hecke-Rogers type identities
were discovered. All except one of the identities in [9] were proved using Theorem
1.1. The remaining identity was established using (1.1), an identity established by
Lovejoy using Bailey pairs. Our intention to give a new proof of (1.1) is to provide
readers of [9] a complete understanding of their work with only the knowledge of
Theorem 1.1.

2. Proofs of Theorem 1.3, (1.1), (1.2) and (1.6)

We begin this section by proving Theorem 1.3 with the aid of Theorem 1.1.

Proof of (1.9). First, set d = 0, v = q and c = −q in (1.4) to conclude that

(uq, uab/q; q)∞
(ua, ub; q)∞

∞∑
n=0

(q/a, q/b; q)n
(−q; q)n

(
uab

q

)n

(2.1)

=

∞∑
n=0

(1− uq2n)(u, q/a, q/b,−u; q)n
(1− u)(q, ua, ub,−q; q)n

(−uab)nqn
2−n

2φ1

(
q−n uqn

−u ; q,−q
)
.

We next rewrite (2.1) as

(uq, uab/q; q)∞
(ua, ub; q)∞

+
(uq, uab/q; q)∞

(ua, ub; q)∞

∞∑
n=1

(q/a, q/b; q)n
(−q; q)n

(
uab

q

)n

(2.2)

= 1 +

∞∑
n=1

(1− uq2n)(q/a, q/b, u,−u; q)n
(1− u)(q, ua, ub,−q; q)n

(−uab)nqn
2−n

2φ1

(
q−n uqn

−u ; q,−q
)
.
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Letting u→ 1 in (2.2), we deduce that

(q, ab/q; q)∞
(a, b; q)∞

+
(q, ab/q; q)∞

(a, b; q)∞

∞∑
n=1

(q/a, q/b; q)n
(−q; q)n

(
ab

q

)n

(2.3)

= 1 + 2

∞∑
n=1

(q/a, q/b; q)n
(a, b; q)n

(−ab)nqn
2−n

2φ1

(
q−n qn

−1
; q,−q

)
.

Next, observe that [3, (2.5)]

2 2φ1

(
q−n qn

−1
; q,−q

)
= 2q−n(n−1)/2 + (−1)n−1(1− qn)qn(n−1)/2

n−1∑
j=−n+1

(−1)jq−j
2

(2.4)

= (1 + qn)q−n(n+1)/2 + (−1)n−1(1− qn)qn(n−1)/2
n∑

j=−n+1

(−1)jq−j
2

.

Substituting (2.4) to the right hand side of (2.3), we deduce that

(q, ab/q; q)∞
(a, b; q)∞

+
(q, ab/q; q)∞

(a, b; q)∞

∞∑
n=1

(q/a, q/b; q)n
(−q; q)n

(
ab

q

)n

(2.5)

= 1 +

∞∑
n=1

(q/a, q/b; q)n
(a, b; q)n

(
−ab
q

)n

qn(n−1)/2(1 + qn)

−
∞∑

n=1

(1− qn)
(q/a, q/b; q)n

(a, b; q)n
(ab)nq3n(n+1)/2

n∑
j=−n+1

(−1)jq−j
2

.

Using Rogers’ 6φ5 summation formula [4, (2.7.1)]
∞∑

n=0

(1− uq2n)(u; q)n(q/a, q/b, q/c; q)n
(1− u)(ua, ub, uc, q; q)n

(
uabc

q2

)n

(2.6)

=
(uq, uab/q, ubc/q, uac/q; q)∞

(ua, ub, uc, uabc/q2; q)∞

with u → 1 and c = 0, we find that the first two terms of the right hand side of
(2.5) can be written as

1 +

∞∑
n=1

(q/a, q/b; q)n
(a, b; q)n

(
−ab
q

)n

qn(n−1)/2(1 + qn) =
(q, ab/q; q)∞

(a, b; q)∞
. (2.7)

Identity (2.7) shows that the first two terms of the right hand side of (2.5) cancel
with the first term of its left hand side. This completes the proof of Theorem
1.9. �

Next, we use Theorem 1.3 to derive (1.1), (1.2) and (1.6).

Proof of (1.1). We divide both sides of (1.9) by 1 − q/a and then let a → q to
deduce that

∞∑
n=1

(q/b; q)n(q; q)n−1
(−q; q)n

bn = −
∞∑

n=1

(q/b; q)n
(b; q)n

bnq(3n
2−n)/2

n∑
j=−n+1

(−1)jq−j
2

. (2.8)

Letting b→ 0 in (2.8) and simplifying, we complete the proof of (1.1). �
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Proof of (1.2). Identity (1.2) is established by replacing q by q2 and setting b = q
in (2.8). �

Remark 2.1. Identities (1.9) and (2.8) can be viewed as a two-variable extension
and a one-variable extension of (1.1) and (1.2), respectively.

Proof of (1.6). Differentiating (2.8) with respect to b, we deduce that

∞∑
n=1

(q/b; q)n(q; q)n−1
(−q; q)n

bn
(

1

b− q
+

1

b− q2
+ · · ·+ 1

b− qn

)
(2.9)

= −
∞∑

n=1

n∑
j=−n+1

(q/b; q)n
(b; q)n

bnq(3n
2−n)/2−j2

×
(

1

b− q
+

1

b− q2
+ · · ·+ 1

b− qn
+

1

1− b
+

q

1− bq
+ · · ·+ qn−1

1− bqn−1

)
.

Letting b = 0 in (2.9) and using the identities

1

q
+

1

q2
+ · · ·+ 1

qn
=

(1− qn)q−n

1− q
,

and

−1

q
− 1

q2
− · · · 1

qn
+ 1 + q + · · ·+ qn−1 = − (1− qn)2q−n

1− q
,

we complete the proof of (1.6). �

3. Proofs of Theorem 1.4, (1.3), (1.7) and (1.8)

We begin this section by proving Theorem 1.4 with Theorem 1.2 and Rogers’

6φ5 summation.

Proof of Theorem 1.4. In (1.10), we replace q by q2, followed by the substitutions
v = q2, c = −q and d = −q2 to deduce that

(uq2, uab/q2; q2)∞
(ua, ub; q2)∞

+
(uq2, uab/q2; q2)∞

(ua, ub; q2)∞

∞∑
n=1

(q2/a, q2/b; q2)n
(−q; q)2n

(
uab

q2

)n

= (3.1)

1 +

∞∑
n=1

(1− uq4n)(u, q2/a, q2/b; q2)n
(1− u)(q2, ua, ub; q2)n

(−uab)nqn
2−3n

3φ2

(
q−2n, uq2n, q2

−q, −q2 ; q2, q2
)
.

Now, letting u→ 1 in (3.1), we deduce that

(q2, ab/q2; q2)∞
(a, b; q2)∞

+
(q2, ab/q2; q2)∞

(a, b; q2)∞

∞∑
n=1

(q2/a, q2/b; q2)n
(−q; q)2n

(
ab

q2

)n

= (3.2)

1 +

∞∑
n=1

(1 + q2n)
(q2/a, q2/b; q2)n

(a, b; q2)n
(−ab)nqn

2−3n
3φ2

(
q−2n, q2n, q2

−q, −q2 ; q2, q2
)
.
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Combining (3.2) with the identity [3, (6.6)]

(1 + q2n) 3φ2

(
q−2n, q2n, q2

−q, −q2 ; q2, q2
)

= (1 + q2n) + (−1)n−1(1− q2n)qn
2

n∑
j=−n+1

(−1)jq−j
2

,

we deduce that

(q2, ab/q2; q2)∞
(a, b; q2)∞

+
(q2, ab/q2; q2)∞

(a, b; q2)∞

∞∑
n=1

(q2/a, q2/b; q2)n
(−q; q)2n

(
ab

q2

)n

(3.3)

= 1 +

∞∑
n=1

(1 + q2n)
(q2/a, q2/b; q2)n

(a, b; q2)n
(−ab)nqn

2−3n

−
∞∑

n=1

(1− q2n)
(q2/a, q2/b; q2)n

(a, b; q2)n
(ab)nq2n

2−3n
n∑

j=−n+1

(−1)jq−j
2

.

Using the Rogers summation formula (2.6) with u = 1, c = 0 and q replaced by
q2, we find that the first term on the left hand side of (3.3) is equal to the sum
of the first two terms on the right hand side of (3.3) and the proof of (1.10) is
complete. �

We now prove (1.3), (1.7) and (1.8) by using (1.10).

Proof of (1.3). Divide both sides of (1.10) by 1− q2/a, followed by letting a→ q2

to deduce that
∞∑

n=1

(q2; q2)n−1(q2/b; q2)n
(−q; q)2n

bn (3.4)

= −
∞∑

n=1

(1− q2n)
(q2; q2)n−1(q2/b; q2)n

(b, q2; q2)n
bnq2n

2−n
n∑

j=−n+1

(−1)jq−j
2

.

Substituting b = 0 in (3.4), we conclude the proof of (1.3). �

Proof of (1.7). Let b = q in (3.4) and (1.7) follows immediately. �

Remark 3.1. Identities (1.10) and (3.4) can be viewed as a two-variable and a
one-variable extension of both (1.3) and (1.7), respectively.

Proof of (1.8). Differentiating (3.4) with respect to b, we deduce that

∞∑
n=1

(q2/b; q2)n(q2; q2)n−1
(−q; q)2n

bn
(

1

b− q2
+

1

b− q4
+ · · ·+ 1

b− q2n

)
(3.5)

= −
∞∑

n=1

n∑
j=−n+1

(q2/b; q2)n
(b; q2)n

bnq2n
2−n−j2

×
(

1

b− q2
+

1

b− q4
+ · · ·+ 1

b− q2n
+

1

1− b
+

q2

1− bq2
+ · · ·+ q2n−2

1− bq2n−2

)
.
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Letting b = 0 in (3.5) and using the identities

1

q2
+

1

q4
+ · · ·+ 1

q2n
=

(1− q2n)q−2n

1− q2
,

and

− 1

q2
− 1

q4
− · · · 1

q2n
+ 1 + q2 + · · ·+ q2n−2 = − (1− q2n)2q−2n

(1− q2)
,

we complete the proof of (1.8). �

4. Conclusion

In the previous sections, we established identities such as (1.1) using Liu’s iden-
tities (1.4), (1.5) and Rogers’ formula (2.6). The approach presented can further
be modified to produce other identities associated with Hecke-type series. We end
this article with proofs of some of these identities, some of which are new. For
simplicity, let

Sn(q) =

n∑
j=−n

(−1)jq−j
2

.

Theorem 4.1. For max{|a|, |b|, |ab/q|} < 1, we have

(q, ab/q; q)∞
(a, b; q)∞

∞∑
n=0

(q/a, q/b; q)n(ab/q)n

(−q; q)n
(4.1)

=

∞∑
n=0

(q/a, q/b; q)n(ab)nq(3n
2−n)/2

(a, b; q)n

{
1− (a− qn+1)(b− qn+1)q2n

(1− aqn)(1− bqn)

}
Sn(q).

Theorem 4.1 was first proved by Liu [7, Proposition 6.14]. We now give another
proof of Theorem 4.1 using Theorem 1.1.

Proof of Theorem 4.1. Setting d = 0 and v = q in (1.4), we immediately find that

(qu, abu/q; q)∞
(au, bu; q)∞

∞∑
n=0

(q/a, q/b; q)n(uab/q)n

(c; q)n
(4.2)

=

∞∑
n=0

(1− uq2n)(u, q/a, q/b, qu/c; q)n
(1− u)(q, ua, ub, c; q)n

(uabc)nqn
2−2n

× 2φ1

(
q−n, uqn

qu/c
; q, q2/c

)
.

Letting c = −q and u→ 1 in (4.2), we conclude that

(q, ab/q; q)∞
(a, b; q)∞

∞∑
n=0

(q/a, q/b; q)n(uab/q)n

(c; q)n
(4.3)

= 1 + 2

∞∑
n=1

(q/a, q/b; q)n
(a, b; q)n

(−ab)nqn
2−n

× 2φ1

(
q−n, qn

−1
; q,−q

)
.
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To complete the proof of Theorem 4.1, we recall Andrews’ identity [3, (2.5)] which
states that

2 2φ1

(
q−n, qn

−1
; q,−q

)
= (−1)nqn(n−1)/2 (qnSn(q)− Sn−1(q)) . (4.4)

Substituting (4.4) into (4.3) and simplifying, we complete the proof of (4.1). �

Setting a = b = 0 in (4.1), we obtain the following identity due to Andrews [1,
(6.1)], [5, (8.16)]:

∞∑
n=0

qn
2

(−q; q)n
=

1

(q; q)∞
(−1)j(1− q4n+2)qn(5n+1)/2−j2 .

Multiplying both sides of (4.1) by 1 − a and then letting a → 1, b → 0, we derive
the identity

∞∑
n=0

(−1)n
(q; q)n

(−q; q)n
qn(n−1)/2

=

∞∑
n=0

n∑
j=−n

(−1)n+j(1− qn + q3n+1 − q4n+2)q2n
2−j2 ,

which is Proposition 6.16 of [7]. Using Theorems 1.1, we can also prove the follow-
ing.

Theorem 4.2. For max{|qa|, |qb|, |ab|} < 1, we have

(q, ab : q)∞
(qa, qb; q)∞

{
1 + 2

∞∑
n=1

(q/a, q/b; q)n(ab)n

(q; q)n(1 + qn)

}
(4.5)

=

∞∑
n=0

n∑
j=−n

(−1)j(1− q2n+1)
(q/a, q/b; q)n
(qa, qb; q)n

(ab)nqn(n−1)/2+j2 .

Proof. Setting c = −q, d = 0, u = q and v = −1 in Theorems 1.1, we find that

(q, ab; q)∞
(qa, qb; q)∞

{
1 + 2

∞∑
n=1

(q/a, q/b; q)n(ab)n

(q; q)n(1 + qn)

}
(4.6)

=

∞∑
n=0

(1− q2n+1)(q/a, q/b; q)n
(qa, qb; q)n

(−ab)nqn
2

× 2φ1

(
q−n, qn+1

−q ; q, 1

)
.

Letting b = d = 0, c = −q in [6, (2.1)] and then letting α→ 1, we find that

2φ1

(
q−n, qn+1

−q ; q, 1

)
= (−1)nq−n(n+1)/2

n∑
j=−n

(−1)jqj
2

. (4.7)

(The factor (−1)n is missing in Propositions 2.4, 2.5, 2.6 and Theorem 4.10 of [6].)
Substituting (4.7) into the right hand side of (4.6), we complete the proof of

Theorem 4.2. �
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Setting a = b = 0 in (4.5), we immediately deduce that

1 + 2

∞∑
n=1

qn
2+n

(1 + qn)(q; q)n
= (q; q)−1∞

∞∑
n=0

n∑
j=−n

(−1)jqj
2+(3n2+n)/2. (4.8)

Letting b = 0, followed by a→ 1 in (4.5), we find that

1 + 2

∞∑
n=1

(−1)n
qn(n+1)/2

1 + qn
=

∞∑
n=0

n∑
j=−n

(−1)n+j(1− q2n+1)qn
2+j2 . (4.9)

It appears that (4.8) and (4.9) are new.
There are very few identities involving Hecke-type series given in (4.9). A similar

identity

∞∑
n=1

qn(q; q2)n
(−q; q2)n(1 + q2n)

=

∞∑
n=1

n∑
j=−n+1

(−1)jqn
2+j2

was recently discovered and proved by Wang and Yee [9, Proof of Theorem 1.1].

5. Acknowledgments

We are extremely grateful to the referee for his/her helpful comments and sug-
gestions. Part of this work was written when the first author was a visitor at Max
Planck Institute for Mathematics in Bonn. He would like to thank Pieter Moree
for his invitation and warm hospitality.

References

[1] G.E. Andrews, The fifth and seventh order mock theta functions, Trans. Am.
Math. Soc., 293 (1986) 113–134.

[2] G.E. Andrews, F.J. Dyson and D. Hickerson, Partitions and indefinite qua-
dratic forms, Invent. Math., 91 (1988) 391–407.

[3] G.E. Andrews, q-Orthogonal polynomials, Rogers–Ramanujan identities and
mock theta functions, Proc. Steklov Inst. Math., 276 (2012) 21–32.

[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd edn., Cambridge
Univ. Press, Cambridge, 2004.

[5] Z.-G, Liu, An expansion formula for q-series and applications, Ramanujan J.,
6 (2002) 429–447.

[6] Z.-G. Liu, On the q-derivative and q-series expansions, Int. J. Number Theory,
9 (2013) 2069–2089.

[7] Z.-G. Liu, A q-series expansion formula and the Askey-Wilson polynomials,
Ramanujan J., 30 (2013) 193–210.

[8] J. Lovejoy, Overpartitions and real quadratic fields, J .Number Theory, 106
(2004) 178–186.

[9] L.Q. Wang and A.J. Yee, Some Hecke-Rogers type identities, preprint.



10 HENG HUAT CHAN and ZHI-GUO LIU

Heng Huat Chan
Main address:

Department of Mathematics,

National University of Singapore,
Block S17,

10 Lower Kent Ridge Road,

Singapore 119076, Singapore

Second address:

University of Vienna,
Faculty of Mathematics,

Oskar-Morgenstern-Platz 1,

1090 Wien,
Austria

Third address:

Max Planck Institute for Mathematics,

Vivatsgasse 7,
53111 Bonn,

Germany

matchh@nus.edu.sg

Zhi-Guo Liu

School of Mathematical Sciences,

East China Normal University,
500 Dongchuan Road,

Shanghai 200241, P. R. China
zgliu@math.ecnu.edu.cn


