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Abstract. Let f be a transcendental entire function and let I(f) be the points
which escape to infinity under iteration. Bergweiler and Hinkkanen introduced

the fast escaping sets A(f) and subsequently, Rippon and Stallard introduced
‘Levels’ of fast escaping sets AL

R(f). These sets under some restriction have the

properties of “infinite spider’s web” structure. Here we give some topological

properties of the infinite spider’s web and show some of the transcendental
entire functions whose levels of the fast escaping sets have infinite spider’s web

structure.

1. Introduction

Let f : C −→ C be a transcendental entire function. For n ∈ N, fn denotes the nth

iteration of f. Thus fn(z) = f(fn−1)(z), where f0(z) = z and n = 1, 2, . . .
A family of functions F is said to be a normal family, if every infinite sequence
in the family has a subsequence which converges locally uniformly. The Fatou set
F (f) is defined to be the set of points z ∈ C, such that(fn)n∈N forms a normal
family in some neighbourhood of z. The complement of F (f) denoted by J(f) is
called the Julia set. Clearly the Fatou set is open while the Julia set is closed. Also
for a transcendental entire function it is known that the Julia set is unbounded.
Baker [1] proved that the Julia set coincides with the closure of repulsive periodic
points. For an introduction to the other properties of these sets one can refer, for
instance, [2], [7].

For a transcendental entire function f, Eremenko [4] defined the escaping set as:

I(f) = {z ∈ C : fn(z) −→∞ as n −→∞} (1.1)

and proved that

I(f) ∩ J(f) 6= ∅, ∂I(f) = J(f)

and

all the components of I(f) are unbounded.

He further conjectured that all the components of I(f) are unbounded. This led
to a rich development of the field. Some partial results in the confirmation of this
conjecture have been obtained, see for instance, [9], [10] and [11].
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The rate at which the points of I(f) escape to infinity also plays an important role.
Bergweiler and Hinkkanen in [3] defined the fast escaping set, denoted by A(f) as,

A(f) = {z ∈ I(f) : there exists L ∈ N such that |fn+L(z)| ≥Mn(R, f), for n ∈ N},
(1.2)

where
M(r, f) = max

|z|=r
|f(z)|, r > 0

and Mn(r, f) is the nth iterate of M(r, f) with respect to variable r, R > 0 is such
that M(r, f) > r for r ≥ R, so that Mn(r, f)→∞ as n→∞.
ClearlyA(f) ⊂ I(f). It was shown in [3] thatA(f) 6= ∅ and also that, ∂A(f) = J(f).

An alternative to A(f), which has a geometric flavour was defined by Rippon and
Stallard [10]. They defined:

B(f) = {z : there exists L ∈ N such that fn+L(z) /∈ T (fn(D)), for n ∈ N}
(1.3)

where D is any open disc meeting J(f) and T (D) denotes the union of domain D
with all of it’s bounded complementary components.
They showed that B(f) is independent of D, completely invariant, B(fp) = B(f)
for p ∈ N and finally B(f) = A(f). They further showed that all the components
of A(f) are unbounded and so I(f) has at least one unbounded component.

In [11], Rippon and Stallard defined subsets of A(f) called levels of A(f), defined
below. This lead to simplification of proofs of several earlier results and new insight
into the properties of A(f). See for instance [8], [11].

Definition 1.1. Let f be a transcendental entire function and R > 0 be such that
M(r, f) > r for r ≥ R. Let L ∈ Z, then the Lth level (with respect to variable R) is
defined to be

ALR(f) = {z : |fn(z)| ≥Mn+L(R, f), n ∈ N, n+ L ≥ 0}. (1.4)

Clearly
A(f) = ∪L∈NA−LR (f) (1.5)

and thus A−LR (f) ⊂ A
−(L+1)
R (f) for L ∈ N. They denote the 0th level A0

R(f) by
AR(f) thus

AR(f) = {z : |fn(z)| ≥Mn(R, f)}.
For such AR(f) Rippon and Stallard [11] proved the following:

Theorem A. Let f be a transcendental entire function and n ∈ N. If R > 0 is
sufficiently large then

AR(f) ⊂ AR(fn) ⊂ AR/2(f).

Here we supplement the above result by proving the next theorem, which deals with
the levels of higher order. We observe that the above result cannot be generalized
to each Level, i.e., the set relation

ALR(f) ⊂ ALR(fn) ⊂ ALR/2(f)

need not hold true for all n ∈ N. However we can prove the following:
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Theorem 1.1. Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R and L, n ∈ N then

AnLR (f) ⊂ AnR(fL) ⊂ AnLR/2(f)

and also
AnLR (f) ⊂ ALR(fn) ⊂ AnLR/2(f).

An interesting observation of the above theorem is that, if p is composite number
having two different factorizations, say p = p1.q1 = p2.q2, then

ApR(f) ⊂ Ap1R (fq1) ⊂ ApR/2(f)

and also
ApR(f) ⊂ Ap2R (fq2) ⊂ ApR/2(f).

Note also that Ap1R (fq1) need not equal Ap2R (fq2).

Rippon and Stallard [11] first observed that A(f), AR(f) have interesting and in-
tricate structure and called it as infinite spider’s web, which is defined below.

Definition 1.2. A set E is an (infinite) spider’s web if E is connected and there ex-
ists a sequence of bounded simply connected domains (Gn)n∈N with Gn ⊂ Gn+1 for
n ∈ N, ∂Gn ⊂ E, for n ∈ N and ∪n∈NGn = C.

Several examples of functions having AR(f) as spider’s web have been given. Six-
smith [13] gave examples of transcendental entire functions for which spider’s web
formation is there. Some work on spider’s web has also been done by Helena
and Peter [5] and Osborne[8]. In their paper [11], Rippon and Stallard showed
that for sufficiently large R, if AR(f)

c
has a bounded component then each of

AR(f), A(f), I(f) is a spider’s web. Also if f is a multiply connected Fatou compo-
nent, then for sufficiently large R, AR(f), A(f), I(f) are all spider’s web. It is thus
natural to look for relations between spider’s web and levels of fast escaping sets,
which we consider here. Also we study the topological properties of spider’s web
and show certain composite transcendental entire function h having the structure
of AR(h) as spider’s web.

We begin with a small but important observation that a bounded set can not
be a spider’s web. For suppose S is a bounded set and it also forms a spider’s
web, then there exits a positive constant K such that |z| ≤ K, for all z ∈ S,
and there exits a sequence of bounded simply connected domain Gn such that
Gn ⊂ Gn+1 for n ∈ N, ∂Gn ⊂ S and ∪n∈NGn = C. Since ∪n∈NGn = C and Gn are
bounded, there exists Gt, t ∈ N whose boundary contains z0 such that |z0| > K, thus
boundary of Gt will not be a part of S, which is contradiction to ∂Gn ⊂ S for n ∈ N.

Theorem 1.2. Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R and L, n ∈ N then AnLR (f) is a spider’s web if and only if
AnR(fL) is a spider’s web.

The next Theorem deals with the union of spider’s web.

Theorem 1.3. Let Si, i = 1, 2, 3, . . . , n be spider’s web, then ∪ni=1Si is also a
spider’s web.
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Note that intersection of two spider’s web need not form spider’s web. Also con-
tinuous image of a spider’s web need not form spider’s web, for let f : C→ C be a
non constant continuous map defined by

f(0) = 0,

f(reiθ) = reiθ for 0 < r ≤ 1, 0 < θ ≤ 2π,

f(reiθ) = eiθ for r > 1, 0 < θ ≤ 2π.

Then clearly f is a continuous map and if S be any spider’s web, then f(S) is
not a spider’s web being bounded. However if we take f to be continuous open
surjective map which maps bounded domain to bounded domain, then we have
following theorem. In particular if f is a transcendental entire function without
any exceptional value Picard, and without any asymptotic values, then also the
image of a spider’s web will be a spider’s web.

Theorem 1.4. If f : C −→ C be open continuous and a surjective map. Further
let f map every bounded domain to bounded domain. If S be a spider’s web, then
f(S) is also a spider’s web.

Corollary 1.1. Let f be a transcendental entire function with no finite asymptotic
value and no exceptional value Picard. If S is a spider’s web then so is f(S).

2. Proofs of Theorems on Levels of Fast Escaping Sets and Spider’s
Web

For the proof of Theorem 1.1 we need following lemmas.

Lemma 2.1. For any L,K ∈ N and sufficiently large R,

MKL(R, f) ≥MK(R, fL). (2.1)

The proof is an immediate consequence of Maximum modulus principle and the
following lemma of Rippon and Stallard [11].

Lemma 2.2. Let f be a transcendental entire function and let D = {z : |z| < R}.
If R > 0 be sufficiently large then for n ∈ N
{z : |z| ≤Mn(R/2, f)} ⊂ {z : |z| ≤M(R, fn)} ⊂ {z : |z| ≤Mn(R, f)}. (2.2)

Proof of Theorem 1.1. Let R > 0 be such that M(r, f) > r, for r ≥ R,L, n ∈ N.
If z ∈ AnLR (f), then

|fm(z)| ≥Mm+nL(R, f), for m ∈ N.
So |(fL)m(z)| = |fmL(z)| ≥ MmL+nL(R, f) = M (m+n)L(R, f) ≥ Mm+n(R, fL),
for m ∈ N by Lemma 2.1. Hence z ∈ AnR(fL), and so

AnLR (f) ⊂ AnR(fL). (2.3)

Next let z ∈ AnR(fL), then

|(fL)m(z)| ≥Mm+n(R, fL) ≥M (m+n)L(R/2, f), for m ∈ N
by Lemma 2.2. So we must have

|fm(z)| ≥Mm+nL(R/2, f), for m ∈ N.
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Hence z ∈ AnLR/2(f). Thus

AnR(fL) ⊂ AnLR/2(f). (2.4)

From (2.3) and (2.4) we have

AnLR (f) ⊂ AnR(fL) ⊂ AnLR/2(f).

The second set relation follows on similar lines. �

For proving Theorem 1.2 we need following lemmas:

Lemma 2.3. [11] Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R and L ∈ Z.
(a) If G is a bounded component of ALR(f)

c
then ∂G ⊂ ALR(f) and fn is a proper

map of G on to a bounded component of An+LR (f)
c

for each n ∈ N.
(b) If ALR(f)

c
has a bounded component, then ALR(f) is a spider’s web and hence

every component of ALR(f)
c

is bounded.
(c) AR(f) is a spider’s web if and only if ALR(f) is a spider’s web.

(d) Let R
′
> R then AR(f) is a spider’s web if and only if AR′ (f) is a spider’s

web.

As a consequence of Lemma 2.3 we have the following Lemma:

Lemma 2.4. Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R and L ∈ Z.
(a) If ALR(f)

c
has a bounded component then, AmR (f) is a spider’s web, for all m ≥

L+ 1.
(b) Let R

′
> R then ALR(f) is a spider’s web if and only if AL

R′ (f) is a spider’s
web.

Proof. (a) If ALR(f)
c

has a bounded component then so has AL+1
R (f)

c
, by Lemma

2.3(a). So AL+1
R (f) is spider’s web, by Lemma (2.3)(b). In a similiar way we can

prove that AL+2
R (f), AL+3

R (f), . . . all will be spider’s web. In general AmR (f), for all
m ≥ L+ 1 will be spider’s web.
(b) Proof is immediate from 2.3 (c) and (d). �

Proof of Theorem 1.2. Firstly suppose that AnLR (f) is a spider’s web. It follows

from Lemma 2.3(b) that each component of AnLR (f)
c

is bounded.

We know by Theorem 1.1 that AnLR (f) ⊂ AnR(fL). So each component of AnR(fL)
c

is bounded. Thus by Lemma 2.3 (b), AnR(fL) is a spider’s web. Conversely let us

suppose that AnR(fL) is a spider’s web. If R
′
> 2R for R sufficiently large, then we

have by Theorem 1.1, An
R′ (fL) ⊂ AnL

R′/2
(f). Now from Lemma 2.4 (b), An

R′ (fL) is a

spider’s web. Hence by Lemma 2.3 (b), it follows that every component of An
R′ (fL)

c

is bounded. So every component of AnL
R′/2

(f)
c

is bounded. So by Lemma 2.3(b),

AnL
R′/2

(f) is a spider’s web. Hence by Lemma 2.4 (b), AnLR (f) is a spider’s web. �

Before we prove next theorem we shall introduce a new notation. If E is a spider’s
web, then by Definition 1.2 there exist sequence of bounded simply connected do-
mains Gn with Gn ⊂ Gn+1, for n ∈ N, ∂Gn ⊂ E, for n ∈ N and ∪n∈NGn = C.
It is quite possible that there might exist more than one sequence of such domains
say (Hm)m∈N satisfying the Definition 1.2. In order to distinguish the spider’s web
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with corresponding domains we shall use the notation (E,Gn)n∈N and (E,Hm)m∈N
respectively.

Proof of Theorem 1.3. Using induction it is sufficient to prove the theorem for two
spider’s webs. Let (S,Gn)n∈N and (T,Hm)m∈N, be two spider’s webs.
Now consider G1. Then there exits some Hm such that G1

⋂
Hm 6= ∅. This is

possible since ∪m∈NHm = C. Let k be the smallest positive integer such that
G1

⋂
Hk 6= ∅.

Let T (D) denotes the union of domain D with all it’s bounded complementary
components, and define Kn = T (Gn ∪Hk+(n−1)), n = 1, 2, . . .
Then clearly ∪∞n=1Kn ⊃ ∪∞n=1Gn = C, and for n = 1, 2, . . . , Gn and Hk+(n−1)
are simply connected and Gn ∩Hk+(n−1) ⊃ G1 ∩Hk 6= ∅, so T (Gn ∪Hk+(n−1)) is
simply connected. Thus Kn is simply connected as well as bounded domain being
union of two bounded domains. Further
Kn+1 = T (Gn+1 ∪Hk+n) ⊃ T (Gn ∪Hk+(n−1)) = Kn and
∂Kn = ∂T ((Gn ∪Hk+(n−1))) ⊂ ∂(Gn) ∪ ∂(Hk+(n−1)) ⊂ S ∪ T.
Thus (S ∪ T,Kn)n∈N is also a spider’s web. �

For proving the Theorem 1.4 we shall need the following lemma.

Lemma 2.5. (a) If A1 and A2 are domains such that A1 ⊂ A2, then

T (A1) ⊂ T (A2)

and hence
T (A1) ∪ T (A2) = T (A1 ∪A2).

(b) Let (An)n∈N be a family of domains, with A1 ⊂ A2 ⊂ A3 ⊂ . . . then

∪n∈NT (An) = T (∪n∈NAn).

Proof. For (a), Let z ∈ T (A1), if z ∈ A1 then z ∈ A2 ⊂ T (A2). If z is in
the bounded complementary component of A1, it is sufficient to show that z does
not belong to any unbounded complementary component of A2. For suppose it
does. Then there exits an arc in Ac2 joining z to ∞. As A1 ⊂ A2, so this arc lies
in Ac1. Consequently z lies in unbounded complementary component of A1. This
contradiction proves (a). The other results are simple set theoretic consequences of
(a). �

Note: The conditions imposed on A1, A2 in Lemma 2.5 are necessary, for instance,
let

A1 ={(x, y) : −2 ≤ x ≤ 1, −2 ≤ y ≤ −1} ∪ {(x, y) : −2 ≤ x ≤ 1, 1 ≤ y ≤ 2}∪
{(x, y) : −2 ≤ x ≤ −1, −1 ≤ y ≤ 1}

and

A2 ={(x, y) : 0 ≤ x ≤ 2, −2 ≤ y ≤ −1} ∪ {(x, y) : 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}∪
{(x, y) : 1 ≤ x ≤ 2, −1 ≤ y ≤ 1}.

Then
T (A1) = A1 and T (A2) = A2,

whereas
T (A1 ∪A2) = {(x, y) : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2},

so that T (A1) ∪ T (A2) 6= T (A1 ∪A2).
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Proof of Theorem 1.4. Let (S, Sn)n∈N be a spider’s web. Let Hn = T (f(Sn))
and denote H = f(S). Clearly Hn are bounded simply connected domains be-
ing open continuous image of bounded simply connected domains. Now ∂Hn =
∂(T (f(Sn))) ⊂ f(∂Sn) ⊂ f(S) = H. Further Hn = T (f(Sn)) ⊂ T (f(Sn+1)) =
Hn+1 for n ∈ N, by Lemma 2.5. Hence in order to show that f(S) is a spider’s web
it only remains that ∪∞n=1Hn = C.
For this consider any z ∈ C, then there exists some ζ ∈ C such that z = f(ζ), f
being surjective. Also as ∪n∈NSn = C, it follows that ζ ∈ Sn for some n ∈ N and
consequently z = f(ζ) ∈ f(Sn) ⊂ T (f(Sn)) = Hn. Thus ∪n∈NHn = C.
So (f(S), Hn)n∈N is a spider’s web. �

Proof of Corollary 1.1. Being analytic, the function f is open and continuous. Also
f would map bounded domain to a bounded domain, for suppose D is a bounded
domain with f(D) unbounded, then there exists a curve Γ tending to ∞ in f(D)
and consequently a curve γ in D tending to some α in D such that f(γ) = Γ, so that
α is an asymptotic value for f , contradicting f by hypothesis, has no asymptotic
value.

Next if z is not exceptional value Picard for f , then there exist (infinitely many)
ξ ∈ C such that f(ξ) = z, and the proof now follows as in the previous theorem. �

3. Bounded Fatou Components and Spider’s Web

Regularity conditions and growth of transcendental entire function also play an
important role in transcendental dynamics. In this section we discuss a result
related to growth and regularity of transcendental entire function. We start with the
following well known definitions of order ρf and lower order λf of entire functions
respectively given by:

ρf = limr→∞
log logM(r, f)

log r
and

λf = limr→∞
log logM(r, f)

log r
.

Clearly we have 0 ≤ λf ≤ ρf ≤ ∞ and given any ρ, (0 ≤ ρ ≤ ∞), there exists an
entire function of order ρ. We shall also need the following regularity condition:

Definition 3.1. [11] Let c > 0. A transcendental entire function f is said to be
log-regular with constant c, if the function φ(t) = M(et, f) satisfies

φ
′
(t)

φ(t)
≥ 1 + c

t
, for large t.

Further (see [13]) if a function f is log-regular then it satisfies Lemma 3.2 (b)
(mentioned below) for all m > 1.

We shall also need few lemmas from [6], [11] and [13].

Lemma 3.1. [11] Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R and let AR(f) be a spider’s web, then f has no unbounded
Fatou components

Lemma 3.2. [13] Let f be a transcendental entire function. Let R > 0 be such that
M(r, f) > r for r ≥ R. Then AR(f) is a spider’s web if for some m > 1,
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(a) there exists R0 > 0 such that for all r ≥ R0 there is a simply connected domain
G=G(r) with

B(0, r) ⊂ G ⊂ B(0, rm) and |f(z)| ≥M(r, f) for z ∈ ∂G. (3.1)

(b) f has a regular growth in the sense that there exists a sequence (rn)n≥0 with

rn > Mn(R, f) and M(rn, f) ≥ rmn+1 for n ≥ 0. (3.2)

Lemma 3.3. [13] Let f1, f2, . . . , fk be non constant transcendental entire functions.
Suppose that for all j ∈ {1, 2, . . . , k}, fj satisfies Lemma 3.2 (a) with m = mj > 1.
Let g = f1 ◦ f2 ◦ · · · ◦ fk, then g satisfies Lemma 3.2 (a) with m = m1m2 . . .mk.

Lemma 3.4. [6] If f is a transcendental entire function with finite order and pos-
itive lower order then f is log regular.

Lemma 3.5. [13] If f is a transcendental entire function with order less than 1/2,
then f satisfies Lemma 3.2 (a) for some m > 1.

Lemma 3.6. [13] Let f1, f2, . . . , fk be non constant transcendental entire functions.
Suppose that for some j ∈ {1, 2, . . . , k}, fj is log-regular. Then g = f1 ◦ f2 ◦ · · · ◦ fk
is also log-regular.

Theorem 3.1. Let h = f1 ◦ f2 ◦ · · · ◦ fn where fi(i = 1, 2, . . . , n) are transcen-
dental entire functions, each having order less than 1/2. If there is a number
j ∈ {1, 2, 3, . . . , n}, such that fj has positive lower order, then AR(h) is a spider’s
web.

Remark 3.1. (i) If further 0 < ρfk < 1
2 for k 6= j above, then by a well known

theorem of Polya, h is of infinite order, and thus this gives an example of a
transcendental entire function h of infinite order for which AR(h) is a spider’s
web.

(ii) Theorem 3.1 with Lemma 3.1 immediately yields Theorem B of [12].

Proof. In order to prove the Theorem, it is sufficient to show that h satisfies the
two conditions of Lemma 3.2. Now by Lemma 3.5, each fi will satisfy Lemma
3.2(a) with m = mi > 1. Hence h satisfies Lemma 3.2(a) by Lemma 3.3 with
m = m1m2 . . .mn.

Also for some j ∈ {1, 2, . . . , n} the lower order λj of fj is greater than zero and
so fj is log regular, by Lemma 3.4. Hence h is log regular by Lemma 3.6, and so
AR(h) is a spider’s web by Lemma 3.2. �

References

[1] I.N. Baker, Repulsive fixed points of entire functions, Math. Z., 104 (1968),
252–256.

[2] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc.,
29 (1993), 151–188.

[3] W. Bergweiler and A. Hinkkanen, On semiconjugation of entire functions,
Math. Proc. Camb. Phil. Soc., 126 (1999), 565–574.

[4] A.E. Eremenko, On the iteration of entire functions, from Dynamical Systems
and Ergodic Theory, Banach Center Publications 23, Polish Scientific Publish-
ers, Warsaw, 1989, 339–345.



LEVELS OF FAST ESCAPING SETS AND SPIDER’S WEB 9

[5] H. Mihaljević-Brandt and J. Peter, Poincaré functions with spiders’ webs,
Proc. Amer. Math. Soc. 140 (2012), 3193–3205.

[6] A. Hinkkanen, Entire functions with bounded Fatou components, from Tran-
scendental Dynamics and Complex Analysis, London Math. Soc. 348, Lecture
Note Ser., Cambridge University Press, 2008, 187–216.

[7] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic Dynam-
ics, Cambridge Studies in Advanced Mathematics, 66, 2000.

[8] J.W. Osborne, The structure of spider’s web fast escaping sets, Bull. London
Math. Soc., 3 (44) (2012), 503–519.

[9] L. Rempe, On a question of Eremenko concerning escaping components of
entire functions, Bull. London Math. Soc., 39 (2007), 661–666.

[10] P.J. Rippon and G.M. Stallard, On questions of Fatou and Eremenko, Proc.
Amer. Math. Soc., 133 (2005), 1119–1126.

[11] P.J. Rippon and G.M. Stallard, Fast escaping points of entire functions, Proc.
London Math. Soc., 105 (2012), 787–820.

[12] A.P. Singh, Composite entire functions with no unbounded Fatou components,
J. Math. Anal. Appl. 335 (2) (2007), 907–914.

[13] D.J. Sixsmith, Entire functions for which the escaping set is a spider’s web,
Math. Proc. Camb. Phil. Soc., 151 (2011), 551–571.

Anand P. Singh

Department of Mathematics,
Central University of Rajasthan,

NH-8, Bandarsindri, Kishangarh-305817,

Distt.-Ajmer,
Rajasthan,

India.

singhanandp@rediffmail.com

Garima Tomar
Department of Mathematics,

Central University of Rajasthan,

NH-8, Bandarsindri, Kishangarh-305817,
Distt.-Ajmer,

Rajasthan,

India.

tomar.garima10@gmail.com


	1. Introduction
	2. Proofs of Theorems on Levels of Fast Escaping Sets and Spider's Web
	3. Bounded Fatou Components and Spider's Web
	toReferences
	References

