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Abstract. In this paper, we obtain asymptotic formulas for weighted first mo-
ments of central values of families of primitive quadratic Dirichlet L-functions

whose conductors comprise only primes that split in a given quadratic number

field. We then deduce a non-vanishing result of these L-functions at the point
s = 1/2.

1. Introduction

It is a conjecture due to S. Chowla [2] that a Dirichlet L-function is never zero
at the central point s = 1/2. One way to address this problem is by studying the
moments of central values of L-functions. For the family of quadratic Dirichlet L-
functions, M. Jutila [10] obtained the first and second moments of L(1/2, χd) with
χd being the Kronecker symbol. The error term in the asymptotic formula for the
first moment in [10] was later improved in [7, 18, 17]. For the second and third
moment of this quadratic family, K. Soundararajan obtained asymptotic formulas
with power savings in [16]. The error term for the third moment was improved by
A. Diaconu, D. Goldfeld and J. Hoffstein [4] and later further improved by M. P.
Young [19]. More recently, an explicit lower order term in the third moment was
found in [5] and under the assumption of the generalized Riemann hypothesis for
Dirichlet L-function, an asymptotic formula for the fourth moment was proved in
[15]. For families of Dirichlet L-functions associated with characters of higher or-
ders, we note that S. Baier and M. P. Young studied the first and second moments
of L(1/2, χ) for cubic Dirichlet L-functions in [1]. With the knowledge of these
moments, one can deduce, in manners not unlike the proof of Corollary 1.2, results
on the non-vanishing of the L-functions under consideration.

In this paper, we study the first moments of central values of certain subfamilies
of quadratic Dirichlet L-functions. Our result is motivated by the class field theory,
which implies that when a number field is Galois over Q, then the set of prime
numbers in Q that split completely in it determines the number field uniquely. For
this reason, it is interesting to study the families of primitive quadratic Dirichlet L-
functions whose conductors comprise only primes that split in a given number field.
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We now let K be a quadratic number field and let S(K) be the set of odd rational
integers that comprises only prime factors that split completely in K, i.e.

S(K) = {q ∈ Z : (q, 2) = 1, p|q ⇒ p splits completely in K}.
For technical reasons, other than a smooth weight, we consider the average of the
central values of L-functions with an extra weight which essentially measures the
number of distinct rational prime factors of the conductor of a given character. For
q ∈ Z, let ω(q) be the number of distinct rational prime factors of q. Then, our
result is

Theorem 1.1. Let K be a quadratic number field and let w : (0,∞) → R be a
smooth, compactly supported function. Then for any ε > 0,∑

q∈S(K)

∑∗

χ mod q
χ2=χ0

2ω(q)L(1/2, χ)w

(
q

Q

)
= QPK(logQ) +O

(
Q1−δ0+ε +Q3/4+ε

)
,

(1.1)
where PK(x) is a linear function whose coefficients depend only on K and w (see
(3.4) below for the expression for PK(x)), δ0 is the currently best known constant in
the subconvexity bound for a degree two L-function over Q (see (3.8) below). Here
the ∗ on the sum over χ restricts the sum to primitive characters and the implicit
constant in the error term depends on K, w and ε.

As alluded to earlier, one can readily deduce the following non-vanishing result
from the above theorem.

Corollary 1.2. Let Q ∈ N and sufficiently large. We have

#
{
χ : χ2 = χ0, χ with conductor q, q ∈ S(K) ∩ [1, Q], L(1/2, χ) 6= 0

}
� Q

log17Q
.

Proof. It is well-known that a primitive quadratic Dirichlet character with odd
conductor q coincides with the Jacobi symbol modulo q and q must be square-free
(see [3, p.40]). Note also that 2ω(q) = τ(q) if q is square-free. Here τ(q) is the
divisor function. Therefore, using Theorem 1.1 and Hölder’s inequality and choose
a smooth function w with support in [0, 1], we get

Q logQ�


∑

q∈S(K)
q≤Q

∑∗

χ mod q
χ2=χ0

L(1/2,χ) 6=0

1


1/4∑

q≤Q

∑∗

χ mod q
χ2=χ0

τ4(q)


1/4∑

q≤Q

∑∗

χ mod q
χ2=χ0

L2(1/2, χ)


1/2

.

The second factor above is O(Q1/4 log15/4Q)(see [9, (1.80)]). Using Theorem 2 of

[10], the third factor is O(Q1/2 log3/2Q). The corollary follows from these esti-
mates. �

Before presenting the proof of Theorem 1.1, we will give a brief summary of it.
We start by applying the approximate functional equation to the left-hand side of
(1.1). Those Dirichlet characters under consideration can be identified with Hecke
characters in K (see Lemma 2.2). Using Mellin inversion, we are led to study sums
involving Hecke L-functions. Moving the contour to the left, we will, in certain
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cases, encounter some poles whose residues will give rise to the main term in (1.1).
The remaining terms can all be estimated to give admissible error terms. Among
other things, a subconvexity bound for Hecke L-functions is needed in the analysis.

1.3. Notations. The following notations and conventions are used throughout the
paper.
K denotes a quadratic number field.
OK denotes the ring of integers in K.
DK denotes the discriminant of K.
f = O(g), f � g or g � f means |f | ≤ cg for some unspecified positive constant c.
µK denotes the Möbius function on K.
ζK(s) is the Dedekind zeta function for K.

2. Preliminaries

In this section, we enumerate the tools used throughout the paper.

2.1. Quadratic symbol and primitive quartic Dirichlet characters. For
any prime ideal p ⊂ OK which is co-prime to (2), we define for a ∈ OK , (a, p) = 1 by(
a
p

)
K
≡ a(N(p)−1)/2 (mod p), with

(
a
p

)
K
∈ {±1}. When p|(a), we set

(
a
p

)
K

= 0.

Then this symbol,
( ·
A
)
K

, can be extended multiplicatively to any ideal A ⊂ OK
with (A, 2) = 1 and is called the quadratic residue symbol in K.

For any m ∈ Z and any ideal A ⊂ OK with (A, 2DK) = 1, it follows from [11,
Proposition 4.2] that (m

A

)
K

=

(
m

N(A)

)
Q
, (2.1)

where
( ·
·
)
Q denotes the Jacobi symbol in Q.

In particular, if p is an odd prime in Q that splits completely in K and p is a
prime ideal in OK lying above (p), then for any m ∈ Z,(

m

p

)
K

=

(
m

p

)
Q
. (2.2)

When K is a quadratic number field, it is well-known from algebraic number
theory (see [6, pp. 111, 117]) that a prime ideal (p) in Z can either ramify, split
(completely) or stay inert in OK . Moreover, a prime ideal p in Z ramifies in K if and
only if p divides DK (see [6, Theorem 22]). It follows from this and (2.2) that we
have the following classification of all the primitive quadratic Dirichlet characters
of conductor q ∈ S(K):

Lemma 2.2. Primitive quadratic Dirichlet characters of conductor q ∈ S(K) are
of the form χA : m → (mA ) for some ideal A ⊂ OK , A square-free, co-prime to
2DK and not divisible by any rational primes, with norm N(A) = q. Moreover,
there are precisely 2ω(q) different ideals in OK satisfying the above conditions that
give rise to the same Dirichlet character.
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2.3. The approximate functional equation. We have the following approxi-
mate functional equation from [9, Theorem 5.3]):

Proposition 2.4. Let χ be a primitive Dirichlet character χ of conductor q. For
any α ∈ C, j ∈ {±1}, let

aj =
1− j

2
, ε(χ) = i−aχ(−1)q−1/2τ(χ),

where τ(χ) is the Gauss sum associated with χ. We define

Vj(x) =
1

2πi

∫
(2)

γj(s)x
−s ds

s
, where γj(s) = π−s/2

Γ
(

1/2+aj+s
2

)
Γ
(

1/2+aj
2

) . (2.3)

Furthermore, let A and B be positive real numbers such that AB = q. Then we
have

L(1/2, χ) =

∞∑
m=1

χ(m)

m1/2
Vχ(−1)

(m
A

)
+ ε(χ)

∞∑
m=1

χ(m)

m1/2
Vχ(−1)

(m
B

)
. (2.4)

Note that (see [16, Lemma 2.1]) V±1(ξ) are real-valued and smooth on [0,∞)
and for the l-th derivative of V±1(ξ), we have

V±1 (ξ) = 1 +O(ξ1/2−ε) for 0 < ξ < 1 and V
(l)
±1 (ξ) = O(e−ξ) for ξ > 0, l ≥ 0.

(2.5)
We remark here that the estimates in (2.5) are only proved for V+1 in [16] and
the proof for V−1 is similar and one get the same bounds with different implied
constants.

3. Proof of Theorem 1.1

We let

M :=
∑

q∈S(K)

∑∗

χ mod q
χ2=χ0

2ω(q)L(1/2, χ)w

(
q

Q

)
.

Applying the approximate functional equation (2.4) with A = B =
√
q gives,

noting that it follows from [3, Chap. 2] that ε(χ) = 1 when χ is quadratic,

M = 2
∑

q∈S(K)

∑∗

χ mod q
χ2=χ0

2ω(q)
∞∑
m=1

χ(m)√
m
Vχ(−1)

(
m
√
q

)
w

(
q

Q

)
.

Applying the above with Lemma 2.2 again, we have M =M+ +M−, with

M± =
∑′

A

(1± χA(−1))

∞∑
m=1

χA(m)√
m

VχA(−1)

(
m√
N(A)

)
w

(
N(A)

Q

)
,

where the dash on the sum over A indicates that the sum runs over square-free
ideals of OK that are co-prime to 2DK and without rational prime divisor.

It remains to evaluateM±. As the arguments are similar, we will only evaluate
M+ in the sequel. The results are summarized by
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Lemma 3.1. We have

M± = QP±K (logQ) +O(Q1−δ0+ε +Q3/4+ε), (3.1)

where δ0 is given as in Theorem 1.1, P±K (x) are given in (3.4) below.

3.2. Evaluating M+, the main term. We detect the condition that A has no
rational prime divisor using the formula∑

(d)|A
d∈Z

µZ(d) =

{
1, A has no rational prime divisor,

0, otherwise.

Here we define µZ(d) = µ(|d|), the usual Möbius function. We apply this formula
and change variables A → dA to the sum over A. Since (d) is square-free as an ideal
of OK , the condition that dA is square-free then simply means that A is square-free
and (d,A) = 1. Thus we have M+ =M+

1 +M+
2 , where

M+
1 =

∑
(d), d∈Z

(d,2DK)=1

µZ(d)

∞∑
m=1

(m
d

)
K

1√
m

×
∑∗

A
(A,2dDK)=1

(m
A

)
K
V1

(
m

Q1/2

Q1/2√
N(dA)

)
w

(
N(dA)

Q

)
,

M+
2 =

∑
(d), d∈Z

(d,2DK)=1

µZ(d)

∞∑
m=1

(
−m
d

)
K

1√
m

×
∑∗

A
(A,2dDK)=1

(
−m
A

)
K

V1

(
m

Q1/2

Q1/2√
N(dA)

)
w

(
N(dA)

Q

)
,

where the asterisks indicate that A run over square-free ideals of OK .

We evaluateM+
1 first. Using Möbius inversion to detect the condition that A is

square-free, we get

M+
1 =

∑
(d), d∈Z

(d,2DK)=1

µZ(d)
∑
l

(l,2dDK)=1

µK(l)

∞∑
m=1

( m
dl2

)
K

1√
m
M1(d, l,m),

where

M1(d, l,m) =
∑
A

(A,2dDK)=1

(m
A

)
K
V1

(
m

Q1/2

Q1/2√
N(dl2A)

)
w

(
N(dl2A)

Q

)
.

Next we use the Mellin transform of the weight function to express the sum over A
as a contour integral involving the Hecke L-function. By Mellin inversion,

V1

(
m

Q1/2

Q1/2√
N(dl2A)

)
w

(
N(dl2A)

Q

)
=

1

2πi

∫
(2)

(
Q

N(dl2A)

)s
f̃(s)ds,
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where

f̃(s) =

∞∫
0

V1

(
m

Q1/2
x−1/2

)
w(x)xs−1dx.

Integration by parts and using (2.5) shows f̃(s) is a function satisfying the bound
for all Re(s) > 0, E ∈ N,

f̃(s)� (1 + |s|)−E
(

1 +m/Q1/2
)−E

. (3.2)

Here the implied constant depends on E.

We then have

M1(d, l,m) =
1

2πi

∫
(2)

(
Q

N(dl2)

)s
L(s, ψ4mD2

Kd
2)f̃(s)ds,

where
L(s, ψ4mD2

Kd
2) =

∑
06=A⊂OK

ψ4mD2
Kd

2(A)N(A)−s,

and

ψ4mD2
Kd

2(A) :=

{(
4mD2

Kd
2

A

)
K

when (A, 2DK) = 1,

0 otherwise.
(3.3)

Note that via (2.1) and the quadratic reciprocity law in Q, there exists a positive
integer e independent of m, d such that ψ4mD2

Kd
2((a)) = 1 for any a ∈ OK satis-

fying a ≡ 1 (mod md2(2DK)e). It follows from [14, p. 470] that ψ4mD2
Kd

2 can be

regarded as a Hecke character of trivial infinite type (mod md2(2DK)e).

We estimateM+
1 by moving the contour to the line with <s = 1/2. When m is a

square the Hecke L-function has a pole at s = 1. We setM0 to be the contribution
to M+

1 of these residues, and M′1 to be the remainder.

We evaluate M0 first. Note that

M0 =
∑

(d),d∈Z
(d,2DK)=1

µZ(d)
∑
l

(l,2dDK)=1

µK(l)

×
∞∑
m=1

( m
dl2

)
K

1√
m

Q

N(dl2)
f̃(1)Ress=1L(s, ψ4mD2

Kd
2),

where using the Mellin inversion formula yields

f̃(1) =

∞∫
0

V1

(
m

Q1/2
x−1/2

)
w(x)dx =

1

2πi

∫
(2)

(
Q1/2

m

)s
w̃
(

1 +
s

2

)
γ1(s)

ds

s
,

with γ1(s) defined in (2.3) and

w̃(s) =

∞∫
0

w(x)xs−1dx.
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From our discussions above, it is not difficult to see that ψ4mD2
Kd

2 is the principal
character only if m is a square, in which case

L(s, ψ4mD2
Kd

2) = ζK(s)
∏

p|2dmDK

(
1−N(p)−s

)
.

Here and in what follows, we use p or pi to denote prime ideals in OK .

Let CK,1 be the residue of ζK(s) at s = 1, then

M0 = CK,1Q

∞∑
m=1

f̃(1)

m

∏
p|2mDK

(
1−N(p)−1

)
×

∑
(d), d∈Z

(d,2mDK)=1

µZ(d)

d2

∏
p|d

(
1−N(p)−1

) ∑
l

(l,2mdDK)=1

µK(l)

N(l2)
.

Computing the sum over l explicitly, we obtain

M0 = CK,1ζ
−1
K (2)Q

∞∑
m=1

f̃(1)

m

∏
p|2mDK

(
1−N(p)−1

)
×

∑
(d), d∈Z

(d,2mDK)=1

µZ(d)

d2

∏
p|d

(
1−N(p)−1

) ∏
p|2mdDK

(1−N(p)−2)−1

= CK,1ζ
−1
K (2)Q

∞∑
m=1

f̃(1)

m

∏
p|2mDK

(
1 +N(p)−1

)−1
×

∑
(d), d∈Z

(d,2mDK)=1

µZ(d)

d2

∏
p|d

(
1 +N(p)−1

)−1
.

We define

CK,2 =
∏

p|2DK

(1 +N(p)
−1

)−1
∑

(d), d∈Z
(d,2DK)=1

µZ(d)

d2

∏
p|d

(
1 +N(p)−1

)−1
.

It is clear that CK,2 is a constant. Using this and setting m̃ = m/(m, 2Dk), we
have

M0 = CK,1CK,2ζ
−1
K (2)Q

×
∞∑
m=1

f̃(1)

m

∏
p1|m̃

(
1 +N(p1)−1

)−1∏
p|m̃

1− p−2
∏
p2|p

(
1 +N(p2)−1

)−1−1,
where p runs over rational primes. Let

CK(s) = ζ−1(s)

∞∑
m=1

m−s
∏
p1|m̃

(
1 +N(p1)−1

)−1∏
p|m̃

1− p−2
∏
p2|p

(1 +N(p2)−1)−1

−1,
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where ζ(s) is the Riemann zeta-function. Expressing CK(s) as an Euler product,
one checks easily that CK(s) is holomorphic, converges absolutely for Re(s) ≥
1/2 + δ > 1 and can be analytically continued to Re(s) > 1/2. Then

M0 = CK,1CK,2ζ
−1
K (2)Q

1

2πi

∫
(2)

Qs/2CK(1 + s)ζ(1 + s)w̃
(

1 +
s

2

)
γ1(s)

ds

s
.

We move the contour of integration to −1/2 + ε, crossing a pole of order 2
at s = 0 only. The new contour contributes O(Q3/4+ε), by noting that we have
ζ(1 + s) � |1 + s| on this line (see (3) on p. 79 of [3]). Using the fact that the
Laurent expansion of ζ(s) at s = 1 has the form [13, Corollary 1.16]

ζ(s) =
1

s− 1
+ γ0 +

∞∑
k=1

ak(s− 1)k, ak ∈ C,

where γ0 is the Euler constant. The pole at s = 0 gives QP+
K (logQ), where we

define

PK(x) = P+
K (x) + P−K (x), with (3.4)

P+
K (x) = CK,1CK,2ζ

−1
K (2)

×
(

1

2
CK(1)w̃(1)x+ C ′K(1) +

w̃′(1)

2
+ γ′1(0) + γ0 (CK(1) + w̃(1))

)
,

P−K (x) = CK,1CK,2ζ
−1
K (2)

×
(

1

2
CK(1)w̃(1)x+ C ′K(1) +

w̃′(1)

2
+ γ′−1(0) + γ0 (CK(1) + w̃(1))

)
.

We then conclude that

M0 = QP+
K (logQ) +O

(
Q3/4+ε

)
. (3.5)

3.3. Evaluating M′1 and M+
2 . In this section, we estimate M′1 and M+

2 . Re-
called that M′1 is M+

1 −M0. More preicisely,

M′1 =
1

2πi

∑
(d), d∈Z

(d,2DK)=1

µZ(d)
∑
l

(l,2dDK)=1

µK(l)

×
∞∑
m=1

( m
dl2

)
K

1√
m

∫
(1/2)

(
Q

N(dl2)

)s
L(s, ψ4mD2

Kd
2)f̃(s)ds.

By bounding everything with absolute values and using (3.2) to bound f̃ , we see
that, for some large E ∈ N,

|M′1| �
∑

d≤c1
√
Q

∑
N(l)≤c2

√
Q

1√
N(dl2)

×
∑
m

√
Q√
m

(
1 +m/Q1/2

)−E ∞∫
0

∣∣∣L(1/2 + it, ψ4mD2
Kd

2)
∣∣∣ (1 + |t|)−Edt.

(3.6)
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Here c1 and c2 are constants, chosen according to the size of the support the weight
function w. In view of the factor (1 +m/Q1/2)−E , we may truncate the sum over
m above to m ≤M � Q1/2+ε for ε > 0 with a small error. Indeed, if m� Q1/2+ε,
then (

1 +
m

Q1/2

)−1
� min

{
Q1/2

m
,

1

Qε

}
.

So taking E large so that εE > 10, using the convexity found for the L-function
and summing up all the other variables trivially, we see that the contribution to
M ′1 from m� Q1/2+ε is

� Q−5

which is negligible.

To estimate the contribution from the small m’s, we need a better bound for

L
(

1/2 + it, ψ4mD2
Kd

2

)
. The character ψ4mD2

Kd
2 is induced by a primitive character

ψ′ with conductor f satisfying f |m(2DK)2. Note that from its definition in (3.3),
ψ4mD2

Kd
2 is induced by a character, not necessarily primitive, modulo 4mD2

K . So
the conductor f here is independent of d. It follows that for any ε > 0,

L
(

1/2 + it, ψ4mD2
Kd

2

)
� (md)ε|L(1/2 + it, ψ′)|, (3.7)

where the implied constant here depends on ε.

Now, the Hecke L-function L(s, ψ′), viewed as a degree two L-function over Q,
has analytic conductor � N(m)(1 + t2) (see [8, Theorem 12.5]). It follows from a
result on the subconvexity bound for degree two L-functions over any fixed number
field by P. Michel and A. Venkatesh [12] that we have an absolute constant δ0 > 0,
independent of the number field, such that

L (1/2 + it, ψ′)� (N(m)(1 + t2))1/4−δ0 . (3.8)

Applying (3.7) and (3.8), we deduce the following estimation to bound the sum
over m: ∑

m≤M

1√
m

∣∣∣L(1/2 + it, ψ4mD2
Kd

2

)∣∣∣� dεM1−2δ0+ε(1 + t2)1/4−δ0 .

We sum trivially over d and l in (3.6) to see that

|M′1| � Q1−δ0+ε. (3.9)

Using similar arguments, we obtain the same estimation forM+
2 as above. Com-

bining (3.9) with (3.5) gives (3.1).

3.4. Conclusion. As one readily deduces (1.1) from Lemma 3.1, this completes
the proof of Theorem 1.1.
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