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Abstract. It is shown that the scalar curvature of a Yamabe soliton as a
Sasakian manifold is constant and the soliton vector field is Killing. The same
conclusion is shown to hold for a Yamabe soliton as a K-contact manifold
M?"*+1 if any one of the following conditions hold: (i) its scalar curvature is
constant along the soliton vector field V, (ii) V is an eigenvector of the Ricci
operator with eigenvalue 2n, (iii) V is gradient.

1. Introduction

The evolution of a Riemannian metric g on a smooth manifold M to a metric
g(t) in time ¢ through the equation

2 g1) = —r(Dg(0), 9(0) =g,

where r(t) denotes the scalar curvature of g(t), is called the Yamabe flow, and was
introduced by Hamilton [8]. The Yamabe flow is a natural geometric deformation
to metrics of constant scalar curvature, and corresponds to the fast diffusion case
of the porous medium equation (the plasma equation) in mathematical physics
(Burchard et al. [3]). Just as a Ricci soliton is a special solution of the Ricci flow,
a Yamabe soliton is a special solution of the Yamabe flow that moves by a one
parameter family of diffeomorphisms ¢; generated by a time-dependent vector field
W, on M, and homotheties, i.e., g(t) = o(t)¢;g, where o is a positive real valued
function of the parameter t. Substituting the foregoing equation in the Yamabe
flow equation and setting o(0) = 1, —5(0) = ¢ gives the equation

£vg=2(c—r)g, (1.1)

where g is the initial metric g(0) of the Yamabe flow, V is a vector field on M such
that W; = #@)V, £ the Lie-derivative operator, r the scalar curvature of g, and
¢ is a real constant defined earlier. The Riemannian manifold (M, g) with a vector
field V and a constant ¢, satisfying the equation is called a Yamabe soliton.
The Yamabe soliton is said to be shrinking, steady, or expanding when ¢ > 0,c¢ = 0,
or ¢ < 0 respectively. In particular, if V' = Df (up to the addition of a Killing
vector field) for a smooth function f, where D denotes the gradient operator of
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g, then a Yamabe soliton is called a gradient Yamabe soliton in which case (1.1)
assumes the form

VVf=(c—r)g. (1.2)
The gradient Yamabe soliton is trivial when f is constant and r is constant. In
[6], Daskalopoulos and Sesum showed that a compact gradient Yamabe soliton has
constant scalar curvature (i.e., its metric is a Yamabe metric). Chen and Deshmukh
[6] obtained some sufficient conditions on Yamabe solitons to be of constant scalar
curvature. Ghosh [7] has shown that a Yamabe soliton on a Kenmotsu manifold
has constant scalar curvature. In [I5], Sharma studied Yamabe solitons in con-
tact Riemannian geometry, and proved that a 3-dimensional Yamabe soliton whose
metric is Sasakian has constant scalar curvature and the soliton vector field V' is
Killing. In this paper, we generalize this result in any dimension in the form of the
following result.

Theorem 1.1. Let (M, g) be a Yamabe soliton with soliton vector field V. If g is
a Sasakian metric, then it has constant scalar curvature and V' is Killing.

Furthermore, we show that the same conclusion (as in the above theorem) holds
on a (2n + 1)-dimensional K-contact manifold M (a generalization of Sasakian
manifold) under certain conditions specified in the following result. More precisely,
we establish

Theorem 1.2. Let (M, g) be a (2n + 1)-dimensional Yamabe soliton with soliton
vector field V', and g be a K-contact metric. Then its scalar curvature is constant
and V is Killing, if any one of the following conditions hold:

(i) The scalar curvature is constant along V.

(ii) V is an eigenvector of the Ricci operator with eigenvalue 2n.

(iii) V is gradient.

In case (iii), the Yamabe soliton becomes trivial (i.e., f is constant).

Remarks.

1. An odd dimensional analogue of Kaehler geometry is the Sasakian geometry. The
Kaehler cone over a Sasakian Einstein manifold is a Calabi-Yau manifold which has
application in superstring theory based on a 10-dimensional manifold that is the
product of the 4-dimensional space-time and a 6-dimensional Ricci-flat Kaehler
(Calabi-Yau) manifold (see Candelas et al. [4]). Sasakian geometry has been ex-
tensively studied since its recently perceived relevance in string theory. Sasakian
Einstein metrics have received a lot of attention in physics, for example, p-brane
solutions in superstring theory, Maldacena conjecture (AdS/CFS duality) [11].

2. The condition (ii) in Theorem 1.2 is motivated by the fact that, if we take V
as the Reeb vector field £, then the Yamabe soliton equation (|1.1)) implies r» = ¢
because £ is Killing for a K-contact metric.

2. A Brief Review Of Contact Geometry

A (2n + 1)-dimensional smooth manifold M is said to be contact if it has a
global 1-form n such that n A (dn)™ # 0 on M. For a contact 1-form 7 there exists
a unique vector field £ (Reeb vector field) such that dn(¢,.) = 0 and n(§) = 1.
Henceforth X,Y, Z will denote arbitrary vector field on M. Polarizing dn on the
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contact subbundle = 0, we obtain a Riemannian metric g and a (1,1)-tensor field
@ such that

dn(X,Y) = g(X,9Y), n(X) =g(X,§), 9> = -T+n®¢ (2.1)

g is called an associated metric of 1 and (¢,7,£,g) a contact metric structure.
The name contact seems to be due to Sophus Lie [10] and is natural in view of
the simple example of Huygens’ principle (cited in Blair [2]). Tangent wave fronts
are mapped to tangent wave fronts through a contact transformation. According
to Gibbs, the geometrical structure of thermodynamics is described by a contact
manifold equipped with a contact form whose zeros define the laws of thermody-
namics (Arnold [1]).

A contact metric structure is said to be K-contact if £ is Killing with respect to g.
The following formulas are valid on a K-contact manifold.

ng = _QDXa (22)
Ric(X,€) = 2ng(X,§),i.e., Q& =2n¢, (2.3)
R(X, )¢ = X —n(X)¢, (2.4)

where V, R, Ric and @ denote respectively, the Riemannian connection, curvature
tensor, Ricci tensor and Ricci operator of g. A contact metric manifold (M, g) is said
to be Sasakian if the almost Kaehler structure on the cone manifold (M x R*,r?g+
dr?) over M is Kaehler. Sasakian manifolds are K-contact and the converse is true
only in dimension 3. For a Sasakian manifold, the following formula holds:

R(X,Y)E =n(Y)X —n(X)Y.

For details, we refer to the standard monograph of Blair [2].

It is evident from the defining equation of a Yamabe soliton, that the associ-
ated vector field V' is a conformal vector field with conformal scale function 2(c—r).
A vector field V' on an m-dimensional Riemannian manifold (M, g) is said to be a
conformal vector field if

Lvg=2pg (2.5)
for a smooth function p on M. Denoting the gradient vector field of p by Dp, the
Laplacian —div.Dp by Ap, and R(X,Y,Z) = [Vx,Vy]Z — V|x,y]Z, we have the
following integrability conditions for the conformal vector field V' (Yano [17]):

(£vR)(X.Y.Z) = —(VVp)(Y, )X + (VVp)(X, 2)Y

— 4(Y, Z)VxDp+ g(X, Z)Vy Dp (2.6)
(£yRi)(X,Y) = —(m - 2)(VIp)(X, V) + (Ap)g(X,Y)  (27)
£Lyr=2(m—1)Ap —2rp. (2.8)

3. Proofs of The Results

Proof of Theorem 1.1 First, we note that this theorem was already proved in
dimension 3 by Sharma [15]. So, we now prove it in higher dimensions. The crucial
idea of the proof is based on the following results of Okumura [12] (Theorems 3.1
and 3.3): A conformal vector field V' (defined by on a Sasakian manifold of
dimension 2n+1 > 3 differs from —Dp by a Killing vector field, i.e., V=W — Dp
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where W is a Killing vector field on M, and the conformal scale function p satisfies
the concircular equation:

VVp = —pg.
For a Yamabe soliton we note that p = ¢—r, and therefore the above equation
can be expressed as

VxDr=(c—r)X. (3.1)
Computing R(X,Y)Dr = VxVyDr—VyVxDr—V|x y)Dr using the above equa-
tion we get
R(X,Y)Dr =(Yr)X — (Xr)Y.

Contracting it over X yields

QDr =2nDr.

Differentiating it along an arbitrary vector field X and using equation (3.1)) gives
(VxQ)Dr+ (c —1m)QX =2n(c—r)X.

Contracting this equation over X, using (3.1]) along with twice contracted Bianchi’s
second identity: divQ = %dr, we get

|Dr|? =2(c—r)[2n(2n + 1) —r]. (3.2)

On the other hand, we see from (3.1) that Vx|Dr|> = 2(c — r)Xr. This, in
conjunction with (3.2), yields

[2¢ — 3r 4+ 2n(2n+ 1)]Dr = 0. (3.3)

So, either (i) Dr = 0 on M, i.e., r is constant on M, or (ii) Dr # 0 on an open
dense subset U of M. In case (ii), equation implies 2¢ — 3r +2n(2n+1) = 0.
Using it in equation yields |Dr|? + 4(r — ¢)? = 0. Hence Dr = 0 on U, a
contradiction. Thus, r is constant on M. Hence, from , r = ¢. Thus, from
, V is Killing. This completes the proof.

Proof of Theorem 1.2 Taking the Lie-derivative of the K-contact formula
along the Yamabe vector field V' and using the integrability equation with
m = 2n + 1, we have

(Ap—4np)é — (2n — 1)VeDp+ QLyE — 2nty € = 0. (3.4)
At this point, we compute the term V¢Dp as follows. As p = ¢ — r, this term is
—VeDr. To compute its value, we take the Lie-derivative of dr(X) = g(Dr, X)
along & and noting that the Lie-derivative operator commutes with the exterior
derivative operator, we find that (d£¢r)(X) = g(VeDr — Vpr£, X). We note
that &r = 0 because, by definition, £ is Killing for a K-contact manifold. As a
consequence, the use of the formula provides V¢Dr = —¢Dr, ie., V¢Dp =
wDr. Hence equation takes the form

(Ap —4np)é — (2n — D)pDr + Q£yE —2nLyE = 0. (3.5)
Its inner product with £ and the use of (2.3)) provides
Ap = 4dnp. (3.6)

We see from equation (3.6) and p = ¢ — r that
—Ar =4n(c—r). (3.7)
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Let us prove part (i). Using the hypothesis: £yr =0 in with p =c— 7, we
get

—4AnAr =2r(c —1). (3.8)
The equations and imply that (c—7r)(r—8n?) = 0. So, either (i) r = c on
M, or (ii) 7 # ¢ and 7 — 8n? = 0 on an open dense subset U of M. Substituting the
value of r from (ii) in immediately gives r = ¢ on U, a contradiction. Hence
r=con M and V is Killing, proving part (i).

To prove part (ii), we assume the hypothesis: QV = 2nV and operate it by £,
and noting that ¢ is Killing and hence £:Q = 0, we find that Q £V =2n£V. On

the other hand, equations (3.5) and (3.6) provide
(2n — 1)pDr = QLyE — 2nLyE.

Combined use of these two results, and that £1§ = —£¢V shows that pDr = 0.
Operating it by ¢ and using the last equation in in conjunction with &r = 0
(because £ is Killing) we conclude that Dr = 0, i.e., r is constant. Hence V is
homothetic. But a homothetic vector field on a K-contact manifold is Killing [14],
and hence V is Killing. This proves part (ii).

In order to prove part (iii), we let V = Df up to the sum of a Killing vector field.
So, we can present equation (|1.2)) in the form

VyDf = (c—r)Y. (3.9)

This implies that
RX,Y)Df =(Yr)X — (Xnr)Y. (3.10)
Substituting ¢ for X, taking the inner product of (3.10) with £, and subsequently
using the formula (2.4]) we get
Y= (EfmY)=Yr

which can be expressed as

d(f —r) = (&)n. (3.11)
Applying the exterior derivation, using Poincare formula: d? = 0, and taking its
wedge product with 1 provides (§f)n Adn = 0. Since n A dn is nowhere zero on M,
by definition of the contact structure, we conclude that £f = 0. Hence X f = X,
i.e., f differs from r by a constant. Thus, we note, in passing, that equation (3.9)
is same as (3.1). Virtually following the argument used in the proof of Theorem
1.1 from equation (3.1) onwards, we conclude that r is constant. As f differs from

r by a constant, and r is constant, it follows that f is constant and therefore the
Yamabe soliton is trivial, completing the proof.

Concluding Remarks.

1. In the proof of Theorem 1.2, we came across equation which shows for a
Yamabe soliton as a K-contact manifold, that the conformal scale function p = c¢—r
is an eigenfunction of the Laplacian with eigenvalue 4n. This implies that, if the
eigenvalues of the Laplacian are different from 4n, then r = ¢, i.e., the metric of the
K-contact Yamabe soliton in dimension > 3 is a Yamabe metric. This assumption
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holds for the unit sphere S?"*1 (which is Sasakian and hence K-contact) because
the spectral values of the Laplacian acting on functions on S?"*! are k(k + 2n) for
k=0,1,2,...,00 (Tanno, p. 91 in [16]) and hence do not include 4n.

2. Let us recall the formula £ixy) = £x£y — £y £x (Kobayashi-Nomizu, p. 32
in [9]). Substituting X = V,Y = ¢ in it, and operating on the K-contact met-
ric g we find £Lyy,¢qg9 = —£¢£v g, because § is Killing. But £y g = 2(c —r)g, and
as ¢ is Killing, §r = 0. Thus £¢£y g = 0, and hence £[y,¢9 = 0, i.e., [V, {] is Killing.

3. If the Yamabe soliton vector field V' on any contact metric manifold is pointwise
either collinear with, or orthogonal to the Reeb vector field &, then by Proposition
1 of [13], V is Killing and hence r is constant, equal to c.
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