NEW ZEALAND JOURNAL OF MATHEMATICS Volume 54 (2023), 49–55 https://doi.org/10.53733/286

YAMABE SOLITONS IN CONTACT GEOMETRY

RAHUL PODDAR, S. BALASUBRAMANIAN, AND RAMESH SHARMA (Received 10 October, 2022)

Abstract. It is shown that the scalar curvature of a Yamabe soliton as a Sasakian manifold is constant and the soliton vector field is Killing. The same conclusion is shown to hold for a Yamabe soliton as a K-contact manifold M^{2n+1} if any one of the following conditions hold: (i) its scalar curvature is constant along the soliton vector field V, (ii) V is an eigenvector of the Ricci operator with eigenvalue 2n, (iii) V is gradient.

1. Introduction

The evolution of a Riemannian metric g on a smooth manifold M to a metric g(t) in time t through the equation

$$\frac{\partial}{\partial t}g(t) = -r(t)g(t), \quad g(0) = g,$$

where r(t) denotes the scalar curvature of g(t), is called the Yamabe flow, and was introduced by Hamilton [8]. The Yamabe flow is a natural geometric deformation to metrics of constant scalar curvature, and corresponds to the fast diffusion case of the porous medium equation (the plasma equation) in mathematical physics (Burchard et al. [3]). Just as a Ricci soliton is a special solution of the Ricci flow, a Yamabe soliton is a special solution of the Yamabe flow that moves by a one parameter family of diffeomorphisms ϕ_t generated by a time-dependent vector field W_t on M, and homotheties, i.e., $g(t) = \sigma(t)\phi_t^*g$, where σ is a positive real valued function of the parameter t. Substituting the foregoing equation in the Yamabe flow equation and setting $\sigma(0) = 1, -\dot{\sigma}(0) = c$ gives the equation

$$\ell_V g = 2(c-r)g,\tag{1.1}$$

where g is the initial metric g(0) of the Yamabe flow, V is a vector field on M such that $W_t = \frac{1}{2\sigma(t)}V$, \pounds the Lie-derivative operator, r the scalar curvature of g, and c is a real constant defined earlier. The Riemannian manifold (M,g) with a vector field V and a constant c, satisfying the equation (1.1) is called a Yamabe soliton. The Yamabe soliton is said to be shrinking, steady, or expanding when c > 0, c = 0, or c < 0 respectively. In particular, if V = Df (up to the addition of a Killing vector field) for a smooth function f, where D denotes the gradient operator of

²⁰²⁰ Mathematics Subject Classification 53C21, 53E50, 53C25.

 $Key\ words\ and\ phrases:\ {\tt Yamabe\ soliton;\ Constant\ scalar\ curvature;\ Sasakian\ manifold;\ K-contact\ manifold.$

The first author was funded by the University Grants Commission (UGC), India, in the form of a Senior Research Fellowship.

g, then a Yamabe soliton is called a gradient Yamabe soliton in which case (1.1) assumes the form

$$\nabla \nabla f = (c - r)g. \tag{1.2}$$

The gradient Yamabe soliton is trivial when f is constant and r is constant. In [6], Daskalopoulos and Sesum showed that a compact gradient Yamabe soliton has constant scalar curvature (i.e., its metric is a Yamabe metric). Chen and Deshmukh [5] obtained some sufficient conditions on Yamabe solitons to be of constant scalar curvature. Ghosh [7] has shown that a Yamabe soliton on a Kenmotsu manifold has constant scalar curvature. In [15], Sharma studied Yamabe solitons in contact Riemannian geometry, and proved that a 3-dimensional Yamabe soliton whose metric is Sasakian has constant scalar curvature and the soliton vector field V is Killing. In this paper, we generalize this result in any dimension in the form of the following result.

Theorem 1.1. Let (M, g) be a Yamabe soliton with soliton vector field V. If g is a Sasakian metric, then it has constant scalar curvature and V is Killing.

Furthermore, we show that the same conclusion (as in the above theorem) holds on a (2n + 1)-dimensional K-contact manifold M (a generalization of Sasakian manifold) under certain conditions specified in the following result. More precisely, we establish

Theorem 1.2. Let (M, g) be a (2n + 1)-dimensional Yamabe soliton with soliton vector field V, and g be a K-contact metric. Then its scalar curvature is constant and V is Killing, if any one of the following conditions hold:

(i) The scalar curvature is constant along V.

(ii) V is an eigenvector of the Ricci operator with eigenvalue 2n.

(iii) V is gradient.

In case (iii), the Yamabe soliton becomes trivial (i.e., f is constant).

Remarks.

1. An odd dimensional analogue of Kaehler geometry is the Sasakian geometry. The Kaehler cone over a Sasakian Einstein manifold is a Calabi-Yau manifold which has application in superstring theory based on a 10-dimensional manifold that is the product of the 4-dimensional space-time and a 6-dimensional Ricci-flat Kaehler (Calabi-Yau) manifold (see Candelas et al. [4]). Sasakian geometry has been extensively studied since its recently perceived relevance in string theory. Sasakian Einstein metrics have received a lot of attention in physics, for example, *p*-brane solutions in superstring theory, Maldacena conjecture (AdS/CFS duality) [11].

2. The condition (ii) in Theorem 1.2 is motivated by the fact that, if we take V as the Reeb vector field ξ , then the Yamabe soliton equation (1.1) implies r = c because ξ is Killing for a K-contact metric.

2. A Brief Review Of Contact Geometry

A (2n + 1)-dimensional smooth manifold M is said to be contact if it has a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ on M. For a contact 1-form η there exists a unique vector field ξ (Reeb vector field) such that $d\eta(\xi, .) = 0$ and $\eta(\xi) = 1$. Henceforth X, Y, Z will denote arbitrary vector field on M. Polarizing $d\eta$ on the

50

contact subbundle $\eta = 0$, we obtain a Riemannian metric g and a (1,1)-tensor field φ such that

$$d\eta(X,Y) = g(X,\varphi Y), \ \eta(X) = g(X,\xi), \ \varphi^2 = -I + \eta \otimes \xi$$
(2.1)

g is called an associated metric of η and (φ, η, ξ, g) a contact metric structure. The name contact seems to be due to Sophus Lie [10] and is natural in view of the simple example of Huygens' principle (cited in Blair [2]). Tangent wave fronts are mapped to tangent wave fronts through a contact transformation. According to Gibbs, the geometrical structure of thermodynamics is described by a contact manifold equipped with a contact form whose zeros define the laws of thermodynamics (Arnold [1]).

A contact metric structure is said to be K-contact if ξ is Killing with respect to g. The following formulas are valid on a K-contact manifold.

$$\nabla_X \xi = -\varphi X, \tag{2.2}$$

$$Ric(X,\xi) = 2ng(X,\xi), i.e., \quad Q\xi = 2n\xi,$$
 (2.3)

$$R(X,\xi)\xi = X - \eta(X)\xi, \qquad (2.4)$$

where ∇ , R, Ric and Q denote respectively, the Riemannian connection, curvature tensor, Ricci tensor and Ricci operator of g. A contact metric manifold (M, g) is said to be Sasakian if the almost Kaehler structure on the cone manifold $(M \times R^+, r^2g + dr^2)$ over M is Kaehler. Sasakian manifolds are K-contact and the converse is true only in dimension 3. For a Sasakian manifold, the following formula holds:

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

For details, we refer to the standard monograph of Blair [2].

It is evident from the defining equation (1.1) of a Yamabe soliton, that the associated vector field V is a conformal vector field with conformal scale function 2(c-r). A vector field V on an *m*-dimensional Riemannian manifold (M,g) is said to be a conformal vector field if

$$\pounds_V g = 2\rho g \tag{2.5}$$

for a smooth function ρ on M. Denoting the gradient vector field of ρ by $D\rho$, the Laplacian $-div.D\rho$ by $\Delta\rho$, and $R(X,Y,Z) = [\nabla_X,\nabla_Y]Z - \nabla_{[X,Y]}Z$, we have the following integrability conditions for the conformal vector field V (Yano [17]):

$$(\pounds_V R)(X, Y, Z) = -(\nabla \nabla \rho)(Y, Z)X + (\nabla \nabla \rho)(X, Z)Y - g(Y, Z)\nabla_X D\rho + g(X, Z)\nabla_Y D\rho$$
(2.6)

$$(\pounds_V Ric)(X,Y) = -(m-2)(\nabla \nabla \rho)(X,Y) + (\Delta \rho)g(X,Y)$$
(2.7)

$$\pounds_V r = 2(m-1)\Delta\rho - 2r\rho.$$
(2.8)

3. Proofs of The Results

Proof of Theorem 1.1 First, we note that this theorem was already proved in dimension 3 by Sharma [15]. So, we now prove it in higher dimensions. The crucial idea of the proof is based on the following results of Okumura [12] (Theorems 3.1 and 3.3): A conformal vector field V (defined by (2.5) on a Sasakian manifold of dimension 2n + 1 > 3 differs from $-D\rho$ by a Killing vector field, i.e., $V = W - D\rho$

where W is a Killing vector field on M, and the conformal scale function ρ satisfies the concircular equation:

$$\nabla \nabla \rho = -\rho g.$$

For a Yamabe soliton (1.1) we note that $\rho = c - r$, and therefore the above equation can be expressed as

$$\nabla_X Dr = (c - r)X. \tag{3.1}$$

Computing $R(X, Y)Dr = \nabla_X \nabla_Y Dr - \nabla_Y \nabla_X Dr - \nabla_{[X,Y]} Dr$ using the above equation we get

$$R(X,Y)Dr = (Yr)X - (Xr)Y.$$

Contracting it over X yields

$$QDr = 2nDr.$$

Differentiating it along an arbitrary vector field X and using equation (3.1) gives

$$(\nabla_X Q)Dr + (c-r)QX = 2n(c-r)X.$$

Contracting this equation over X, using (3.1) along with twice contracted Bianchi's second identity: $divQ = \frac{1}{2}dr$, we get

$$|Dr|^{2} = 2(c-r)[2n(2n+1) - r].$$
(3.2)

On the other hand, we see from (3.1) that $\nabla_X |Dr|^2 = 2(c-r)Xr$. This, in conjunction with (3.2), yields

$$[2c - 3r + 2n(2n+1)]Dr = 0. (3.3)$$

So, either (i) Dr = 0 on M, i.e., r is constant on M, or (ii) $Dr \neq 0$ on an open dense subset \mathcal{U} of M. In case (ii), equation (3.3) implies 2c - 3r + 2n(2n+1) = 0. Using it in equation (3.2) yields $|Dr|^2 + 4(r-c)^2 = 0$. Hence Dr = 0 on \mathcal{U} , a contradiction. Thus, r is constant on M. Hence, from (3.1), r = c. Thus, from (1.1), V is Killing. This completes the proof.

Proof of Theorem 1.2 Taking the Lie-derivative of the K-contact formula (2.3) along the Yamabe vector field V and using the integrability equation (2.7) with m = 2n + 1, we have

$$(\Delta \rho - 4n\rho)\xi - (2n-1)\nabla_{\xi}D\rho + Q\pounds_V\xi - 2n\pounds_V\xi = 0.$$
(3.4)

At this point, we compute the term $\nabla_{\xi} D\rho$ as follows. As $\rho = c - r$, this term is $-\nabla_{\xi} Dr$. To compute its value, we take the Lie-derivative of dr(X) = g(Dr, X) along ξ and noting that the Lie-derivative operator commutes with the exterior derivative operator, we find that $(d\pounds_{\xi}r)(X) = g(\nabla_{\xi}Dr - \nabla_{Dr}\xi, X)$. We note that $\xi r = 0$ because, by definition, ξ is Killing for a K-contact manifold. As a consequence, the use of the formula (2.2) provides $\nabla_{\xi}Dr = -\varphi Dr$, i.e., $\nabla_{\xi}D\rho = \varphi Dr$. Hence equation (3.4) takes the form

$$(\Delta \rho - 4n\rho)\xi - (2n-1)\varphi Dr + Q\pounds_V \xi - 2n\pounds_V \xi = 0.$$

$$(3.5)$$

Its inner product with ξ and the use of (2.3) provides

$$\Delta \rho = 4n\rho. \tag{3.6}$$

We see from equation (3.6) and $\rho = c - r$ that

$$-\Delta r = 4n(c-r). \tag{3.7}$$

Let us prove part (i). Using the hypothesis: $\pounds_V r = 0$ in (2.8) with $\rho = c - r$, we get

$$-4n\Delta r = 2r(c-r). \tag{3.8}$$

The equations (3.7) and (3.8) imply that $(c-r)(r-8n^2) = 0$. So, either (i) r = c on M, or (ii) $r \neq c$ and $r-8n^2 = 0$ on an open dense subset \mathcal{U} of M. Substituting the value of r from (ii) in (3.7) immediately gives r = c on \mathcal{U} , a contradiction. Hence r = c on M and V is Killing, proving part (i).

To prove part (ii), we assume the hypothesis: QV = 2nV and operate it by \pounds_{ξ} , and noting that ξ is Killing and hence $\pounds_{\xi}Q = 0$, we find that $Q\pounds_{\xi}V = 2n\pounds_{\xi}V$. On the other hand, equations (3.5) and (3.6) provide

$$(2n-1)\varphi Dr = Q\pounds_V \xi - 2n\pounds_V \xi.$$

Combined use of these two results, and that $\pounds_V \xi = -\pounds_{\xi} V$ shows that $\varphi Dr = 0$. Operating it by φ and using the last equation in (2.1) in conjunction with $\xi r = 0$ (because ξ is Killing) we conclude that Dr = 0, i.e., r is constant. Hence V is homothetic. But a homothetic vector field on a K-contact manifold is Killing [14], and hence V is Killing. This proves part (ii).

In order to prove part (iii), we let V = Df up to the sum of a Killing vector field. So, we can present equation (1.2) in the form

$$\nabla_Y Df = (c - r)Y. \tag{3.9}$$

This implies that

$$R(X,Y)Df = (Yr)X - (Xr)Y.$$
 (3.10)

Substituting ξ for X, taking the inner product of (3.10) with ξ , and subsequently using the formula (2.4) we get

$$Yf - (\xi f)\eta(Y) = Yr$$

which can be expressed as

$$d(f - r) = (\xi f)\eta.$$
(3.11)

Applying the exterior derivation, using Poincare formula: $d^2 = 0$, and taking its wedge product with η provides $(\xi f)\eta \wedge d\eta = 0$. Since $\eta \wedge d\eta$ is nowhere zero on M, by definition of the contact structure, we conclude that $\xi f = 0$. Hence Xf = Xr, i.e., f differs from r by a constant. Thus, we note, in passing, that equation (3.9) is same as (3.1). Virtually following the argument used in the proof of Theorem 1.1 from equation (3.1) onwards, we conclude that r is constant. As f differs from r by a constant, and r is constant, it follows that f is constant and therefore the Yamabe soliton is trivial, completing the proof.

Concluding Remarks.

1. In the proof of Theorem 1.2, we came across equation (3.6) which shows for a Yamabe soliton as a K-contact manifold, that the conformal scale function $\rho = c - r$ is an eigenfunction of the Laplacian with eigenvalue 4n. This implies that, if the eigenvalues of the Laplacian are different from 4n, then r = c, i.e., the metric of the K-contact Yamabe soliton in dimension > 3 is a Yamabe metric. This assumption

holds for the unit sphere S^{2n+1} (which is Sasakian and hence K-contact) because the spectral values of the Laplacian acting on functions on S^{2n+1} are k(k+2n) for $k = 0, 1, 2, ..., \infty$ (Tanno, p. 91 in [16]) and hence do not include 4n.

2. Let us recall the formula $\pounds_{[X,Y]} = \pounds_X \pounds_Y - \pounds_Y \pounds_X$ (Kobayashi-Nomizu, p. 32 in [9]). Substituting $X = V, Y = \xi$ in it, and operating on the K-contact metric g we find $\pounds_{[V,\xi]}g = -\pounds_\xi \pounds_V g$, because ξ is Killing. But $\pounds_V g = 2(c-r)g$, and as ξ is Killing, $\xi r = 0$. Thus $\pounds_\xi \pounds_V g = 0$, and hence $\pounds_{[V,\xi]}g = 0$, i.e., $[V,\xi]$ is Killing.

3. If the Yamabe soliton vector field V on any contact metric manifold is pointwise either collinear with, or orthogonal to the Reeb vector field ξ , then by Proposition 1 of [13], V is Killing and hence r is constant, equal to c.

4. Acknowledgements

The authors are immensely grateful to the referee for valuable suggestions towards the improvement of this work.

References

- V. I. Arnold, Contact geometry: The geometrical method of Gibb's thermodynamics, Proc. Gibbs Symposium, Yale University, 1989, 163-179.
- [2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second ed., Progress in Mathematics 203, Birkhäuser, Boston, MA, 2010. Doi: 10.1007/978-0-8176-4959-3
- [3] A. Burchard, R. J. McCann and A. Smith, Explicit Yamabe flow of an asymmetric cigar, Methods Appl. Anal. 15 (2008), 65–80. Doi: 10.4310/MAA.2008.v15.n1.a7
- [4] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys., B 258 (1985), 46–74. Doi: 10.1016/0550-3213(85)90602-9
- [5] S. Deshmukh and B. Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl. 23 (2018), 37–43.
- [6] P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math. 240 (2013), 346–369. Doi: 10.1016/j.aim.2013.03.011
- [7] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Math. Slovaca 70 (2020), 151–160. Doi: 10.1515/ms-2017-0340
- [8] R. S. Hamilton, *The Ricci flow on surfaces*, Mathematics and general relativity, Contemp. Math. **71** (1988), 237–262.
- [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Interscience Tracts in Pure and Applied Mathematics 15, Interscience Publishers, New York, NY, 1963.
- [10] S. Lie, Theorie der Transformationsgruppen, Vol. 2, B. G. Teubner, Leipzig, 1890.
- [11] J. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999), 1113–1133. Doi: 10.1023/A:1026654312961

- [12] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tôhoku Math. J. (2) 14 (1962), 398–412. Doi: 10.2748/tmj/1178244076
- [13] R. Sharma, Conformal and curvature symmetries of contact metric manifolds, C. R. Math. Acad. Sci., Soc. R. Can. 12 (1990), 235–240.
- [14] R. Sharma, Addendum to our paper "Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution", Ill. J. Math. 42 (1998), 673–677.
- [15] R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys. 9 (2012), 1220003, 5 p.
- [16] S. Tanno, Promenades on spheres, Lecture Notes, Tokyo Institute of Technology, Tokyo, 1996.
- [17] K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics 1, Marcel Dekker, Inc., New York, NY, 1970.

Rahul Poddar	S. Balasubramanian	Ramesh Sharma
Sri Sathya Sai Institute of	Sri Sathya Sai Institute of	University of New Haven,
Higher Learning,	Higher Learning,	West Haven,
Prasanthi Nilayam 515134,	Prasanthi Nilayam 515134,	CT 06516,
Andhra Pradesh,	Andhra Pradesh,	USA
India	India	rsharma@newhaven.edu
rahulpoddar @sssihl.edu.in	${\it sbalasubramanian} @{\it sssihl.edu.in} \\$	