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Abstract. In the present paper, we study nontotally geodesic minimal ascreen

null hypersurface, M , of a Lorentzian concircular structure (LCS)-space form

of constant curvature 0 or 1. We prove that; if the Ricci tensor of M is parallel
with respect to a given leaf of its screen distribution, then M is isometric to a

product of a null curve and spheres.

1. Introduction and Results

By a null hypersurface, in a spacetime, we mean a smooth codimension one
submanifold such that the ambient metric degenerates when restricted to it. Null
hypersurfaces play an important role in general relativity, as they represent horizons
of various sorts (event horizon of a black hole, killing horizon, etc.). Among the
simplest examples of null hypersurfaces are the null cones. The main challenge in
understanding their geometric behaviors is the degeneracy of the induced metric.
This degeneracy hinders the existence of a metric connection as well as a volume
form, among other objects induced by the metric, on a null hypersurface. Some
attempts to overcome this difficulty have had remarkable success. In [5, 6], the
approach consists in fixing a geometric data formed by a null section and a screen
distribution on the null hypersurface. This allows to induce some geometric objects
such as a connection (not necessarily metric connection), a null second fundamental
form and Gauss-Codazzi type equations. In [20] the author uses the quotient
vector bundle TM/TM⊥ to “get rid” of the degeneracy of the induced metric. His
approach is essentially intrinsic, while that of [5] (or [6]) is extrinsic.

In both approaches, the authors succeeds in describing the topology of a null
manifold under certain geometric conditions. For example, [20] shows that the
event horizons of Schwarzschild, Reissner and Kerr spacetimes are stationary semi-
Riemannian manifolds with the following structure: Let M = R×H, where H = S2
with a nondegenerate metric tensor g̃ of type (0, 2). Now let ψ : R × S2 −→ S2
be the projection. Then the event horizons of the above solutions are the semi-
Riemannian manifolds (M, g) with g = ψ∗g̃. By stationary the author means
that the complementary degenerate bundle to the factor bundle TM/TM⊥ is a
killing distribution (see Definition 3.1.3 of [20, p. 41]). Note that when a null
manifold M is imbedded into a semi-Riemannian manifold, the stationary condition
is equivalent to M being totally geodesic, see for instance [6]. The topological
structures above are also important in understanding the expanding nature of black
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hole horizons. For instance, Duggal-Sahin [6, p. 116] defines a Non-Expanding
Horizon (in short; NEH) as a null hypersurface of a spacetime, (a) with a topology
of R× S2, (b) expansion free (i.e., minimal) and (c) its stress energy tensor obeys
the null dominant energy condition.

Back to the extrinsic approach of [5], they showed that an (n+1)-dimensional null
cone Mn+1 of a semi-Euclidean space Rn+2

1 is totally umbilic and screen conformal
(see Proposition 5.4). Moreover, such a cone is locally isometric to Cξ × Sn, where
Cξ is a null curve tangent to the normal bundle of M and Sn is an n-sphere (see
Proposition 5.7 of [5] and Remark 5 of [7] for details). Classifications of null
hypersurfaces as general product manifolds has been done briefly in [6, Theorems
2.5.15 and 2.5.17] under the assumptions that M is Einstein.

In the present paper, we give an explicit structure of minimal ascreen null hy-
persurfaces in Lorentzian concircular structure (LCS)-space forms of constant cur-
vature c = 0, 1. From now on, we denote by Sm(r) the m-sphere of radius r in an
Euclidean space Rm+1. To that end, we prove the following main result.

Theorem 1.1. Let (Mn+1, g) be a nontotally geodesic minimal ascreen null hyper-

surface of a (LCS)-space form M
n+2

(c). If the Ricci tensor, Ric, of M is parallel
with respect to each n-dimensional leaf M ′ of the screen distribution S(TM), then
the following hold;
(1) if c = 0 then, for all 0 < k < n

4 , M is locally isometric to

Cξ × Sk
(

k

α
√

(n− 2k)(n− 4k)

)
× Sn−k

(
n− k

α
√

(n− 2k)(3n− 4k)

)
,

(2) if α = 1 then c = 1, and M is locally isometric to

Cξ × Sk
(
k

n

)
× Rn−k, 0 < k < n,

where Cξ is a null curve tangent to the normal bundle of M and α is a nonzero

function of M .

Following the approach of [5] (or [6]) many researchers have investigated the
geometry of hull submanifolds which include, but not limited to, [1], [2], [4], [9],
[9], [11], [12], [13], [14] and [19]. In a recent paper [13], the author initiated
the study of ascreen null hypersurfaces of Lorentzian concircular structure (LCS)-
manifolds, in which it was discovered that such hypersurfaces admits a symmetric
Ricci tensor. The rest of the paper is arranged as follows; Section 2 focusses on the
basic notions of null hypersurfaces and Lorentzian concircular structure (LCS)-
manifolds needed in the rest of the paper. In Section 3, we prove some results
needed to prove our main result. Finally, in Section 4, we prove our main result
(Theorem 1.1).

2. Preliminaries

An (n + 2)-dimensional Lorentzian manifold M is a smooth connected para-
compact Hausdorff manifold with a Lorentzian metric g, that is, M admits a
smooth tensor field g of type (0, 2) such that, for each point p ∈ M , the tensor
gp : TpM×TpM −→ R is a non-degenerate inner product of signature (−,+, . . . ,+),

where TpM denotes the tangent vector space of M at p and R is the real number
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space. A non-zero vector field v ∈ TpM is said to be timelike (resp., non-spacelike,
null and spacelike) if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0 and > 0) [18].

A vector field V defined by g(X,V ) = A(X), for any X tangent to M , is said
to be a concircular [16, 17] vector field if, for any X,Y tangent to M , we have
(∇XA)Y = α[g(X,Y ) − ω(X)A(Y )], where α is a non-vanishing smooth function
and ω is a closed 1-form. Here, ∇ denotes the Levi-Civita connection of M with
respect to g.

Let M be an (n+ 2)-dimensional Lorentzian manofold admitting a unit timelike
concircular vector field ζ, called the characteristic vector field of the manifold. Then
we have

g(ζ, ζ) = −1. (2.1)

As ζ is a unit concircular vector field, it follows that there exists a non-zero 1-form
θ such that for

g(X, ζ) = θ(X), (2.2)

the following equations hold

(∇Xθ)(Y ) = α[g(X,Y ) + θ(X)θ(Y )] (α 6= 0), (2.3)

for all vector fields X,Y tangent to M , where ∇ denotes the operator of covariant
differentiation with respect to the Lorentzian metric g and α is a non-zero scalar
function satisfying

∇Xα = Xα = dα(X) = ρθ(X), (2.4)

ρ being a certain scalar function given by ρ = −ζα. Throughout this paper, Γ(E)
will denote the F(M)-module of differentiable sections of a vector bundle E. Let

φX =
1

α
∇Xζ, ∀X ∈ Γ(TM). (2.5)

Then, by (2.3) and (2.5), we have

φX = X + θ(X)ζ, (2.6)

which follows that φ is a symmetric (1, 1) tensor field called the structure tensor field
of the manifold. Thus, the Lorentzian manifold M together with the unit timelike
concircular vector field ζ, its associated 1-form θ and a (1, 1) tensor field φ is
said to be a Lorentzian concircular structure manifold (briefly, an (LCS)-manifold)
[16, 17]. In particular, if α = 1, then we obtain the LP-Sasakian structure of
Matsumoto [15]. In an (LCS)-manifold, the following relations [16] hold for all
vector fields X,Y, Z ∈ Γ(TM):

φ
2
X = X+θ(X)ζ, φζ = 0, θ ◦ φ = 0, θ(ζ) = −1, (2.7)

g(φX, φY ) = g(X,Y ) + θ(X)θ(Y ), (2.8)

(∇Xφ)(Y ) = α(g(X,Y )ζ + 2θ(X)θ(Y )ζ + θ(Y )X), ∇Xζ = αφX, (2.9)

θ(R(X,Y )Z) = (α2 − ρ)(g(Y,Z)θ(X)− g(X,Z)θ(Y )), (2.10)

where R denotes the curvature tensor of M .
Next, we give an example of (LCS)-manifold.
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Example 2.1 ([16]). Consider the 4-dimensional manifold

M = {(v, x, y, z) ∈ R4 : Z 6= 0},

where (v, x, y, z) are the standard coordinates in R4. Let {Z1, Z2, Z3, Z4} be linearly
independent global frame on M given by

Z1 = z

(
∂

∂v
+ x

∂

∂x

)
, Z2 = z

∂

∂x
, Z3 = z

(
∂

∂x
+

∂

∂y

)
, Z4 = z3

∂

∂z
.

Let us define φ, ζ, θ and g by φZ1 = Z1, φZ2 = Z2, φZ3 = Z3, φZ4 = 0; ζ = Z4

, θ(X) = g(X,Z4), for all X ∈ Γ(TM), g(Z1, Z1) = g(Z2, Z2) = g(Z3, Z3) = 1,
g(Z4, Z4) = −1, g(Zi, Zj) = 0, i 6= j for all 1 ≤ i, j ≤ 4. Let ∇ be the Levi-Civita
connection with respect to the Lorentzian metric g. Then we have

[Z1, Z2] = −zZ2, [Z1, Z4] = −z2Z1, [Z2, Z4] = −z2Z2 [Z3, Z4] = −z2Z3.

Taking Z = ζ, and using Koszul’s formula (see Theorem 11 of [18, p. 61]), we have

∇Z1
Z4 = −z2Z1, ∇Z2

Z1 = zZ2, ∇Z1
Z1 = −z2Z4 ∇Z2

Z4 = −z2Z2

∇Z3
Z4 = −z2Z3, ∇Z3

Z3 = −z2Z4 ∇Z2
Z2 = −z2Z4 − zZ1.

From the above it can be easily seen that (φ, ζ, θ, g) is a (LCS)-structure on M .
Consequently (M,φ, ζ, θ, g) is a (LCS)-manifold with α = −z2 6= 0 such that
Xα = ρθ(X), where ρ = 2z4.

Let (M, g) be a (n+ 2)-dimensional semi-Riemannian manifold and let M be a
hypersurface of M . Let g be the induced tensor field by g on M . Then, M is called
a null hypersurface of M if g is of constant rank n [5]. Consider the vector bundle
TM⊥ whose fibers are defined by TxM

⊥ = {Yx ∈ TxM : gx(Xx, Yx) = 0, for all
Xx ∈ TxM}, for any x ∈ M . Hence, a hypersurface M of M is null if and only if
TM⊥ is a distribution of rank 1 on M . Let M be a null hypersurface, we consider
the complementary distribution S(TM) to TM⊥ in TM , which is called a screen
distribution. It is well-known that S(TM) is non-degenerate (see [5]). Thus,

TM = S(TM) ⊥ TM⊥. (2.11)

As S(TM) is non-degenerate with respect to g, we have TM = S(TM) ⊥ S(TM)⊥,
where S(TM)⊥ is the complementary vector bundle to S(TM) in TM |M . Let
(M, g) be a null hypersurface of (M, g) . Then, there exists a unique vector bundle
tr(TM), called the null transversal bundle [5] of M with respect to S(TM), of
rank 1 over M such that for any non-zero section ξ of TM⊥ on a coordinate
neighborhood U ⊂ M , there exists a unique section N of tr(TM) on U satisfying
g(ξ,N) = 1, g(N,N) = g(N,Z) = 0, for any section Z of S(TM). Consequently,
we have the following decomposition of TM .

TM |M = S(TM) ⊥ {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM). (2.12)

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively,
and P be the projection of TM onto S(TM), then the local Gauss-Weingarten
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equations of M and S(TM) are the following [5];

∇XY = ∇XY +B(X,Y )N, (2.13)

∇XN = −ANX + τ(X)N, (2.14)

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.15)

∇Xξ = −A∗ξX − τ(X)ξ, A∗ξξ = 0, (2.16)

for all X,Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)), where ∇ is the Levi-
Civita connection on M . In the above setting, B is the local second fundamental
form of M and C is the local second fundamental form on S(TM). AN and A∗ξ are

the shape operators on TM and S(TM) respectively, while τ is a 1-form on TM .
The above shape operators are related to their local fundamental forms by

g(A∗ξX,Y ) = B(X,Y ), g(ANX,PY ) = C(X,PY ), (2.17)

for any X,Y ∈ Γ(TM). Moreover, g(A∗ξX,N) = 0, and g(ANX,N) = 0, for all

X ∈ Γ(TM). From these relations, we notice that A∗ξ and AN are both screen-

valued operators. Let ϑ = g(N, ·) be a 1-form metrically equivalent to N defined
on M . Take η = i∗ϑ to be its restriction on M , where i : M → M is the inclusion
map. Then it is easy to show that

(∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y ), (2.18)

for all X,Y, Z ∈ Γ(TM). Consequently, ∇ is generally not a metric connection
with respect to g. However, the induced connection ∇∗ on S(TM) is a metric
connection.

Denote by R, R and R∗ the curvature tensors of the connection ∇ on M , and
the induced linear connections ∇ and ∇∗ on M and S(TM), respectively. Using
the Gauss-Weingarten formulae, we obtain the following Gauss-Codazzi equations
for M and S(TM) (see details in [5, 6]).

g(R(X,Y )Z,PW ) =g(R(X,Y )Z,PW ) +B(X,Z)C(Y, PW )

−B(Y, Z)C(X,PW ), (2.19)

g(R(X,Y )Z, ξ) =(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)

− τ(Y )B(X,Z), (2.20)

g(R(X,Y )PZ, PW ) =g(R∗(X,Y )PZ, PW ) + C(X,PZ)B(Y, PW )

− C(Y, PZ)B(X,PW ), (2.21)

g(R(X,Y )N, ξ) =B(Y,ANX)−B(X,ANY )− 2dτ(X,Y ), (2.22)

where 2dτ(X,Y ) = X(τ(Y )) − Y (τ(X)) − τ([X,Y ]), for all X,Y, Z,W ∈ Γ(TM),
ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).

Suppose π is a non-degenerate plane of TpM , for p ∈ M . Then, the associated
matrix Gp of gp, with respect to an arbitrary basis {u, v}, is of rank 2 given by

(1.2.15) of [6, p. 16]. Define a real number K(π) = Kp(u, v) = R(u, v, v, u), where

R(u, v, v, u) is the 4-linear mapping on TpM by the curvature tensor. The smooth
function K, which assigns to each non-degenerate tangent plane π the real number
K(π) is called the sectional curvature of M , which is independent of the basis



20 SAMUEL SSEKAJJA

{u, v}. If K is a constant c at every point of p ∈M then M is of constant sectional
curvature c, denote by M(c), whose curvature tensor field R is given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }, (2.23)

for any X,Y, Z ∈ Γ(TM) (see [18] for details). In particular, if K = 0, then M is
called a flat manifold for which R = 0.

In what follows, we give an example of (LCS)-space form.

Example 2.2. Consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 : z > 0},
where (x, y, z) are standard coordinates of R3. Let Z1, Z2 and Z3 be the vector
fields on M given by

Z1 = z
∂

∂x
, Z2 = z

∂

∂y
, and Z3 = z

∂

∂z
, (2.24)

which are linearly independent at each point p ∈ M , and hence form a basis of
TpM . Let us define a Lorentzian metric g on M as

g(Z1, Z1) = g(Z2, Z2) = 1, g(Z3, Z3) = −1, and g(Zi, Zj) = 0, (2.25)

for all i 6= j, for all 1 ≤ i, j ≤ 3. Let θ be a differential 1-form on M defined by
θ(X) = g(X,Z3) = g(X, ζ), for all X ∈ Γ(TM), and let φ be the (1, 1)-tensor field
on M defined as

φZ1 = Z1, φZ2 = Z2, and φZ3 = 0. (2.26)

Applying the linearity of φ and g, we have

θ(ζ) = g(ζ, ζ) = −1, φ
2
X = X + θ(X)ζ, θ(φX) = 0,

g(X, ζ) = θ(X), and g(φX, φY ) = g(X,Y ) + θ(X)θ(Y ),
(2.27)

for all X,Y ∈ Γ(TM). Let ∇ be the Levi-Civita connection with respect to the
Lorentzian metric g. Then we have

[Z1, Z2] = 0, [Z1, Z3] = −Z1, and [Z2, Z3] = −Z2. (2.28)

Next, using Koszul’s formula (see Theorem 11 of [18, p. 61]), we have

∇Z1
Z1 = −Z3 = −ζ, ∇Z1

Z2 = 0, ∇Z1
Z3 = −Z1,

∇Z2
Z1 = 0, ∇Z2

Z2 = −Z3, ∇Z2
Z3 = −Z2,

and ∇Z3
Z1 = ∇Z3

Z2 = ∇Z3
Z3 = 0.

(2.29)

It follows from (2.27) and (2.29) that (M,φ, ζ = Z3, θ, g) is a 3-dimensional LCS-
manifold, with α = −1 and ρ = 0. Moreover, using (2.29) and the definition of the
curvature tensor R of ∇, i.e., R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, for all

X,Y, Z ∈ Γ(TM), we obtain

R(Z1, Z2)Z1 = −Z2, R(Z1, Z3)Z1 = −Z3, R(Z2, Z3)Z1 = 0,

R(Z1, Z2)Z2 = Z1 R(Z1, Z3)Z2 = 0, R(Z2, Z3)Z2 = −Z3,

R(Z1, Z2)Z3 = 0, R(Z1, Z3)Z3 = −Z1, and R(Z2, Z3)Z3 = −Z2.

(2.30)

From (2.30), we deduce that

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y, (2.31)
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for all X,Y, Z ∈ Γ(TM). It then follows from (2.31) that M is a space of constant
curvature c = 1. We note that M is locally isometric to the pseudo sphere S31(1).

3. Intermediate Results

Let (M, g) be a null hypersurface of a (LCS)-manifold (M, g). Then, the timelike
characteristic vector field ζ of M can be decomposed as follows

ζ = W + aξ + bN, (3.1)

where a and b are smooth functions, given by a = θ(N) and b = θ(ξ), and W
is a smooth section of S(TM). It was proved in [13] that ζ is never tangent or
transversal to M . Furthermore, it was shown, in the same paper, that φTM⊥

and φtr(TM) can not be considered as subbundles of S(TM) as it is often done
in the Sasakian case (see [6] for detailes). In this section, we consider ascreen
null hypersurfaces of M . More precisely, a null hypersurface (M, g) will be called
ascreen if the characteristic vector field ζ, of the (LCS)-manifold M , belongs to
TM⊥ ⊕ tr(TM). These hypersurfaces were first considered by Jin [8] in Sasakian
ambient spaces. For an ascreen null hypersurface (M, g) of a (LCS)-manifold M ,
ζ in (3.1) reduces to

ζ = aξ + bN, (3.2)

where a = θ(N) and b = θ(ξ) both non-vanishing smooth functions. Moreover, we
have the following result.

Theorem 3.1. Let (M, g) be a null hypersurface of a (LCS)-manifold M . Then
M is an ascreen null hypersurface of M if and only if φTM⊥ = φtr(TM).

Proof. Suppose that M is ascreen null hypersurface. Applying φ to (3.2) and using
the fact that φζ = 0, we get aφξ+ bφN = 0. Thus, one gets φξ = ωφN , where ω =
− b
a 6= 0, a non vanishing smooth function. This implies that φTM⊥ ∩ φtr(TM) 6=
{0}. Since rank φTM⊥ = rank φtr(TM) = 1, it follows that φTM⊥ = φtr(TM).
Conversely, suppose that φTM⊥ = φtr(TM). Then, there exists a non-vanishing
smooth function ω such that φξ = ωφN . Taking the inner product of this relation
with respect to φξ and φN in turn, we get b2 = ω(ab + 1) and ωa2 = ab + 1,
respectively. Since ω 6= 0, we have a 6= 0, b 6= 0 and b2 = (ωa)2. The latter
gives b = ±ωa. The case b = ωa implies that ab = ωa2 = ab + 1, which is a
contradiction. Thus b = −ωa, from which 2ab = −1. Since ω = − b

a , a 6= 0 and

φξ = ωφN , it is easy to see that aφξ + bφN = 0. Applying φ to this equation, and
using b2 = ω(ab + 1) together with 2ab = −1, we get ζ = aξ + bN . Therefore, M
is ascreen null hypersurface of M , which completes the proof. �

Let (M, g) is an ascreen null hypersurface of M . Differentiating (3.2) and using
(2.14) and (2.16), we get

αφX = −aA∗ξX − bANX + [Xa− aτ(X)]ξ + [Xb+ bτ(X)]N, (3.3)

for any X ∈ Γ(TM). Taking the inner product of (3.3) with N and ξ, in turn, we
get

Xa− aτ(X) = αη(X) + αaθ(X), Xb+ bτ(X) = αbθ(X), (3.4)
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in which we have used the fact X = PX + η(X)ξ, for any X ∈ Γ(TM). On the
other hand, taking the inner product of (3.3) with PY , where Y ∈ Γ(TM), we have

aB(X,PY ) + bC(X,PY ) = −αg(PX,PY ). (3.5)

Setting X = ξ in (3.5) and using (2.16) together with the fact b 6= 0, we get

C(ξ, PY ) = 0, ∀Y ∈ Γ(TM). (3.6)

As B is symmetric, it is easy to see from (3.5) that C is also symmetric.
Next, we give an example of an ascreen null hypersurface of a (LCS)-manifold.

Example 3.2. Let us consider a hypersurface (M, g) of a (LCS)-space form
(M(1), φ, ζ, θ, g) in Example 2.2 given by M = {(x, y, z) ∈ R3 : x + z = 0}. Thus,
the tangent space TM is spanned by W1 = Z1 + ζ and W2 = Z2. Observe that
g(W1,W1) = 0 and g(W1,W2) = 0, which implies that W1 is a null vector field
tangent to M . It then follows that the 1-dimensional normal bundle TM⊥ ⊂ TM
is spanned by

ξ := W1 = Z1 + ζ, (3.7)

hence M is 2-dimensional null hypersurface M . Also note that S(TM) is spanned
by the spacelike vector field W2. The corresponding transversal bundle tr(TM) is
spanned by N , where

N =
1

2
(Z1 − ζ). (3.8)

From (3.7) and (3.8) and the definition of φ, we have

φξ = Z1 and φN =
1

2
Z1. (3.9)

In view of (3.9), we see that φTM⊥ = φtr(TM). Hence, by Theorem 3.1, (M, g) is
an ascreen null hypersurface of an a (LCS)-space form (M(1), φ, ζ, θ, g), with

ζ =
1

2
ξ −N. (3.10)

In fact, from (3.2), (3.9) the fact φζ = 0, we have 2a + b = 0. Since ζ is a unit
timelike vector field, (3.2) gives 2ab + 1 = 0. From these equations, we get a = 1

2
and b = −1, proving (3.10).

Using the functions a and b, it was shown in [13] that the Ricci tensor, with
respect to the induced connection ∇, of an ascreen null hypersurface of a (LCS)-
manifold is actually symmetric. In the following result, we supply a different proof
to that in [13].

Theorem 3.3. Let (M, g) be an ascreen null hypersurface of a (LCS)-manifold
(M, g). Then the Ricci type tensor of M is symmetric, the screen distribution
S(TM) is integrable and M is locally a product manifold Cξ ×M ′, where Cξ is a
null curve tangent to TM⊥ and M ′ is a leaf of S(TM).

Proof. Setting Z = ξ in (2.10), we get θ(R(X,Y )ξ) = 0, for all X,Y ∈ Γ(TM).
As M is ascreen, ζ = aξ + bN and hence, the previous relation simplifies as 0 =
θ(R(X,Y )ξ) = ag(R(X,Y )ξ, ξ) + bg(R(X,Y )ξ,N). Using the properties of R and
the fact that b 6= 0, we get g(R(X,Y )ξ,N) = 0, for all X,Y ∈ Γ(TM). Considering
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the last relation in (2.22), we get B(Y,ANX) − B(X,ANY ) = 2dτ(X,Y ). From
(3.5) and (3.6), we have ANX = −abA

∗
ξX− α

b PX, for all X ∈ Γ(TM). Thus, using
these two relations, together with the fact that A∗ξ is symmetric with respect to B,

we get 2dτ(X,Y ) = 0 or simply dτ = 0. As τ is closed, by a well-known argument
in [5] or [6], the Ricci tensor of M is symmetric. Next, the symmetry of C follows
from (3.5) by the fact that B is symmetric. Consequently, M is screen integrable
and by Remark 5 of [7, 215], M is locally a product manifold Cξ ×M ′, where Cξ
is a null curve tangent to TM⊥ and M ′ is a leaf of S(TM). Hence the proof is
completed. �

Remark 3.4. If the Ricci tensor of (M, g) is symmetric, then there exists a null
pair {ξ,N} such that the corresponding 1-form τ satisfies τ = 0 [5], which is
called a canonical null pair of M . Although S(TM) is not unique, it is canonically
isomorphic to the factor vector bundle S(TM)\ = TM/TM⊥ of Kupeli [20]. This
implies that all screen distribution are mutually isomorphic. For this reason, we
consider only ascreen null hypersurfaces M endowed with the canonical null pair
{ξ,N}.

Let x ∈ M be an arbitrary point and let {Zi}ni=1 be an othonormal frame of
S(TM)x such that A∗ξZi = λiZi. For each λ, let Pλ = {Z : A∗ξZ = λZ}. Then Pλ
is called the principle distribution, which is completely integrable [14]. Moreover,
as τ = 0, each principle curvature λ is constant along each principal distribution
Pλ, whose leaves are totally geodesic in S(TM) and totally umbilic in M (see [14]
for details). The following result is fundamental to our main result.

Proposition 3.5. Let (M, g) be an ascreen null hypersurface of a (LCS)-space
form M(c). Let {Zi}ni=1 be an othonormal frame of S(TM)x such that A∗ξZi = λiZi.

If A∗ξ is parallel along the leaves M ′ of S(TM), i.e., ∇∗A∗ξ = 0, then

(λiλj − αb(λi + λj) + cb2)(λi − λj) = 0, (3.11)

for all 1 ≤ i, j ≤ n.

Proof. Fix a point x ∈ M and let λ1, . . . , λm be the distinct screen principal
curvatures of A∗ξ at x. Denote by Ek the space of principal vectors corresponding

to λk. Let Hx be the holonomy group of S(TM)x at x ∈M considered as a group of
non-singular, linear transformations of S(TM)x. Then, we have A∗ξH = HA∗ξ , for

all H ∈ Hx [10]. Moreover, it is easy to prove that HEk ⊆ Ek, for all H ∈ Hx and
1 ≤ k ≤ m. As in [10], the Lie algebra, Bx ofHxis generated by elements of the form
ε−1 ◦R∗(u, v) ◦ ε, where u, v ∈ S(TM)x, R∗ denotes the curvature tensor of leaves
of S(TM) and ε corresponds to parallel displacement along a piece-wise smooth
closed curve at x. Choosing ε = identity we must have that R∗(u, v)Ek ⊆ Ek for
each k. Hence, the sectional curvatures

g(R∗(Zi, Zj)Zj , Zi) = 0, ∀Zi ∈ Ei and Zj ∈ Ej , (3.12)

where i 6= j. Next, considering (2.19), (2.21) and (2.23), we have

g(R∗(X,Y )PZ,PW ) = c(g(Y, PZ)g(X,PW )− g(X,PZ)g(Y, PW ))

+B(Y, PZ)C(X,PW ) + C(Y, PZ)B(X,PW )

− C(X,PZ)B(Y, PW )−B(X,PZ)C(Y, PW ), (3.13)
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for all X,Y, Z,W ∈ Γ(TM). Setting X = W = Zi and Y = Z = Zj in (3.13) and
using (3.5), we get

g(R∗(Zi, Zj)Zj , Zi) = c(1− δ2ij)−
2a

b
λiλj −

α

b
(λi + λj)

+
2a

b
δ2ijλ

2
i +

2α

b
δ2ijλi. (3.14)

As M is ascreen, (3.1) and g(ζ, ζ) = −1 implies that 2ab+1 = 0. Using this relation
in (3.14) and considering i 6= j, we get

g(R∗(Zi, Zj)Zj , Zi) = c+
1

b2
λiλj −

α

b
(λi + λj). (3.15)

Then, our assertions follows from (3.12) and (3.15), hence the proof. �

Let (M, g) be a null hypersurface of a semi-Riemannian manifold (M, g). We say
that M is totally umbilic [5] if B = δ ⊗ g, for some smooth function δ on a
neighborhood U ⊂M . When δ = 0, M is said to be totally geodesic. The trace of
A∗ξ (or B) is called the null mean curvature of M , explicitly given by

Sx =

n∑
i=1

g(A∗ξZi, Zi) =

n∑
i=1

B(Zi, Zi), (3.16)

where {Zi}ni=1 is an orthonormal basis of S(TM) at x ∈ M . We say that M is a
minimal if Sx vanishes. Generally, we say that M is a constant mean curvature
(CMC) null hypersurface if Sx is a constant function at each x ∈M .

Example 3.6. Let us consider the ascreen null hypersurface of Example 3.2. By
a direct calculation, using (3.7), (3.8) and (2.29), we have

∇ξξ = −ξ, ∇ξW2 = 0, ∇W2ξ = −W2, ∇∗W2
W2 = 0

and ∇ξN = N, ∇W2N =
1

2
W2, ∇W2W2 = −ζ, ∇∗ξW2 = 0.

(3.17)

Then applying the Gauss-Weingarten equations (2.13)–(2.16) to (3.17), leads to

A∗ξW2 = W2, ANξ = 0, ANW2 = −1

2
W2. (3.18)

Moreover, τ(ξ) = 1 and τ(W2) = 0. From (3.18) we see that (M, g) is a nontotally
geodesic ascreen null hypersurface of a (LCS)-space form (M(1), φ, ζ, θ, g). In fact,
M has constant mean curvature S = 1.

In view of Proposition 3.5 and (3.16), we have the following.

Corollary 3.7. A∗ξ has at most two distinct screen principal curvatures at each

point. Moreover, if A∗ξ 6= 0 and M is minimal null hypersurface of a (LCS)-space
form of constant curvature c, then the screen principal curvatures λ1 and λ2 are
given by;
(1) for c = 0;

λ1 =
n− 2n1
n1

αb and λ2 = −n− 2n1
n2

αb, (3.19)

(2) for α = 1, we have c = 1 and;

λ1 = −n2
n1
b, λ2 = b or λ1 = b, λ2 = −n1

n2
b, (3.20)
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where n1 + n2 = n and λk has multiplicity nk ≥ 1. Moreover, each leaf M ′ of
S(TM) is locally isometric to the product manifold Mλ1

×Mλ2
, where Mλ1

and
Mλ2

are the leaves of the principal distributions Pλ1
and Pλ2

, respectively.

Proof. As M is minimal, we have Sx = 0 by (3.16). But Sx = n1λ1 + n2λ2.
Thus n1λ1 + n2λ2 = 0 and (3.19), (3.20) follows from this relation and (3.11) of
Proposition 3.5 by simple calculations.

Notice that A∗ξ has the same principal curvatures with the same multiplicities at

all points of S(TM)x, where x ∈M . Let {Zi}ni=1 be a basis of S(TM)x consisting
of principal vectors of (A∗ξ)x with eigenvalues µ1, . . . , µn, respectively. Consider

x′ ∈ M . Join x to x′ by a piecewise differentiable curve γ, and define vector
fields Z1, . . . ,Zn by parallel extension of Z1, . . . , Zn along γ. It is obvious that
A∗ξZ1, . . . , A

∗
ξZn are also parallel along γ and the equation A∗ξZk = µkZk must hold

at x′. Hence, if (A∗ξ)x = 0, then A∗ξ = 0 on M since A∗ξξ = 0. Therefore M is

totally geodesic. We therefore assume that (A∗ξ)x has two distinct eigenvalues, λ1
and λ2, of multiplicities n1 and n2 respectively, and we define

Pλ1
= {X ∈ S(TM)x : x ∈M, A∗ξX = λ1X},

Pλ2 = {X ∈ S(TM)x : x ∈M, A∗ξX = λ2X}.
The two principal distributions Pλ1 , Pλ2 are smooth. Moreover, as τ = 0 and
λ1 (resp. λ2) is constant along Pλ1

(resp. Pλ2
) (see [14]), we derive A∗ξ∇∗XY =

∇∗XA∗ξY = λ1∇∗XY , for all Y ∈ Γ(Pλ1) and X ∈ Γ(S(TM)), in which the parallel

assumption of A∗ξ along S(TM) has been used. Thus Pλ1 is parallel. It can be shown
in the same way that Pλ2 is parallel. Clearly, these distributions are integrable.
Let Mλ1

and Mλ2
be their leaves of Pλ1

and Pλ2
, respectively. These leaves are

totally geodesic in S(TM), and totally umbilic in M (see [14] for details). By
straightforward argument used originally by de Rham [3] now shows that each leaf
M ′ of S(TM) is isometric to the product Mλ1

×Mλ2
. �

Moreover, we have the following.

Corollary 3.8. For an ascreen null hypersurface of a (LCS)-space form M(c),
every integral leaf Mλ1

(c1) (resp. Mλ2
(c2)) is a manifold of constant sectional

curvature

c1 =
1

b2
λ21 −

2α

b
λ1 + c (resp. c2 =

1

b2
λ22 −

2α

b
λ2 + c).

Moreover, the following hold;
(1) if c = 0, then

c1 =
α2

n21
(n− 2n1)(n− 4n1) and c2 =

α2

(n− n1)2
(n− 2n1)(3n− 4n1),

(2) if α = 1 then c = 1; c1 = n2

n2
1
, c2 = 0 or c1 = 0, c2 = n2

(n−n1)2
.

(3) under (1) and (2) above, there exist a unique mapping

φ : M ′ −→ Sn1

(√
c1
c1

)
× Sn−n1

(√
c2
c2

)
, 0 < n1 <

n

4
,

and φ : M ′ −→ Sn1

(√
c1
c1

)
× Rn−n1 , 0 < n1 < n,



26 SAMUEL SSEKAJJA

respectively.

Proof. Let {Zk}n1

k=1 be an orthonormal basis of Mλ1 . Then, by (3.14), we have

g(R∗(Zi, Zj)Zj , Zi) = c+
1

b2
λ21 −

2α

b
λ1, ∀ i, j ∈ {1, . . . , n1}, (3.21)

in which we have used the fact 2ab + 1 = 0. Then c1 follows from (3.21) easily
by definition of sectional curvature. In the same way c2 follows. Notice that λ1 is
constant along Pλ1

(see [14] for details). We are now left to verify the constancy
of b and α. Since M is ascrren and τ = 0, the second relation of (3.4) gives
Xb = αbθ(X), for all X ∈ Γ(TM). This implies that PXb = 0 since M is ascreen.
On the other hand, using (2.4), we have PXα = ρθ(PX) = 0. Therefore, both
functions are constant along leaves of S(TM). Consequently, c1 is constant along
Mλ1 since c is a constant. Using similar arguments, the constancy of c2 can be
established. Next, (1) and (2) follows easily from Corollary 3.7 and the expressions
of c1 and c2. Finally, (3) follows easily as in Theorem 4 of [10] by utilizing the fact
that A∗ξ is parallel, which completes the proof. �

4. Proof of Main Result: Theorem 1.1

Using the tools developed in the previous section, we now proceed to the proof of
Theorem 1.1. Consider the quasi-orthonormal frame {ξ, Zi} on M , where TM⊥ =
Span{ξ} and S(TM) = Span{Zi}ni=1 and let {ξ,N, Zi} be the corresponding frames
field on M . As M is ascreen, by Theorem 3.3, its Ricci tensor ’Ric’ is symmetric.
Moreover, by the method of [6], we have

Ric(X,Y ) =

n∑
i=1

g(R(X,Zi)Y,Zi) + g(R(X, ξ)Y,N), (4.1)

for all X,Y ∈ Γ(TM). Using (2.19) and (3.5), we have

g(R(X,Zi)Y, Zi) = g(R(X,Zi)Y, Zi) +B(X,Y )C(Zi, Zi)

−B(Y,Zi)C(X,Zi)

= g(R(X,Zi)Y, Zi)−
a

b
B(X,Y )B(Zi, Zi)

− α

b
B(X,Y )g(Zi, Zi) +

a

b
g(A∗ξX,Zi)g(Zi, A

∗
ξY )

+
α

b
B(Y,Zi)g(Zi, X). (4.2)

Replacing (4.2) in (4.1), we get

Ric(X,Y ) =

n∑
i=1

g(R(X,Zi)Y, Zi)−
a

b
B(X,Y )trA∗ξ

− αn

b
B(X,Y ) +

a

b
g(A∗ξX,A

∗
ξY ) +

α

b
B(Y,X), (4.3)

for all X,Y ∈ Γ(TM), where tr(·) is the trace operator. As M is a space constant
of constant curvature c and M is minimal, (4.3) gives

Ric(X,Y ) = c(1− n)g(X,Y ) +
α

b
(1− n)B(X,Y ) +

a

b
g(A∗ξX,A

∗
ξY ). (4.4)
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Suppose that Ric is parallel along S(TM), then (4.4) implies that the operator
A := α

b (1− n)A∗ξ + a
b (A∗ξ)

2 satisfies ∇∗A = 0. More precisely, by (4.4) we have

Ric(X,Y ) = c(1− n)g(X,Y ) + g(AX,Y ), (4.5)

and the assumption (∇∗XRic)(PY, PZ) = 0 leads to

∇∗XRic(PY, PZ)− Ric(∇∗XPY, PZ)− Ric(PY,∇∗XPZ) = 0. (4.6)

As ∇∗ is a metric connection, (4.5) and (4.6) gives

Xg(AY,PZ)− g(A∇∗XPY, PZ)− g(AY,∇∗XPZ) = 0. (4.7)

Furthermore, the first term in (4.7) simplifies as

Xg(AY,PZ) = g(∇∗XAY,PZ) + g(AY,∇∗XPZ). (4.8)

Putting (4.7) and (4.8) together, we get g((∇∗XA)PY, PZ) = 0, and the fact that
S(TM) is Riemannian implies that ∇∗A = 0.

It then follows that the eigenvalues of A are constant in value and multiplicity
over S(TM). It is easy to see that the eigenvalues of A∗ξ are also constant in value

and multiplicity over S(TM). In fact, let λ be an eigenvalue of A∗ξ for a given

eigenvector X ∈ Γ(S(TM)). Then, λ̃ := α
b (1−n)λ+ a

bλ
2 is an eigenvalue of A with

respect to X. As λ̃ is constant along S(TM), we have α
b (1−n)Y λ+ 2a

b λ(Y λ) = 0,
and thus [λ− α

2a (n− 1)](Y λ) = 0, for all Y ∈ Γ(S(TM)). Thus, λ = α
2a (n− 1) or

Y λ = 0.

Case 1: λ 6= α
2a (n− 1). Let λ1, . . . , λk be the distinct principal curvatures of A∗ξ ,

and set Pλj
(x) = {X ∈ S(TM)x : A∗ξX = λjX, x ∈ M, j = 1, . . . , k}. As

A := α
b (1− n)A∗ξ + a

b (A∗ξ)
2 satisfy ∇∗A = 0, we have

α

a
(1− n)(∇∗XA∗ξ) + (∇∗XA∗ξ) ◦A∗ξ +A∗ξ ◦ (∇∗XA∗ξ) = 0, (4.9)

on S(TM)x. Next, we claim that (∇∗XA∗ξ)2Y = 0, for each X ∈ Pλi(x) and

Y ∈ Pλj
(x), for 1 ≤ i, j ≤ n. We prove our claim as follows. Using (4.9) we have

A∗ξ((∇∗XA∗ξ)Y ) =
α

a
(n− 1)(∇∗XA∗ξ)Y − (∇∗XA∗ξ)A∗ξY

=
α

a
(n− 1)(∇∗XA∗ξ)Y − (∇∗XA∗ξ)(λjY )

= −[2αb(n− 1) + λj ](∇∗XA∗ξ)Y, (4.10)

in which we have used the fact 2ab+ 1 = 0. Thus, from (4.10) we see that

(∇∗XA∗ξ)Y ∈ P−µ̃j (x), where µ̃j := 2αb(n− 1) + λj . (4.11)

On the other hand, as τ = 0 and M is a space of constant curvature c, (2.20) gives

(∇XB)(Y,Z) = (∇YB)(X,Z), (4.12)

for all X,Y, Z ∈ Γ(TM). Then, applying (2.15), (2.16) and (2.17) to (4.12) we
derive

(∇∗XA∗ξ)Y = (∇∗YA∗ξ)X, ∀X,Y ∈ Γ(S(TM)). (4.13)

If λi 6= λj , (4.11) and (4.13) implies that

(∇∗XA∗ξ)Y ∈ P−µ̃j (x) ∩ P−µ̃i(x), (4.14)
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and hence (∇∗XA∗ξ)Y = 0. Next, let λi = λj 6= 0 then (∇∗XA∗ξ)Y ∈ Pµ̃i
(x) and thus,

(∇∗XA∗ξ)2Y = (∇∗XA∗ξ)((∇∗XA∗ξ)Y ) = 0. Furthermore, suppose λi = λj = 0. Extend

Y locally to a vector field Y ′ by parallel translation along geodesics originating from
x ∈ M . Thus, A∗ξ

2Y ′ = 0, and since A∗ξ is symmetric and S(TM) is Riemannian,

we get A∗ξY
′ = 0. Therefore, (∇∗XA∗ξ)Y ′ = ∇∗XA∗ξY ′ − A∗ξ∇∗XY ′ = 0. Let {Zi}ni=1

be an orthonormal basis of S(TM)x such that each Zi belongs to some Pλi
(x).

Then, by the symmetry of (∇ZiA
∗
ξ), we have

g(∇∗A∗ξ ,∇∗A∗ξ) =

n∑
i=1

n∑
j=1

g((∇∗Zi
A∗ξ)Zj , (∇∗Zi

A∗ξ)Zj)

=

n∑
i=1

n∑
j=1

g(Zj , (∇∗Zi
A∗ξ)

2Zj) = 0. (4.15)

Thus, as S(TM) is Riemannian, (4.15) implies that ∇∗A∗ξ = 0.

Case 2: λ = α
2a (n−1). We construct the geodesic γ through x with initial tangent

vector X and we extend Y by parallel translation along γ. Now, since a, b and α
are constant along S(TM), we have

∇∗X
(a
b
A∗ξ

2Y − α

b
(n− 1)A∗ξY

)
=
(a
b
A∗ξ

2 − α

b
(n− 1)A∗ξ

)
∇∗XY. (4.16)

But ∇∗XY = 0 along γ. We therefore conclude from (4.16) that the vector field

A∗ξ
2Y − α

a (n− 1)A∗ξY is parallel along γ. Moreover, the value of this vector at x is

α2

4a2
(n− 1)2Y − α

a
(n− 1) · α

2a
(n− 1)Y = − α2

4a2
(n− 1)2Y. (4.17)

But the vector − α2

4a2 (n− 1)2Y in (4.17) is also parallel along γ. Therefore,

A∗ξ
2Y − α

a
(n− 1)A∗ξY = − α2

4a2
(n− 1)2Y. (4.18)

From (4.18), we have
(
A∗ξ − α

2a (n− 1)I
)2
Y = 0 along γ. Since A∗ξ − α

2a (n− 1)I is

symmetric, we have that A∗ξY = α
2a (n− 1)Y along γ. Hence, along γ,

(∇∗XA∗ξ)Y = ∇∗XA∗ξY −A∗ξ∇∗XY = ∇∗X
( α

2a
(n− 1)

)
Y = 0. (4.19)

We have shown that (∇∗XA∗ξ)Y = 0 for any pair of screen principal vectors X and

Y at any point x ∈ M . Since the principal vectors span S(TM)x, we have shown
that ∇∗A∗ξ = 0. Our result then follows from Theorem 3.3, Proposition 3.5, and its
corollaries, which ends the proof.
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