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Abstract. It is shown that the scalar curvature of a Yamabe soliton as a
Sasakian manifold is constant and the soliton vector field is Killing. The same

conclusion is shown to hold for a Yamabe soliton as a K-contact manifold

M2n+1 if any one of the following conditions hold: (i) its scalar curvature is
constant along the soliton vector field V , (ii) V is an eigenvector of the Ricci

operator with eigenvalue 2n, (iii) V is gradient.

1. Introduction

The evolution of a Riemannian metric g on a smooth manifold M to a metric
g(t) in time t through the equation

∂

∂t
g(t) = −r(t)g(t), g(0) = g,

where r(t) denotes the scalar curvature of g(t), is called the Yamabe flow, and was
introduced by Hamilton [8]. The Yamabe flow is a natural geometric deformation
to metrics of constant scalar curvature, and corresponds to the fast diffusion case
of the porous medium equation (the plasma equation) in mathematical physics
(Burchard et al. [3]). Just as a Ricci soliton is a special solution of the Ricci flow,
a Yamabe soliton is a special solution of the Yamabe flow that moves by a one
parameter family of diffeomorphisms ϕt generated by a time-dependent vector field
Wt on M , and homotheties, i.e., g(t) = σ(t)ϕ∗

t g, where σ is a positive real valued
function of the parameter t. Substituting the foregoing equation in the Yamabe
flow equation and setting σ(0) = 1,−σ̇(0) = c gives the equation

£V g = 2(c− r)g, (1.1)

where g is the initial metric g(0) of the Yamabe flow, V is a vector field on M such
that Wt =

1
2σ(t)V , £ the Lie-derivative operator, r the scalar curvature of g, and

c is a real constant defined earlier. The Riemannian manifold (M, g) with a vector
field V and a constant c, satisfying the equation (1.1) is called a Yamabe soliton.
The Yamabe soliton is said to be shrinking, steady, or expanding when c > 0, c = 0,
or c < 0 respectively. In particular, if V = Df (up to the addition of a Killing
vector field) for a smooth function f , where D denotes the gradient operator of
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g, then a Yamabe soliton is called a gradient Yamabe soliton in which case (1.1)
assumes the form

∇∇f = (c− r)g. (1.2)

The gradient Yamabe soliton is trivial when f is constant and r is constant. In
[6], Daskalopoulos and Sesum showed that a compact gradient Yamabe soliton has
constant scalar curvature (i.e., its metric is a Yamabe metric). Chen and Deshmukh
[5] obtained some sufficient conditions on Yamabe solitons to be of constant scalar
curvature. Ghosh [7] has shown that a Yamabe soliton on a Kenmotsu manifold
has constant scalar curvature. In [15], Sharma studied Yamabe solitons in con-
tact Riemannian geometry, and proved that a 3-dimensional Yamabe soliton whose
metric is Sasakian has constant scalar curvature and the soliton vector field V is
Killing. In this paper, we generalize this result in any dimension in the form of the
following result.

Theorem 1.1. Let (M, g) be a Yamabe soliton with soliton vector field V . If g is
a Sasakian metric, then it has constant scalar curvature and V is Killing.

Furthermore, we show that the same conclusion (as in the above theorem) holds
on a (2n + 1)-dimensional K-contact manifold M (a generalization of Sasakian
manifold) under certain conditions specified in the following result. More precisely,
we establish

Theorem 1.2. Let (M, g) be a (2n+ 1)-dimensional Yamabe soliton with soliton
vector field V , and g be a K-contact metric. Then its scalar curvature is constant
and V is Killing, if any one of the following conditions hold:
(i) The scalar curvature is constant along V .
(ii) V is an eigenvector of the Ricci operator with eigenvalue 2n.
(iii) V is gradient.
In case (iii), the Yamabe soliton becomes trivial (i.e., f is constant).

Remarks.
1. An odd dimensional analogue of Kaehler geometry is the Sasakian geometry. The
Kaehler cone over a Sasakian Einstein manifold is a Calabi-Yau manifold which has
application in superstring theory based on a 10-dimensional manifold that is the
product of the 4-dimensional space-time and a 6-dimensional Ricci-flat Kaehler
(Calabi-Yau) manifold (see Candelas et al. [4]). Sasakian geometry has been ex-
tensively studied since its recently perceived relevance in string theory. Sasakian
Einstein metrics have received a lot of attention in physics, for example, p-brane
solutions in superstring theory, Maldacena conjecture (AdS/CFS duality) [11].

2. The condition (ii) in Theorem 1.2 is motivated by the fact that, if we take V
as the Reeb vector field ξ, then the Yamabe soliton equation (1.1) implies r = c
because ξ is Killing for a K-contact metric.

2. A Brief Review Of Contact Geometry

A (2n + 1)-dimensional smooth manifold M is said to be contact if it has a
global 1-form η such that η ∧ (dη)n ̸= 0 on M . For a contact 1-form η there exists
a unique vector field ξ (Reeb vector field) such that dη(ξ, .) = 0 and η(ξ) = 1.
Henceforth X,Y, Z will denote arbitrary vector field on M . Polarizing dη on the
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contact subbundle η = 0, we obtain a Riemannian metric g and a (1,1)-tensor field
φ such that

dη(X,Y ) = g(X,φY ), η(X) = g(X, ξ), φ2 = −I + η ⊗ ξ (2.1)

g is called an associated metric of η and (φ, η, ξ, g) a contact metric structure.
The name contact seems to be due to Sophus Lie [10] and is natural in view of
the simple example of Huygens’ principle (cited in Blair [2]). Tangent wave fronts
are mapped to tangent wave fronts through a contact transformation. According
to Gibbs, the geometrical structure of thermodynamics is described by a contact
manifold equipped with a contact form whose zeros define the laws of thermody-
namics (Arnold [1]).

A contact metric structure is said to be K-contact if ξ is Killing with respect to g.
The following formulas are valid on a K-contact manifold.

∇Xξ = −φX, (2.2)

Ric(X, ξ) = 2ng(X, ξ), i.e., Qξ = 2nξ, (2.3)

R(X, ξ)ξ = X − η(X)ξ, (2.4)

where ∇, R, Ric and Q denote respectively, the Riemannian connection, curvature
tensor, Ricci tensor and Ricci operator of g. A contact metric manifold (M, g) is said
to be Sasakian if the almost Kaehler structure on the cone manifold (M×R+, r2g+
dr2) over M is Kaehler. Sasakian manifolds are K-contact and the converse is true
only in dimension 3. For a Sasakian manifold, the following formula holds:

R(X,Y )ξ = η(Y )X − η(X)Y.

For details, we refer to the standard monograph of Blair [2].

It is evident from the defining equation (1.1) of a Yamabe soliton, that the associ-
ated vector field V is a conformal vector field with conformal scale function 2(c−r).
A vector field V on an m-dimensional Riemannian manifold (M, g) is said to be a
conformal vector field if

£V g = 2ρg (2.5)

for a smooth function ρ on M . Denoting the gradient vector field of ρ by Dρ, the
Laplacian −div.Dρ by ∆ρ, and R(X,Y, Z) = [∇X ,∇Y ]Z − ∇[X,Y ]Z, we have the
following integrability conditions for the conformal vector field V (Yano [17]):

(£V R)(X,Y, Z) = −(∇∇ρ)(Y, Z)X + (∇∇ρ)(X,Z)Y

− g(Y,Z)∇XDρ+ g(X,Z)∇Y Dρ (2.6)

(£V Ric)(X,Y ) = −(m− 2)(∇∇ρ)(X,Y ) + (∆ρ)g(X,Y ) (2.7)

£V r = 2(m− 1)∆ρ− 2rρ. (2.8)

3. Proofs of The Results

Proof of Theorem 1.1 First, we note that this theorem was already proved in
dimension 3 by Sharma [15]. So, we now prove it in higher dimensions. The crucial
idea of the proof is based on the following results of Okumura [12] (Theorems 3.1
and 3.3): A conformal vector field V (defined by (2.5) on a Sasakian manifold of
dimension 2n+1 > 3 differs from −Dρ by a Killing vector field, i.e., V = W −Dρ
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where W is a Killing vector field on M , and the conformal scale function ρ satisfies
the concircular equation:

∇∇ρ = −ρg.

For a Yamabe soliton (1.1) we note that ρ = c−r, and therefore the above equation
can be expressed as

∇XDr = (c− r)X. (3.1)

Computing R(X,Y )Dr = ∇X∇Y Dr−∇Y ∇XDr−∇[X,Y ]Dr using the above equa-
tion we get

R(X,Y )Dr = (Y r)X − (Xr)Y.

Contracting it over X yields

QDr = 2nDr.

Differentiating it along an arbitrary vector field X and using equation (3.1) gives

(∇XQ)Dr + (c− r)QX = 2n(c− r)X.

Contracting this equation over X, using (3.1) along with twice contracted Bianchi’s
second identity: divQ = 1

2dr, we get

|Dr|2 = 2(c− r)[2n(2n+ 1)− r]. (3.2)

On the other hand, we see from (3.1) that ∇X |Dr|2 = 2(c − r)Xr. This, in
conjunction with (3.2), yields

[2c− 3r + 2n(2n+ 1)]Dr = 0. (3.3)

So, either (i) Dr = 0 on M , i.e., r is constant on M , or (ii) Dr ̸= 0 on an open
dense subset U of M . In case (ii), equation (3.3) implies 2c− 3r + 2n(2n+ 1) = 0.
Using it in equation (3.2) yields |Dr|2 + 4(r − c)2 = 0. Hence Dr = 0 on U , a
contradiction. Thus, r is constant on M . Hence, from (3.1), r = c. Thus, from
(1.1), V is Killing. This completes the proof.

Proof of Theorem 1.2 Taking the Lie-derivative of the K-contact formula (2.3)
along the Yamabe vector field V and using the integrability equation (2.7) with
m = 2n+ 1, we have

(∆ρ− 4nρ)ξ − (2n− 1)∇ξDρ+Q£V ξ − 2n£V ξ = 0. (3.4)

At this point, we compute the term ∇ξDρ as follows. As ρ = c − r, this term is
−∇ξDr. To compute its value, we take the Lie-derivative of dr(X) = g(Dr,X)
along ξ and noting that the Lie-derivative operator commutes with the exterior
derivative operator, we find that (d£ξr)(X) = g(∇ξDr − ∇Drξ,X). We note
that ξr = 0 because, by definition, ξ is Killing for a K-contact manifold. As a
consequence, the use of the formula (2.2) provides ∇ξDr = −φDr, i.e., ∇ξDρ =
φDr. Hence equation (3.4) takes the form

(∆ρ− 4nρ)ξ − (2n− 1)φDr +Q£V ξ − 2n£V ξ = 0. (3.5)

Its inner product with ξ and the use of (2.3) provides

∆ρ = 4nρ. (3.6)

We see from equation (3.6) and ρ = c− r that

−∆r = 4n(c− r). (3.7)
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Let us prove part (i). Using the hypothesis: £V r = 0 in (2.8) with ρ = c − r, we
get

−4n∆r = 2r(c− r). (3.8)

The equations (3.7) and (3.8) imply that (c−r)(r−8n2) = 0. So, either (i) r = c on
M , or (ii) r ̸= c and r− 8n2 = 0 on an open dense subset U of M . Substituting the
value of r from (ii) in (3.7) immediately gives r = c on U , a contradiction. Hence
r = c on M and V is Killing, proving part (i).

To prove part (ii), we assume the hypothesis: QV = 2nV and operate it by £ξ,
and noting that ξ is Killing and hence £ξQ = 0, we find that Q£ξV = 2n£ξV . On
the other hand, equations (3.5) and (3.6) provide

(2n− 1)φDr = Q£V ξ − 2n£V ξ.

Combined use of these two results, and that £V ξ = −£ξV shows that φDr = 0.
Operating it by φ and using the last equation in (2.1) in conjunction with ξr = 0
(because ξ is Killing) we conclude that Dr = 0, i.e., r is constant. Hence V is
homothetic. But a homothetic vector field on a K-contact manifold is Killing [14],
and hence V is Killing. This proves part (ii).

In order to prove part (iii), we let V = Df up to the sum of a Killing vector field.
So, we can present equation (1.2) in the form

∇Y Df = (c− r)Y. (3.9)

This implies that

R(X,Y )Df = (Y r)X − (Xr)Y. (3.10)

Substituting ξ for X, taking the inner product of (3.10) with ξ, and subsequently
using the formula (2.4) we get

Y f − (ξf)η(Y ) = Y r

which can be expressed as

d(f − r) = (ξf)η. (3.11)

Applying the exterior derivation, using Poincare formula: d2 = 0, and taking its
wedge product with η provides (ξf)η ∧ dη = 0. Since η ∧ dη is nowhere zero on M ,
by definition of the contact structure, we conclude that ξf = 0. Hence Xf = Xr,
i.e., f differs from r by a constant. Thus, we note, in passing, that equation (3.9)
is same as (3.1). Virtually following the argument used in the proof of Theorem
1.1 from equation (3.1) onwards, we conclude that r is constant. As f differs from
r by a constant, and r is constant, it follows that f is constant and therefore the
Yamabe soliton is trivial, completing the proof.

Concluding Remarks.

1. In the proof of Theorem 1.2, we came across equation (3.6) which shows for a
Yamabe soliton as a K-contact manifold, that the conformal scale function ρ = c−r
is an eigenfunction of the Laplacian with eigenvalue 4n. This implies that, if the
eigenvalues of the Laplacian are different from 4n, then r = c, i.e., the metric of the
K-contact Yamabe soliton in dimension > 3 is a Yamabe metric. This assumption
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holds for the unit sphere S2n+1 (which is Sasakian and hence K-contact) because
the spectral values of the Laplacian acting on functions on S2n+1 are k(k+2n) for
k = 0, 1, 2, ...,∞ (Tanno, p. 91 in [16]) and hence do not include 4n.

2. Let us recall the formula £[X,Y ] = £X£Y − £Y £X (Kobayashi-Nomizu, p. 32
in [9]). Substituting X = V, Y = ξ in it, and operating on the K-contact met-
ric g we find £[V,ξ]g = −£ξ£V g, because ξ is Killing. But £V g = 2(c − r)g, and
as ξ is Killing, ξr = 0. Thus £ξ£V g = 0, and hence £[V,ξ]g = 0, i.e., [V, ξ] is Killing.

3. If the Yamabe soliton vector field V on any contact metric manifold is pointwise
either collinear with, or orthogonal to the Reeb vector field ξ, then by Proposition
1 of [13], V is Killing and hence r is constant, equal to c.
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