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Abstract. If G is a finite group, the Grothendieck group K¢ (G) of the cat-
egory of G-equivariant C-vector bundles on G (for the action of G on itself
by conjugation) is endowed with a structure of (commutative) ring. If K is a
sufficiently large extension of (§y and O denotes the integral closure of 7, in
K, the K-algebra KK (G) = K ®7 Kg(G) is split semisimple. The aim of
this paper is to describe the O-blocks of the O-algebra OK g (G).

1. Notation, Introduction

1.1. Groups. We fix in this paper a finite group G, a prime number p and a finite
extension K of the p-adic field Q, such that K H is split for all subgroups H of G.
We denote by O the integral closure of 7, in K, by p the maximal ideal of O, by &k
the residue field of O (i.e. k = O/p) We denote by Irr(KG) the set of irreducible
characters of G (over K).

A p-element (respectively p’-element) of G is an element whose order is a power
of p (respectively prime to p). If g € G, we denote by g, and g,/ the unique elements
of G such that g = g,g, = gp'9gp, gp is a p-element and g,/ is a p’-clement. The set
of p-elements (respectively p’-elements) of G is denoted by G, (respectively G,y ).

If X is a G-set (i.e. a set endowed with a left G-action), we denote by [G\X]
a set of representatives of G-orbits in X. The reader can check that we will use

formulas like
> f)

z€[G\X]
(or families like (f(z))ze[e\x]) only whenever f(z) does not depend on the choice
of the representative x in its G-orbit. If X is a set-G (i.e. a set endowed with a
right G-action), we define similarly [X/G] and will use it according to the same
principles.

1.2. Blocks. A block idempotent of kG (respectively OG) is a primitive idempo-
tent of the center Z(kG) (respectively Z(OG)) of OG. We denote by Blocks(kG)
(respectively Blocks(OG)) the set of block idempotents of kG (respectively OG).
Reduction modulo p induces a bijection Blocks(OG) = Blocks(kG), e +— & (whose
inverse is denoted by e — ¢€).
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A p-block of G is a subset B of Irr(G) such that B = Irr(K Ge), for some block
idempotent e of OG.

1.3. Fourier coefficients. Let

IrrPairs(G) = {(g,7) | g € G and v € Irr(KCqs(g))}

and BlPairs,(G) = {(s,e) | s € G and e € Blocks(OCg(s))}.
The group G acts (on the left) on these two sets by conjugation. We set
M(G) = [G\IrrPairs(G)] and  MP(G) = [G\BlPairs(G)].
If (9,7), (h,n) € IrrPairs(G), we define, following Lusztig [3, 2.5(a)],

1 -1 -1 -1
{07, (0} = e x; Y(wha)n(z g ).

zhe~'eCq(g)

Note that { (g,7), (h,n) } depends only on the G-orbit of (g,7) and on the G-orbit
of (h,n).

1.4. Vector bundles. Except from Proposition 2.3 below, all the definitions, all
the results in this subsection can be found in [3, §2]. We denote by Bung(G) the
category of G-equivariant finite dimensional K-vector bundles on G (for the action
of G by conjugation). Its Grothendieck group K¢ (G) is endowed with a ring
structure. For each (g,7) € M(G), let V,  be the isomorphism class (in Kg(G))
of the simple object in Bung(G) associated with (g,7), as in [3, §2.5] (it is denoted
Uy.~ there). Then

Ka(G) = @ AZRE
(g:1)EM(G)
The K-algebra KK (G) = K ®7 Kg(G) is split semisimple and commutative. Its

simple modules (which have dimension one) are also parametrized by M(G): if
(9,7) € M(G), the K-linear map

U, KKa(G) — K

defined by

Vi) = SO0, (00}

is a morphism of K-algebras and all morphisms of K-algebras KKs(G) — K are
obtained in this way.

We define similarly block idempotents of kK (G) and OKg(G), as well as p-
blocks of M(G) +— Trr(KKg(Q)).
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1.5. Brauer maps. Let A denote one of the two rings O or k. If g € G (and if
we set s = g,), we denote by Brjg\ the A-linear map

Br([; :ACq(s) — ACq(g)

such that

_Jh if h € Ca(yg),
(h)_{o if h ¢ Calg),

for all h € C(s). Recall [2, Lemma 15.32] that
(1.1) Br]; induces a morphism of algebras Z(kCq(s)) — Z(kCgs(g)).

Therefore, if e € Blocks(OCq(s)), then Br’;(e) is an idempotent of Z(kCg(g))

(possibly equal to zero) and we can write it a sum Brlg€ (e) = e + -+ + ep, where
€1,- .-, e, are pairwise distinct block idempotents of kCs(g). We then set

n

It is an idempotent (possibly equal to zero, possibly non-primitive) of Z(OCg(g)).

1.6. The main result. In order to state more easily our main result, it will
be more convenient (though it is not strictly necessary) to fix a particular set of
representatives of conjugacy classes of G.

Hypothesis and notation. From now on, and until
the end of this paper, we denote by:
o [Gy/~] a set of representatives of conjugacy
classes of p’-elements in G.
o [G/~] a set of representatives of conjugacy
classes of elements of G such that, for all g €
[G/~], gp € [Gpr/~].
We also assume that, if (g,7) € M(G) or (s,e) €
MP(G), then g € [G/~] and s € (G, /~].

If (s,e) € MP(G), we define Ba(s,e) to be the set of
pairs (g,v) € M(G) such that:
9p

/= S.

(1) ¢
(2) 7 € Irr(KC(9) 87 (€))-

Theorem 1.2. The map (s,e) — Bg(s,e) induces a bijection between MP(G) to
the set of p-blocks of M(G).
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2. Proof of Theorem 1.2

2.1. Central characters and congruences. If (g,7) € IrrPairs(G), we de-
note by wy~ : Z(KCg(g)) = K the central character associated with v (if z €
Z(KCg(g)), then wy(2) is the scalar through which z acts on an irreducible
KCg(g)-module affording the character ). It is a morphism of algebras: when
restricted to Z(OCg(g)), it has values in O.

If h € Ca(g), we denote by X4(h) conjugacy class of h in Cg(g) and we set

Sy(h)y= Y veZ(0Ca(g)).

veEXy(h)

‘We have
(2.1) Wg,y (29(/1)) =

We also recall the following classical results:

Proposition 2.2. If g € G and v, v’ are two irreducible characters of Ca(g), then
v and v lie in the same p-block of Cg(g) if and only if

wgn/(ig(h)) = Wgw’(ig(hD mod p
for all h € Ce(g).

Proposition 2.3. Let (g,7) and (¢’',7') be two elements of M(G). Then (g,7)
and (g',7") belong to the same p-block of M(G) if and only if

Uy (Vi) =¥y 4/ (Vhy) modp
for all (h,n) € M(G).

2.2. Around the Brauer map. As Brauer maps are morphisms of algebras, we

have
> Br?(e) = 1,
e€Blocks(kCa(g,))
and so
(2.4) The family (Bg(g,e))(g7e)€Mp(G) is a partition of M(G).

Now, let (g,7) € M(G) and let s = g,. If e € Blocks(OCg(s)) is such that
v € Ir(KCq(9)BS (e)), and if o € Irr(KCg(s)e), then [2, Lemma 15.44]

(2.5) We,o(2) = Wgq 4 (Br?(z)) mod p
for all z € Z(OCq(s)).
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2.3. Rearranging the formula for ¥, .. If (g,7), (h,n) € IrrPairs(g) then

(2.6) Uy, (Vi) = > Nz gr)wy A (Sg(zha ™).
z€[Cq(9)\G/Ca(h)]
wh;cilecc(g)

Proof. By definition,

1 -1 -1
Yool =Syt 2 e
mhw_lng(g)
1 1 1
=0 > (@ tgx)y(whah).

z€[G/Cq(h)]
zhx~'eCs(g)

Now, if € G is such that xha=t € Cg(g) and if u € Cg(g), then

n((uz) ™ g(uz))y ((ur)h(uz)z™") =z~ gz)y(zha™!

).
So we can gather the terms in the last sum according to their Cg(g)-orbit. We get

- ICc(9)] y(zha™")
gy (Vi) = Z n(z~'gx) 1
2€[Ca(9)\G/Ca (h)] [Calg)naCa(h)z=] (1)
xhxilecc(g)
But, for z in G such that xhax~! € Cg(g),
|Ca(9)] 1
= |2, (zh
[Calg) MaCo(ma] ~ o)
so the result follows from 2.1. O

Corollary 2.7. Let g € [G/~] and let v, v € Irr(KCq(g)) lying in the same
p-block of Cc(g). Then (g,7) and (g,7') lie in the same p-block of M(G).

Proof. This follows from 2.6 and Proposition 2.3. O

2.4. p'-part. Fix (g,7) € M(G). Then it follows from 2.6 that, for all x €
Irr(KG),

(2'8) \I/g,'y(vl,x) = X(g)'

Proposition 2.9. Let (g,7) and (h,n) be two elements in M(G) which lie in the
same p-block. Then g, = hy.

Proof. By Proposition 2.3 and Equality 2.8, it follows from the hypothesis that
x(g) = x(h) mod p

for all x € Irr(K'G). Hence g, and h, are conjugate in G (see [1, Proposition 2.14]),
so they are equal according to our conventions explained in §1.6. [
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Proposition 2.10. Let s € G, and let 0, o' € Irr(KCq(s)). Then (s,0) and
(s,0’) lie in the same p-block if and only if o and o’ lie in the same p-block of

Cea(s).

Proof. The if part has been proved in Corollary 2.7. Conversely, assume that
(s,0) and (s,0’) lie in the same p-block. Fix h € Cg(s). Then s € Cg(h). Let
Ns,h : Ca(h) — K be the class function on Cg(h) defined by:

1 if g, and s are conjugate in Cg(h),
Ns,n(9) = .
0 otherwise.

It follows from [1, Proposition 2.20] that 0, € OIrr(KCg(h)). Therefore, by 2.6
and Proposition 2.3,
(#)
Z nsn(z " sz) (wsﬁ (f]g(thfl)) - w‘gﬂ/(ig(xhx*l))) =0 mod p.
2€[Cc(s)\G/Ca(h)]
zha r€Cq(s)

Now, let € G be such that zhz~! € Cg(s). Since x~lsx is also a p’-element,
ns.n(z7tsz) = 1 if and only if s and ™ 'sz are conjugate in Cg(h) that is, if and
only if x € Cq(s)Cq(h). So it follows from (#) that

We.o(Xg(h)) = we o (3,(h)) mod p
for all h € C(s). This shows that o and ¢’ lie in the same p-block of Cg(s). O

2.5. Last step. We shall prove here the last intermediate result:

Proposition 2.11. Let (s,e) € MP(G) and let (g,7), (¢',v) € Ba(s,e). Then
(g,7) and (¢',7') are in the same p-block of M(G).

Proof. We fix 0 € Irt(KCg(s)e). It is sufficient to show that (g,7) and (s,o) are
in the same p-block of M(G). For this, let (h,n) € M(G). By Proposition 2.9, we
have g,y = s, so Cg(g) C Ca(s). So 2.6 can be rewritten:

Uy (Vi) = > > 1y~ 9y)w (Zg(yhy™")).
z€[Ca(s)\G/Ca(h)] y€[Ca(9)\Ca(s)xzCa(h)/Ca(h)]
yhy ' €Ca(9)
Now, let z € [Cq(s)\G/Cq(h)] and y € [Ca(9)\Ca(s)xCq(h)/Cq(h)] be such that
yhy=! € Cg(g). Then yhy~! € Cg(s) and so zha~! € Cg(s). Moreover y~1sy is
conjugate to 2~ tsz in Cg(h). Finally, it is well-known (and easy to prove) that
n(y~thy) = n(y~tsy) mod p (see for instance [1, Proposition 2.14]). Therefore:

(<€) gy (Vi) =
Z n(x~" sx) wgﬁ( Z ZAjg(yhyil)> mod p.

z€[Ca(s)\G/Cq(h)] y€[Ca(9)\Ca(s)zCq(h)/Cq(h)]
zhr teCq(s) yhy ' €Ca(g)
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Now, let # € [Cq(s)\G/Cg(h)] be such that zha~! € Cg(s). Then, by definition
of the Brauer map,

@) Brf(f]s(mhx_l)) = Z 3, ((zx)h(z2)7Y).
2€[Cc(9)\Cq(s)/(Ca(s)NCa(zha ™))
z(zha~')z7 €Ca(g)
But (Zx)ze[cg(g)\cc(s)/(cc(s)ncc(a:hx*l))] is a set of representatives of double classes
in Ca(9)\Cq(s)zCq(h)/Cq(h). So it follows from () and (V) that

Uon(Vag) = Z n(z " sx) wy (Br?(f]s(achx_l))).
z€[Cq(s)\G/Cq(h)]
zhz~t€Cq(s)
Using now 2.5 and 2.6, we obtain that
Uy n (Vi) = ¥s,0(Vh,y) mod p,

as desired. 0

Proof of Theorem 1.2. Let (s,e) and (s, ¢’) be two elements of MP(G) such that
Ba(s,e) and Bg(s',e’) are contained in the same p-block of M(G) (see Proposi-
tion 2.11). Let o € Irr(KCg(s)e) and o’ € Irr(KCq(s')e’).

Then (s,0) and (s, 0’) are in the same p-block, so it follows from Proposition 2.9
that s = ¢’ and it follows from Proposition 2.10 that v and +' are in the same p-block
of Ci(s), that is e = ¢’. This completes the proof of Theorem 1.2. O
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