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Abstract. By considering the number of all choices of signs + and − such that

±α1 ± α2 ± α3 · · · ± αn = 0 and the number of sign − appeared therein, this

paper can give the exact value of
∫ 2π
0

∏n
k=1 sin(αkx)dx. In addition, without

using the Fourier transformation technique, we can also find the exact value

of
∫∞
0

(cosαx−cos βx)p

xq
dx. These two integrals are motivated by the work of

Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein

and Borwein in 2001, respectively.

1. Introduction

Our work is inspired by the integrals∫ 2π

0

n∏
k=1

cos(αkx)dx (1.1)

and ∫ ∞
0

n∏
k=1

sin(αkx)

αkx
dx, (1.2)

where α1, α2, α3, . . . , αn are positive numbers.
By considering the coefficient of a certain polynomial expansion [1] and [2]

gave a relation between (1.1) and an integer sequence S(α1, α2, α3, . . . , αn) where
S(α1, α2, α3, . . . , αn) is the number of ways of choosing + and − signs such that
±α1 ± α2 ± α3 · · · ± αn = 0. For (1.2), Borwein and Borwein [3] used the Fourier
transform techniques to find its value. Surprisingly, the calculation involved the
summation of α1, α2, α3, ..., αn with either + or − sign.

In this paper, by manipulating the idea of [1] and [2], we can calculate the value
of ∫ 2π

0

n∏
k=1

sin(αkx)dx. (1.3)

However, our calculation also depends on the number of − sign appeared in ±α1±
α2 ±α3 ± · · · ±αk = 0 where α1, α2, α3, ..., αk are positive integers. Without using
the knowledge of Fourier transformation, we also find the value of an infinite integral
involving the product of a difference of cosine, namely∫ ∞

0

(cosαx− cosβx)p

xq
dx, (1.4)

2020 Mathematics Subject Classification 00A05, 05A15, 26A06, 26A09.
Key words and phrases: product of sine integral; product of difference of cosine integral; integer

sequence.



52 A. LAOHARENOO and R. BOONKLURB

where α, β are real numbers and p, q are positive integers. Note that (1.4) in the
case that p = q = 2 was appeared in [5].

The presentation of our manuscript is as follows. In Section 2, we give some
preliminaries needed in this work. Then, (1.3) is calculated in Section 3. In Section
4, we consider the case that p ≥ q and q is even and give the exact value of (1.4).
Finally, conclusion and discussion about some open problems are given in Section
5.

2. Preliminaries

Definition 2.1. Let n ∈ N, α1, α2, α3, . . . , αn > 0 and (α1 : αn) = (α1, α2, α3, . . . , αn).
Define the set of sum expressions as follows.
• R(α1 : αn) := {

∑n
k=1 γkαk : (γ1, γ2, γ3, ..., γn) ∈ {−1, 1}n},

• R+(α1 : αn) :=
{
α1 +

∑n
k=2 γkαk : (γ2, γ3, γ4, ..., γn) ∈ {−1, 1}n−1

}
and

• R−(α1 : αn) :=
{
−α1 +

∑n
k=2 γkαk : (γ2, γ3, γ4, ..., γn) ∈ {−1, 1}n−1

}
.

That is, R+ consists of all the expressions in R with γ1 = 1, while R− consists of
all the expressions in R with γ1 = −1. Let σ and s be functions from R(α1 : αn)
to the set of real numbers given by

σ(r) := the number of − sign(s) appear in r.

and

s(r) := the sum of r or the exact value of r,

for all r ∈ R(α1 : αn). For example, R(1, 2) = {1 + 2, 1− 2,−1 + 2,−1− 2}. Then,
σ(1 + 2) = 0, σ(−1 − 2) = 2, σ(1 − 2) = σ(−1 + 2) = 1, s(1 + 2) = 3, s(−1 − 2) =
−3, s(1− 2) = −1, and s(−1 + 2) = 1. It is easy to see that

R+(α1 : αn) ∪R−(α1 : αn) = R(α1 : αn) and R+(α1 : αn) ∩R−(α1 : αn) = ∅.

In addition, if r ∈ R+(α1 : αn), then we use notation −r := −α1 −
∑n
k=2 γkαk.

Thus, r ∈ R+(α1 : αn) if and only if −r ∈ R−(α1 : αn).
From Definition 2.1, we can have the following remarks.

Remark 2.2. Let α1, α2, α3, . . . , αn, αn+1 > 0 and r ∈ R(α1 : αn). Then, r +
αn+1 ∈ R(α1 : αn+1), σ(r + αn+1) = σ(r) and σ(r − αn+1) = σ(r) + 1.

Remark 2.3. σ(−r) = n− σ(r) and s(−r) = −s(r) for all r ∈ R+(α1 : αn).

Next, we prove important identities that will be used in this work.

Lemma 2.4. Let n ∈ N and α1, α2, α3, . . . , αn > 0. Then,
n∏
k=1

(xαk − x−αk) =
∑

r∈R(α1:αn)

(−1)σ(r)xs(r).

Proof. We use the induction on n. For n = 1, it is easy to see that

xα1 − x−α1 = (−1)σ(α1)xs(α1) + (−1)σ(−α1)xs(−α1).

Next, let m ∈ N such that
m∏
k=1

(xαk − x−αk) =
∑

r∈R(α1:αm)

(−1)σ(r)xs(r).



EXACT VALUE OF INTEGRALS 53

Then,

m+1∏
k=1

(xαk − x−αk)

=
∑

r∈R(α1:αm)

(−1)σ(r)xs(r)xαm+1 −
∑

r∈R(α1:αm)

(−1)σ(r)xs(r)x−αm+1

=
∑

r∈R(α1:αm)

(−1)σ(r)xs(r)+αm+1 +
∑

r∈R(α1:αm)

(−1)1+σ(r)xs(r)−αm−1

=
∑

r∈R(α1:αm)

(−1)σ(r+αm+1)xs(r+αm+1) +
∑

r∈R(α1:αm)

(−1)σ(r−αm+1)xs(r−αm+1)

=
∑

r′∈R(α1:αm+1)

(−1)σ(r
′)xs(r

′).

By mathematical induction, this statement holds for n ∈ N. �

We can easily rewrite Lemma 2.4 in the following form.

Corollary 2.5. Let n ∈ N and α1, α2, α3, . . . , αn > 0. Then,

n∏
k=1

(xαk − x−αk) =
∑

r∈R+(α1:αn)

(−1)σ(r)(xs(r) + (−1)nx−s(r)).

Proof. By Remarks 2.2, 2.3, Lemma 2.4 and (−1)−σ(r) = (−1)σ(r) for r ∈ R+(α1 :
αn), we have

n∏
k=1

(xαk − x−αk) =
∑

r∈R+(α1:αn)

(−1)σ(r)xs(r) +
∑

r∈R−(α1:αn)

(−1)σ(r)xs(r)

=
∑

r∈R+(α1:αn)

[(−1)σ(r)xs(r) + (−1)σ(−r)xs(−r)]

=
∑

r∈R+(α1:αn)

(−1)σ(r)(xs(r) + (−1)n−σ(r)x−s(r))

=
∑

r∈R+(α1:αn)

(−1)σ(r)(xs(r) + (−1)nx−s(r)).

�

3. Product of Sine Formula and Its Definite Integral

In this section, before finding the exact value of (1.3), we first give the formula
for the product of sine.
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Lemma 3.1. (Generalized Product of Sine Formula) Let α1, α2, α3, . . . , αn > 0.
Then,

n∏
k=1

sin(αkx) =



1

2n−1

∑
r∈R+(α1:αn)

(−1)σ(r) cos(s(r)x) ;n ≡ 0 (mod 4),

1

2n−1

∑
r∈R+(α1:αn)

(−1)σ(r) sin(s(r)x) ;n ≡ 1 (mod 4),

− 1

2n−1

∑
r∈R+(α1:αn)

(−1)σ(r) cos(s(r)x) ;n ≡ 2 (mod 4),

− 1

2n−1

∑
r∈R+(α1:αn)

(−1)σ(r) sin(s(r)x) ;n ≡ 3 (mod 4).

Proof. We show the cases when n ≡ 0 (mod 4) and n ≡ 1 (mod 4). For the
remaining cases, we left for the reader. By using the Euler’s identity, De Moivre’s
Formula and Corollary 2.5, we have

n∏
k=1

sin(αkx) =
1

(2i)n

n∏
k=1

(eiαkx − e−iαkx)

=
1

(2i)n

∑
r∈R+(α1:αn)

(−1)σ(r)(eis(r)x + (−1)ne−is(r)x).

If n = 4m for m ∈ N ∪ {0}, then

4m∏
k=1

sin(αkx) =
1

24m

∑
r∈R+(α1:α4m)

(−1)σ(r)(eis(r)x + e−is(r)x)

=
1

24m−1

∑
r∈R+(α1:α4m)

(−1)σ(r) cos(s(r)x).

If n = 4m+ 1 for m ∈ N ∪ {0}, then

4m+1∏
k=1

sin(αkx) =
1

24m+1i

∑
r∈R+(α1:α4m+1)

(−1)σ(r)(eis(r) − e−is(r))

=
1

24m

∑
r∈R+(α1:α4m+1)

(−1)σ(r) sin(s(r)x).

�

From Lemma 3.1, we obtain a well-known identity for the power of sine and the
product of cosine as follows.

Corollary 3.2. Let n ∈ N. Then,

sinn x =


(−1)

n(n+1)
2 +1

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
sin((n− 2k)x) ;n is odd,

(−1)
n(n+1)

2

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
cos((n− 2k)x) ;n is even
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and

cosn x =
1

2n−1

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x).

Proof. By applying Lemma 3.1 with αi = 1 for i ∈ {1, 2, 3, . . . , n}, it is easy to see
that for r ∈ R+(1 : 1), if σ(r) = k, then s(r) = n − 2k and it repeats

(
n−1
k

)
times

for k ∈ {0, 1, 2, . . . , n− 1}. Hence,

sinn x =



1

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 0 (mod 4),

1

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
sin((n− 2k)x) ;n ≡ 1 (mod 4),

− 1

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 2 (mod 4),

− 1

2n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
sin((n− 2k)x) ;n ≡ 3 (mod 4)

(3.1)

and we are done. Next, we substitutes x by π
2 − x in (3.1). Note that

sin

(
pπ

2
− x
)

= (−1)
p−1
2 cosx, and cos(qπ − x) = (−1)q cosx

for p, q ∈ Z and p is odd. Hence,

cosn x =



1

2n−1

n−1∑
k=0

(−1)k(−1)
n−2k

2

(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 0 (mod 4),

1

2n−1

n−1∑
k=0

(−1)k(−1)
n−2k−1

2

(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 1 (mod 4),

− 1

2n−1

n−1∑
k=0

(−1)k(−1)
n−2k

2

(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 2 (mod 4),

− 1

2n−1

n−1∑
k=0

(−1)k(−1)
n−2k−1

2

(
n− 1

k

)
cos((n− 2k)x) ;n ≡ 3 (mod 4)

and we are done. �

Remark 3.3. Actually, we can obtain cosn x in an easier way. By the Euler’s
identity and the binomial theorem, we have

cosn x =

(
eix + e−ix

2

)n
=

1

2n

n∑
k=0

(
n

k

)
ei(n−2k)x

and

cosn x = cosn(−x) =
1

2n

n∑
k=0

(
n

k

)
e−i(n−2k)x.

Hence, we obtain

cosn x =
1

2n

n∑
k=0

(
n

k

)(
ei(n−2k)x + e−i(n−k)x

2

)
=

1

2n

n∑
k=0

(
n

k

)
cos((n−2k)x). (3.2)
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Note that
n∑
k=0

(
n

k

)
cos((n− 2k)x) =

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x) +

n∑
k=1

(
n− 1

k − 1

)
cos((n− 2k)x)

=

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x)

+

n∑
n−k=1

(
n− 1

n− k − 1

)
cos((n− 2(n− k))x)

=

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x) +

n−1∑
m=0

(
n− 1

m

)
cos((n− 2m)x)

= 2

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x).

That is

cosn x =
1

2n−1

n−1∑
k=0

(
n− 1

k

)
cos((n− 2k)x). (3.3)

For sinn x, we can obtain the same formula as shown in Corollary 3.2 by substituting
π
2 − x into x in (3.3).

According to [2], Andrica and Tomescu showed that if αk ∈ N for k ∈ {1, 2, 3, . . . , n},
then

S(α1 : αn) =
2n−1

π

∫ 2π

0

n∏
k=1

cos(αkx)dx,

where S(α1 : αn) is the number of all choices of + and − such that ±α1±· · ·±αk =
0. Thus, this formula motivated our definition, indeed, we define two numbers as
follows. SE(α1 : αn) is the number of all choices of + and − such that ±α1 ±α2 ±
α3 · · · ± αn = 0 and σ(r) is even. On the other hand, SO(α1 : αn) is the number
of all choices of + and − such that ±α1 ± α2 ± α3 · · · ± αn = 0 and σ(r) is odd.
Hence, we obtain the following result.

Theorem 3.4. Let α1, α2, α3, . . . , αn ∈ N. Then,

∫ 2π

0

n∏
k=1

sin(αkx)dx =


π

2n−1
(SE(α1 : αn)− SO(α1 : αn)) ;n ≡ 0 (mod 4),

π

2n−1
(SO(α1 : αn)− SE(α1 : αn)) ;n ≡ 2 (mod 4),

0 ; otherwise.

Proof. This follows from integrating Lemma 3.1 on [0, 2π]. Note that s(r) ∈ Z for
r ∈ R+(α1 : αn). We have∫ 2π

0

cos(s(r)x)dx =

{
2π ; s(r) = 0

0 ; s(r) 6= 0
and

∫ 2π

0

sin(s(r)x) = 0.

For the cases n ≡ 1 (mod 4) and n ≡ 3 (mod 4), we have∫ 2π

0

n∏
k=1

sin(αkx)dx = 0.
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For the cases n ≡ 0 (mod 4) and n ≡ 2 (mod 4), we obtain

∫ 2π

0

n∏
k=1

sin(αkx)dx =



π

2n−2

∑
r∈R+(α1:αn)

s(r)=0

(−1)σ(r) ;n ≡ 0 (mod 4),

− π

2n−2

∑
r∈R+(α1:αn)

s(r)=0

(−1)σ(r) ;n ≡ 2 (mod 4).

Since ∑
r∈R+(α1:αn)

s(r)=0

(−1)σ(r) =
∑

r∈R+(α1:αn)
σ(r) is even and s(r)=0

1−
∑

r∈R+(α1:αn)
σ(r) is odd and s(r)=0

1

=
1

2
(SE(α1 : αn)− SO(α1 : αn)),

the proof is completed. �

4. Power of Difference of Cosine Integral

First of all, it is well known that∫ ∞
0

cosαx− cosβx

x
= ln|β| − ln|α| and

∫ ∞
0

1− cos γx

x2
dx =

π

2
|γ|,

where α, β 6= 0 and γ ∈ R as shown in [4]. In this section, we find the exact value
of ∫ ∞

0

(cosαx− cosβx)p

xq
,

where α, β ∈ R and p, q ∈ N such that p ≥ q and q is even by using the technique
shown in [3] regardless of the Fourier transformation. First, we need the following
identity to help us tackle a problem.

Lemma 4.1. Let α, β ∈ R and m,n ∈ N ∪ {0}. Then,

cosm α cosn β =
1

2m+n−1

m−1∑
k=0

n∑
l=0

(
m− 1

k

)(
n

l

)
cos((m− 2k)α+ (n− 2l)β).

Proof. By the cosine part of Corollary 3.2 and (3.2) we have

cosm α cosn β =
1

2m+n−1

m−1∑
k=0

n∑
l=0

(
m− 1

k

)(
n

l

)
cos((m− 2k)α) cos((n− 2l)β)

=
1

2m+n

m−1∑
k=0

(
m− 1

k

)
F (k),
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where

F (k) =

n∑
l=0

(
n

l

)
cos((m− 2k)α+ (n− 2l)β) +

n∑
l=0

(
n

l

)
cos((m− 2k)α− (n− 2l)β)

=

n∑
l=0

(
n

l

)
cos((m− 2k)α+ (n− 2l)β)

+

n∑
n−l=0

(
n

n− l

)
cos((m− 2k)α− (n− 2(n− l))β)

=

n∑
l=0

(
n

l

)
cos((m− 2k)α+ (n− 2l)β)

+

n∑
l=0

(
n

n− l

)
cos((m− 2k)α+ (n− 2l)β)

= 2

n∑
l=0

(
n

l

)
cos((m− 2k)α+ (n− 2l)β).

Thus, the lemma is proved. �

Next, we clarify an important lemma that was used without proof in [3].

Lemma 4.2. Let f be a smooth function on R with x = 0 is its zero of order k for

some k ≥ 2 and there exists an integer l ≤ k such that

∫ ∞
0

f (l−1)(x)

x
dx exists, and

f (m) is bounded on R for 0 ≤ m ≤ l− 2 where f (n) is the nth derivative of f . Then∫ ∞
0

f(x)

xl
dx =

1

(l − 1)!

∫ ∞
0

f (l−1)(x)

x
dx.

Proof. For 2 ≤ l ≤ k, by using the integration by part with indefinite integral∫
f(x)

xl
dx, we get∫

f(x)

xl
dx = − 1

(l − 1)

f(x)

xl−1
− · · · − 1

(l − 1)!

f (l−2)(x)

x
+

1

(l − 1)!

∫
f (l−1)(x)

x
dx.

Since f has a zero order k at x = 0 and l ≤ k, we have

f (m)(x) = 0 and lim
x→0+

f(x)

xl−1
= 0

for 0 ≤ m ≤ l − 1. By using the L’Hopital’s rule, we obtain lim
x→0+

f (m)(x)

xl−m−1
= 0 for

0 ≤ m ≤ l − 2. Moreover, since f (m) is bounded on R for 0 ≤ m ≤ l − 2, by using

the squeeze theorem, we get that lim
x→∞

f (m)(x)

xl−m−1
= 0 for 0 ≤ m ≤ l − 2.

Hence, ∫ ∞
0

f(x)

xl
dx =

1

(l − 1)!

∫ ∞
0

f (l−1)(x)

x
dx.

�
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Before we prove our result, we introduce a well-known improper integral as shown
in [4]

∫ ∞
0

sin rx

x
dx =

{
sgn(r)

π

2
; r 6= 0,

0 ; r = 0,
,

for r ∈ R, where sgn is a signum function defined by :

sgn(t) =


1 ; t > 0

0 ; t = 0

−1 ; t < 0

,

for t ∈ R. Now, we give and prove our result.

Theorem 4.3. Let α, β ∈ R and p, q ∈ N such that p ≥ q and q is even. Then,∫ ∞
0

(cosαx− cosβx)p

xq
dx

=
π

2p(q − 1)!

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
p− k − 1

l

)(
k

m

)
×

|(p− k − 2l)α+ (k − 2m)β|q−1
)
.

Proof. By the binomial theorem and Lemma 4.1, we obtain

(cosαx− cosβx)p (4.1)

=
1

2p−1

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(−1)k
(
p

k

)(
p− k − 1

l

)(
k

m

)
cos((p− k − 2l)αx+ (k − 2m)βx).

Hence, ∫ ∞
0

(cosαx− cosβx)p

xq
=

1

2p−1

∫ ∞
0

G(x)

xq
dx,

where G(x) =
∑p
k=0

∑p−k−1
l=0

∑k
m=0(−1)k

(
p
k

)(
p−k−1

l

)(
k
m

)
cos((p− k − 2l)αx+ (k −

2m)βx). Note that G(x) is a smooth function on R with a zero of order 2p at x = 0.
Since q is even, we have

G(q−1)(x) =

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
p− k − 1

l

)(
k

m

)
×

((p− k − 2l)α+ (k − 2m)β)q−1 sin((p− k − 2l)αx+ (k − 2m)βx)

)
.



60 A. LAOHARENOO and R. BOONKLURB

By Lemma 4.2, we have∫ ∞
0

(cosαx− cosβx)p

xq
dx

=
1

2p−1(q − 1)!

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
p− k − 1

l

)
×
(
k

m

)
((p− k − 2l)α+ (k − 2m)β)q−1

∫ ∞
0

sin((p− k − 2l)αx+ (k − 2m)βx)

x
dx

)
=

π

2p(q − 1)!

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
p− k − 1

l

)(
k

m

)
×

((p− k − 2l)α+ (k − 2m)β)q

|(p− k − 2l)α+ (k − 2m)β)|

)
=

π

2p(q − 1)!

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
p− k − 1

l

)(
k

m

)
×

|(p− k − 2l)α+ (k − 2m)β|q−1
)
.

�

If we consider (α, β, p, q) = (0, β, p, q), then we have the following result.

Corollary 4.4. Let β ∈ R and p, q ∈ N such that p ≥ q and q is even. Then,∫ ∞
0

(1− cosβx)p

xq
dx =

π|β|q−1

(q − 1)!

p∑
k=0

k∑
m=0

2−k−1(−1)k+
q
2

(
p

k

)(
k

m

)
|k − 2m|q−1.

Proof. By plug in α = 0 in theorem 4.3, we have∫ ∞
0

(1− cosβx)p

xq
dx

=
π

2p(q − 1)!

p∑
k=0

p−k−1∑
l=0

k∑
m=0

(−1)k+
q
2

(
p

k

)(
p− k − 1

l

)(
k

m

)
|(k − 2m)β|q−1

=
π

2p(q − 1)!

p∑
k=0

k∑
m=0

(
(−1)k+

q
2

(
p

k

)(
k

m

)
|(k − 2m)β|q−1

p−k−1∑
l=0

(
p− k − 1

l

))

=
π

2p(q − 1)!

p∑
k=0

k∑
m=0

2p−k−1(−1)k+
q
2

(
p

k

)(
k

m

)
|(k − 2m)β|q−1

=
π|β|q−1

(q − 1)!

p∑
k=0

k∑
m=0

2−k−1(−1)k+
q
2

(
p

k

)(
k

m

)
|(k − 2m)|q−1.

�

5. Conclusion and Discussion

We present the exact values of (1.3) and (1.4). However, the exact value of (1.4)
is not found in the case that q is odd. Thus, our future study is try to solve this
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remaining case. In addition, we may consider (1.4) with arbitrary arguments of

cosine, namely

∫ ∞
0

∏p
k=1(cos(αkx)− cos(βkx))

xq
dx.
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