NEW ZEALAND JOURNAL OF MATHEMATICS Volume 48 (2018), 157-163

BLOCKS OF THE GROTHENDIECK RING OF EQUIVARIANT BUNDLES ON A FINITE GROUP

Cédric Bonnafé

(Received January 20, 2015)

Abstract. If G is a finite group, the Grothendieck group $\mathbf{K}_G(G)$ of the category of G-equivariant \mathbb{C} -vector bundles on G (for the action of G on itself by conjugation) is endowed with a structure of (commutative) ring. If K is a sufficiently large extension of \mathbb{Q}_p and \mathcal{O} denotes the integral closure of \mathbb{Z}_p in K, the K-algebra $K\mathbf{K}_G(G) = K \otimes_{\mathbb{Z}} \mathbf{K}_G(G)$ is split semisimple. The aim of this paper is to describe the \mathcal{O} -blocks of the \mathcal{O} -algebra $\mathcal{O}\mathbf{K}_G(G)$.

1. Notation, Introduction

1.1. Groups. We fix in this paper a finite group G, a prime number p and a finite extension K of the p-adic field \mathbb{Q}_p such that KH is split for all subgroups H of G. We denote by \mathcal{O} the integral closure of \mathbb{Z}_p in K, by \mathfrak{p} the maximal ideal of \mathcal{O} , by k the residue field of \mathcal{O} (i.e. $k = \mathcal{O}/\mathfrak{p}$) We denote by $\operatorname{Irr}(KG)$ the set of irreducible characters of G (over K).

A *p*-element (respectively p'-element) of G is an element whose order is a power of p (respectively prime to p). If $g \in G$, we denote by g_p and $g_{p'}$ the unique elements of G such that $g = g_p g_{p'} = g_{p'} g_p$, g_p is a p-element and $g_{p'}$ is a p'-element. The set of p-elements (respectively p'-elements) of G is denoted by G_p (respectively $G_{p'}$).

If X is a G-set (i.e. a set endowed with a left G-action), we denote by $[G \setminus X]$ a set of representatives of G-orbits in X. The reader can check that we will use formulas like

$$\sum_{x \in [G \setminus X]} f(x)$$

(or families like $(f(x))_{x \in [G \setminus X]}$) only whenever f(x) does not depend on the choice of the representative x in its G-orbit. If X is a set-G (i.e. a set endowed with a right G-action), we define similarly [X/G] and will use it according to the same principles.

1.2. Blocks. A block idempotent of kG (respectively $\mathcal{O}G$) is a primitive idempotent of the center Z(kG) (respectively $Z(\mathcal{O}G)$) of $\mathcal{O}G$. We denote by Blocks(kG) (respectively $Blocks(\mathcal{O}G)$) the set of block idempotents of kG (respectively $\mathcal{O}G$). Reduction modulo \mathfrak{p} induces a bijection $Blocks(\mathcal{O}G) \xrightarrow{\sim} Blocks(kG)$, $e \mapsto \overline{e}$ (whose inverse is denoted by $e \mapsto \tilde{e}$).

²⁰¹⁰ Mathematics Subject Classification 14E05.

Key words and phrases: Grothendieck group, G-equivariant \mathbb{C} -vector bundles.

The author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT).

A *p*-block of G is a subset \mathcal{B} of $\operatorname{Irr}(G)$ such that $\mathcal{B} = \operatorname{Irr}(KGe)$, for some block idempotent e of $\mathcal{O}G$.

1.3. Fourier coefficients. Let

$$\operatorname{IrrPairs}(G) = \{(g, \gamma) \mid g \in G \text{ and } \gamma \in \operatorname{Irr}(KC_G(g))\}$$

BlPairs_p(G) = {(s, e) | $s \in G_{p'}$ and $e \in Blocks(\mathcal{O}C_G(s))$ }.

The group G acts (on the left) on these two sets by conjugation. We set

 $\mathcal{M}(G) = [G \setminus \operatorname{IrrPairs}(G)] \quad \text{and} \quad \mathcal{M}^p(G) = [G \setminus \operatorname{BlPairs}(G)].$

If (g, γ) , $(h, \eta) \in \operatorname{IrrPairs}(G)$, we define, following Lusztig [3, 2.5(a)],

$$\left\{ (g,\gamma), (h,\eta) \right\} = \frac{1}{|C_G(g)| \cdot |C_G(h)|} \sum_{\substack{x \in G \\ xhx^{-1} \in C_G(g)}} \gamma(xhx^{-1})\eta(x^{-1}g^{-1}x).$$

Note that $\{(g,\gamma), (h,\eta)\}$ depends only on the *G*-orbit of (g,γ) and on the *G*-orbit of (h,η) .

1.4. Vector bundles. Except from Proposition 2.3 below, all the definitions, all the results in this subsection can be found in [3, §2]. We denote by $\mathcal{B}un_G(G)$ the category of *G*-equivariant finite dimensional *K*-vector bundles on *G* (for the action of *G* by conjugation). Its Grothendieck group $\mathbf{K}_G(G)$ is endowed with a ring structure. For each $(g, \gamma) \in \mathcal{M}(G)$, let $V_{g,\gamma}$ be the isomorphism class (in $\mathbf{K}_G(G)$) of the simple object in $\mathcal{B}un_G(G)$ associated with (g, γ) , as in [3, §2.5] (it is denoted $U_{g,\gamma}$ there). Then

$$\mathbf{K}_G(G) = \bigoplus_{(g,\gamma) \in \mathcal{M}(G)} \mathbb{Z} V_{g,\gamma}.$$

The K-algebra $K\mathbf{K}_G(G) = K \otimes_{\mathbb{Z}} \mathbf{K}_G(G)$ is split semisimple and commutative. Its simple modules (which have dimension one) are also parametrized by $\mathcal{M}(G)$: if $(g, \gamma) \in \mathcal{M}(G)$, the K-linear map

$$\Psi_{g,\gamma}: K\mathbf{K}_G(G) \longrightarrow K$$

defined by

$$\Psi_{g,\gamma}(V_{h,\eta}) = \frac{|C_G(g)|}{\gamma(1)} \cdot \{ (h^{-1}, \eta), (g, \gamma) \}$$

is a morphism of K-algebras and all morphisms of K-algebras $K\mathbf{K}_G(G) \longrightarrow K$ are obtained in this way.

We define similarly block idempotents of $k\mathbf{K}_G(G)$ and $\mathcal{O}\mathbf{K}_G(G)$, as well as *p*blocks of $\mathcal{M}(G) \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}(K\mathbf{K}_G(G))$.

158

and

1.5. Brauer maps. Let Λ denote one of the two rings \mathcal{O} or k. If $g \in G$ (and if we set $s = g_{p'}$), we denote by $\operatorname{Br}_g^{\Lambda}$ the Λ -linear map

$$\operatorname{Br}_{q}^{\Lambda}: \Lambda C_{G}(s) \longrightarrow \Lambda C_{G}(g)$$

such that

$$\operatorname{Br}_g^{\Lambda}(h) = \begin{cases} h & \text{if } h \in C_G(g), \\ 0 & \text{if } h \notin C_G(g), \end{cases}$$

for all $h \in C_G(s)$. Recall [2, Lemma 15.32] that

(1.1) Br_q^k induces a morphism of algebras $\operatorname{Z}(kC_G(s)) \to \operatorname{Z}(kC_G(g))$.

Therefore, if $e \in \operatorname{Blocks}(\mathcal{O}C_G(s))$, then $\operatorname{Br}_g^k(e)$ is an idempotent of $\operatorname{Z}(kC_G(g))$ (possibly equal to zero) and we can write it a sum $\operatorname{Br}_g^k(e) = e_1 + \cdots + e_n$, where e_1, \ldots, e_n are pairwise distinct block idempotents of $kC_G(g)$. We then set

$$\beta_g^{\mathcal{O}}(e) = \sum_{i=1}^n \tilde{e}_i.$$

It is an idempotent (possibly equal to zero, possibly non-primitive) of $Z(\mathcal{O}C_G(g))$.

1.6. The main result. In order to state more easily our main result, it will be more convenient (though it is not strictly necessary) to fix a particular set of representatives of conjugacy classes of G.

Hypothesis and notation. From now on, and until the end of this paper, we denote by: • $[G_{p'}/\sim]$ a set of representatives of conjugacy classes of p'-elements in G. • $[G/\sim]$ a set of representatives of conjugacy classes of elements of G such that, for all $g \in$ $[G/\sim], g_{p'} \in [G_{p'}/\sim].$ We also assume that, if $(g,\gamma) \in \mathcal{M}(G)$ or $(s,e) \in$ $\mathcal{M}^p(G)$, then $g \in [G/\sim]$ and $s \in [G_{p'}/\sim].$ If $(s,e) \in \mathcal{M}^p(G)$, we define $\mathcal{B}_G(s,e)$ to be the set of pairs $(g,\gamma) \in \mathcal{M}(G)$ such that: (1) $g_{p'} = s.$ (2) $\gamma \in \operatorname{Irr}(KC_G(g)\beta_g^{\mathcal{O}}(e)).$

Theorem 1.2. The map $(s,e) \mapsto \mathcal{B}_G(s,e)$ induces a bijection between $\mathcal{M}^p(G)$ to the set of p-blocks of $\mathcal{M}(G)$.

CÉDRIC BONNAFÉ

2. Proof of Theorem 1.2

2.1. Central characters and congruences. If $(g, \gamma) \in \text{IrrPairs}(G)$, we denote by $\omega_{g,\gamma} : \mathbb{Z}(KC_G(g)) \to K$ the *central character* associated with γ (if $z \in \mathbb{Z}(KC_G(g))$), then $\omega_{g,\gamma}(z)$ is the scalar through which z acts on an irreducible $KC_G(g)$ -module affording the character γ). It is a morphism of algebras: when restricted to $\mathbb{Z}(\mathcal{O}C_G(g))$, it has values in \mathcal{O} .

If $h \in C_G(g)$, we denote by $\Sigma_g(h)$ conjugacy class of h in $C_G(g)$ and we set

$$\hat{\Sigma}_g(h) = \sum_{v \in \Sigma_g(h)} v \in \mathcal{Z}(\mathcal{O}C_G(g))$$

We have

(2.1)
$$\omega_{g,\gamma}(\hat{\Sigma}_g(h)) = \frac{|\Sigma_g(h)| \cdot \gamma(h)}{\gamma(1)}.$$

We also recall the following classical results:

Proposition 2.2. If $g \in G$ and γ , γ' are two irreducible characters of $C_G(g)$, then γ and γ' lie in the same p-block of $C_G(g)$ if and only if

$$\omega_{g,\gamma}(\hat{\Sigma}_g(h)) \equiv \omega_{g,\gamma'}(\hat{\Sigma}_g(h)) \mod \mathfrak{p}$$

for all $h \in C_G(g)$.

Proposition 2.3. Let (g, γ) and (g', γ') be two elements of $\mathcal{M}(G)$. Then (g, γ) and (g', γ') belong to the same p-block of $\mathcal{M}(G)$ if and only if

$$\Psi_{g,\gamma}(V_{h,\eta}) \equiv \Psi_{g',\gamma'}(V_{h,\eta}) \mod \mathfrak{p}$$

for all $(h, \eta) \in \mathcal{M}(G)$.

2.2. Around the Brauer map. As Brauer maps are morphisms of algebras, we have

$$\sum_{e \in \operatorname{Blocks}(kC_G(g_{p'}))} \operatorname{Br}_g^p(e) = 1,$$

and so

(2.4) The family
$$(\mathcal{B}_G(g, e))_{(g,e)\in\mathcal{M}^p(G)}$$
 is a partition of $\mathcal{M}(G)$.

Now, let $(g, \gamma) \in \mathcal{M}(G)$ and let $s = g_{p'}$. If $e \in \operatorname{Blocks}(\mathcal{O}C_G(s))$ is such that $\gamma \in \operatorname{Irr}(KC_G(g)\beta_q^{\mathcal{O}}(e))$, and if $\sigma \in \operatorname{Irr}(KC_G(s)e)$, then [2, Lemma 15.44]

(2.5)
$$\omega_{s,\sigma}(z) \equiv \omega_{g,\gamma} \left(\operatorname{Br}_g^{\mathcal{O}}(z) \right) \mod \mathfrak{p}$$

for all $z \in \mathcal{Z}(\mathcal{O}C_G(s))$.

2.3. Rearranging the formula for $\Psi_{g,\gamma}$. If $(g,\gamma), (h,\eta) \in \operatorname{IrrPairs}(g)$ then

(2.6)
$$\Psi_{g,\gamma}(V_{h,\eta}) = \sum_{\substack{x \in [C_G(g) \setminus G/C_G(h)]\\xhx^{-1} \in C_G(g)}} \eta(x^{-1}gx)\omega_{g,\gamma}(\hat{\Sigma}_g(xhx^{-1})).$$

Proof. By definition,

$$\Psi_{g,\gamma}(V_{h,\eta}) = \frac{1}{\gamma(1) \cdot |C_G(h)|} \sum_{\substack{x \in G \\ xhx^{-1} \in C_G(g)}} \eta(x^{-1}gx)\gamma(xhx^{-1})$$
$$= \frac{1}{\gamma(1)} \sum_{\substack{x \in [G/C_G(h)] \\ xhx^{-1} \in C_G(g)}} \eta(x^{-1}gx)\gamma(xhx^{-1}).$$

Now, if $x \in G$ is such that $xhx^{-1} \in C_G(g)$ and if $u \in C_G(g)$, then

$$\eta\bigl((ux)^{-1}g(ux)\bigr)\gamma\bigl((ux)h(ux)x^{-1}\bigr) = \eta(x^{-1}gx)\gamma(xhx^{-1}).$$

So we can gather the terms in the last sum according to their $C_G(g)$ -orbit. We get

$$\Psi_{g,\gamma}(V_{h,\eta}) = \sum_{\substack{x \in [C_G(g) \setminus G/C_G(h)]\\xhx^{-1} \in C_G(g)}} \eta(x^{-1}gx) \frac{|C_G(g)|}{|C_G(g) \cap xC_G(h)x^{-1}|} \cdot \frac{\gamma(xhx^{-1})}{\gamma(1)}.$$

But, for x in G such that $xhx^{-1} \in C_G(g)$,

$$\frac{|C_G(g)|}{|C_G(g) \cap x C_G(h) x^{-1}|} = |\Sigma_g(x h x^{-1})|,$$

from 2.1.

so the result follows from 2.1.

Corollary 2.7. Let $g \in [G/\sim]$ and let γ , $\gamma' \in Irr(KC_G(g))$ lying in the same *p*-block of $C_G(g)$. Then (g, γ) and (g, γ') lie in the same *p*-block of $\mathcal{M}(G)$.

Proof. This follows from 2.6 and Proposition 2.3.

2.4. p'-part. Fix $(g, \gamma) \in \mathcal{M}(G)$. Then it follows from 2.6 that, for all $\chi \in Irr(KG)$,

(2.8)
$$\Psi_{g,\gamma}(V_{1,\chi}) = \chi(g).$$

Proposition 2.9. Let (g, γ) and (h, η) be two elements in $\mathcal{M}(G)$ which lie in the same p-block. Then $g_{p'} = h_{p'}$.

Proof. By Proposition 2.3 and Equality 2.8, it follows from the hypothesis that

$$\chi(g) \equiv \chi(h) \mod \mathfrak{p}$$

for all $\chi \in Irr(KG)$. Hence $g_{p'}$ and $h_{p'}$ are conjugate in G (see [1, Proposition 2.14]), so they are equal according to our conventions explained in §1.6.

CÉDRIC BONNAFÉ

Proposition 2.10. Let $s \in G_{p'}$ and let σ , $\sigma' \in Irr(KC_G(s))$. Then (s, σ) and (s, σ') lie in the same p-block if and only if σ and σ' lie in the same p-block of $C_G(s)$.

Proof. The if part has been proved in Corollary 2.7. Conversely, assume that (s, σ) and (s, σ') lie in the same *p*-block. Fix $h \in C_G(s)$. Then $s \in C_G(h)$. Let $\eta_{s,h} : C_G(h) \to K$ be the class function on $C_G(h)$ defined by:

$$\eta_{s,h}(g) = \begin{cases} 1 & \text{if } g_{p'} \text{ and } s \text{ are conjugate in } C_G(h), \\ 0 & \text{otherwise.} \end{cases}$$

It follows from [1, Proposition 2.20] that $\eta_{s,h} \in \mathcal{O}\operatorname{Irr}(KC_G(h))$. Therefore, by 2.6 and Proposition 2.3, (#)

$$\sum_{\substack{x \in [C_G(s) \setminus G/C_G(h)]\\xhx^{-1} \in C_G(s)}} \eta_{s,h}(x^{-1}sx) \Big(\omega_{s,\sigma} \big(\hat{\Sigma}_g(xhx^{-1}) \big) - \omega_{s,\sigma'} \big(\hat{\Sigma}_g(xhx^{-1}) \big) \Big) \equiv 0 \mod \mathfrak{p}.$$

Now, let $x \in G$ be such that $xhx^{-1} \in C_G(s)$. Since $x^{-1}sx$ is also a p'-element, $\eta_{s,h}(x^{-1}sx) = 1$ if and only if s and $x^{-1}sx$ are conjugate in $C_G(h)$ that is, if and only if $x \in C_G(s)C_G(h)$. So it follows from (#) that

$$\omega_{s,\sigma}(\hat{\Sigma}_q(h)) \equiv \omega_{s,\sigma'}(\hat{\Sigma}_q(h)) \mod \mathfrak{p}$$

for all $h \in C_G(s)$. This shows that σ and σ' lie in the same *p*-block of $C_G(s)$. \Box

2.5. Last step. We shall prove here the last intermediate result:

Proposition 2.11. Let $(s, e) \in \mathcal{M}^p(G)$ and let (g, γ) , $(g', \gamma') \in \mathcal{B}_G(s, e)$. Then (g, γ) and (g', γ') are in the same p-block of $\mathcal{M}(G)$.

Proof. We fix $\sigma \in \operatorname{Irr}(KC_G(s)e)$. It is sufficient to show that (g, γ) and (s, σ) are in the same *p*-block of $\mathcal{M}(G)$. For this, let $(h, \eta) \in \mathcal{M}(G)$. By Proposition 2.9, we have $g_{p'} = s$, so $C_G(g) \subset C_G(s)$. So 2.6 can be rewritten:

$$\Psi_{g,\gamma}(V_{h,\eta}) = \sum_{x \in [C_G(s) \setminus G/C_G(h)]} \sum_{\substack{y \in [C_G(g) \setminus C_G(s) \times C_G(h)/C_G(h)]\\ yhy^{-1} \in C_G(g)}} \eta(y^{-1}gy) \omega_{g,\gamma}(\hat{\Sigma}_g(yhy^{-1})).$$

Now, let $x \in [C_G(s) \setminus G/C_G(h)]$ and $y \in [C_G(g) \setminus C_G(s) x C_G(h)/C_G(h)]$ be such that $yhy^{-1} \in C_G(g)$. Then $yhy^{-1} \in C_G(s)$ and so $xhx^{-1} \in C_G(s)$. Moreover $y^{-1}sy$ is conjugate to $x^{-1}sx$ in $C_G(h)$. Finally, it is well-known (and easy to prove) that $\eta(y^{-1}hy) \equiv \eta(y^{-1}sy) \mod \mathfrak{p}$ (see for instance [1, Proposition 2.14]). Therefore:

$$\begin{aligned} &(\diamondsuit) \quad \Psi_{g,\gamma}(V_{h,\eta}) \equiv \\ &\sum_{\substack{x \in [C_G(s) \setminus G/C_G(h)] \\ xhx^{-1} \in C_G(s)}} \eta(x^{-1}sx) \; \omega_{g,\gamma} \Big(\sum_{\substack{y \in [C_G(g) \setminus C_G(s)xC_G(h)/C_G(h)] \\ yhy^{-1} \in C_G(g)}} \hat{\Sigma}_g(yhy^{-1})\Big) \mod \mathfrak{p}. \end{aligned}$$

162

Now, let $x \in [C_G(s) \setminus G/C_G(h)]$ be such that $xhx^{-1} \in C_G(s)$. Then, by definition of the Brauer map,

$$(\heartsuit) \qquad \operatorname{Br}_{g}^{\mathcal{O}}(\hat{\Sigma}_{s}(xhx^{-1})) = \sum_{\substack{z \in [C_{G}(g) \setminus C_{G}(s) / (C_{G}(s) \cap C_{G}(xhx^{-1}))] \\ z(xhx^{-1})z^{-1} \in C_{G}(g)}} \hat{\Sigma}_{g}((zx)h(zx)^{-1}).$$

But $(zx)_{z \in [C_G(g) \setminus C_G(s)/(C_G(s) \cap C_G(xhx^{-1}))]}$ is a set of representatives of double classes in $C_G(g) \setminus C_G(s) x C_G(h) / C_G(h)$. So it follows from (\diamondsuit) and (\heartsuit) that

$$\Psi_{g,h}(V_{h,\eta}) \equiv \sum_{\substack{x \in [C_G(s) \setminus G/C_G(h)]\\xhx^{-1} \in C_G(s)}} \eta(x^{-1}sx) \ \omega_{g,\gamma} \left(\operatorname{Br}_g^{\mathcal{O}}(\hat{\Sigma}_s(xhx^{-1})) \right).$$

Using now 2.5 and 2.6, we obtain that

$$\Psi_{g,h}(V_{h,\eta}) \equiv \Psi_{s,\sigma}(V_{h,\eta}) \mod \mathfrak{p},$$

as desired.

Proof of Theorem 1.2. Let (s, e) and (s', e') be two elements of $\mathcal{M}^p(G)$ such that $\mathcal{B}_G(s, e)$ and $\mathcal{B}_G(s', e')$ are contained in the same *p*-block of $\mathcal{M}(G)$ (see Proposition 2.11). Let $\sigma \in \operatorname{Irr}(KC_G(s)e)$ and $\sigma' \in \operatorname{Irr}(KC_G(s')e')$.

Then (s, σ) and (s', σ') are in the same *p*-block, so it follows from Proposition 2.9 that s = s' and it follows from Proposition 2.10 that γ and γ' are in the same *p*-block of $C_G(s)$, that is e = e'. This completes the proof of Theorem 1.2.

References

- C. Bonnafé, On the character ring of a finite group, Publ. Math. Univ. Franche-Comté, (2006), 5-23.
- [2] I. M. Isaacs, *Character Theory of Finite Groups*, Pure and Applied Mathematics 69, Academic Press, New York-London, 1976.
- G. Lusztig, Leading coefficients of character values of Hecke algebras, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47, Part 2 (1987), 235-262; Amer. Math. Soc., Providence, RI, 1987.

Cédric Bonnafé Institut Montpelliérain Alexander Grothendieck (CNRS: UMR 5149), Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 MONTPELLIER Cedex, FRANCE cedric.bonnafe@umontpellier.fr