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Abstract. If G is a finite group, the Grothendieck group KG(G) of the cat-

egory of G-equivariant C-vector bundles on G (for the action of G on itself

by conjugation) is endowed with a structure of (commutative) ring. If K is a
sufficiently large extension of Qp and O denotes the integral closure of Zp in

K, the K-algebra KKG(G) = K ⊗Z KG(G) is split semisimple. The aim of
this paper is to describe the O-blocks of the O-algebra OKG(G).

1. Notation, Introduction

1.1. Groups. We fix in this paper a finite group G, a prime number p and a finite
extension K of the p-adic field Qp such that KH is split for all subgroups H of G.
We denote by O the integral closure of Zp in K, by p the maximal ideal of O, by k
the residue field of O (i.e. k = O/p) We denote by Irr(KG) the set of irreducible
characters of G (over K).

A p-element (respectively p′-element) of G is an element whose order is a power
of p (respectively prime to p). If g ∈ G, we denote by gp and gp′ the unique elements
of G such that g = gpgp′ = gp′gp, gp is a p-element and gp′ is a p′-element. The set
of p-elements (respectively p′-elements) of G is denoted by Gp (respectively Gp′).

If X is a G-set (i.e. a set endowed with a left G-action), we denote by [G\X]
a set of representatives of G-orbits in X. The reader can check that we will use
formulas like ∑

x∈[G\X]

f(x)

(or families like (f(x))x∈[G\X]) only whenever f(x) does not depend on the choice
of the representative x in its G-orbit. If X is a set-G (i.e. a set endowed with a
right G-action), we define similarly [X/G] and will use it according to the same
principles.

1.2. Blocks. A block idempotent of kG (respectively OG) is a primitive idempo-
tent of the center Z(kG) (respectively Z(OG)) of OG. We denote by Blocks(kG)
(respectively Blocks(OG)) the set of block idempotents of kG (respectively OG).

Reduction modulo p induces a bijection Blocks(OG)
∼−→Blocks(kG), e 7→ ē (whose

inverse is denoted by e 7→ ẽ).
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A p-block of G is a subset B of Irr(G) such that B = Irr(KGe), for some block
idempotent e of OG.

1.3. Fourier coefficients. Let

IrrPairs(G) = {(g, γ) | g ∈ G and γ ∈ Irr(KCG(g))}

and BlPairsp(G) = {(s, e) | s ∈ Gp′ and e ∈ Blocks(OCG(s))}.

The group G acts (on the left) on these two sets by conjugation. We set

M(G) = [G\IrrPairs(G)] and Mp(G) = [G\BlPairs(G)].

If (g, γ), (h, η) ∈ IrrPairs(G), we define, following Lusztig [3, 2.5(a)],{
(g, γ), (h, η)

}
=

1

|CG(g)| · |CG(h)|
∑
x∈G

xhx−1∈CG(g)

γ(xhx−1)η(x−1g−1x).

Note that
{

(g, γ), (h, η)
}

depends only on the G-orbit of (g, γ) and on the G-orbit
of (h, η).

1.4. Vector bundles. Except from Proposition 2.3 below, all the definitions, all
the results in this subsection can be found in [3, §2]. We denote by BunG(G) the
category of G-equivariant finite dimensional K-vector bundles on G (for the action
of G by conjugation). Its Grothendieck group KG(G) is endowed with a ring
structure. For each (g, γ) ∈ M(G), let Vg,γ be the isomorphism class (in KG(G))
of the simple object in BunG(G) associated with (g, γ), as in [3, §2.5] (it is denoted
Ug,γ there). Then

KG(G) =
⊕

(g,γ)∈M(G)

ZVg,γ .

The K-algebra KKG(G) = K ⊗Z KG(G) is split semisimple and commutative. Its
simple modules (which have dimension one) are also parametrized by M(G): if
(g, γ) ∈M(G), the K-linear map

Ψg,γ : KKG(G) −→ K

defined by

Ψg,γ(Vh,η) =
|CG(g)|
γ(1)

·
{

(h−1, η), (g, γ)
}

is a morphism of K-algebras and all morphisms of K-algebras KKG(G) −→ K are
obtained in this way.

We define similarly block idempotents of kKG(G) and OKG(G), as well as p-

blocks of M(G)
∼←→ Irr(KKG(G)).
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1.5. Brauer maps. Let Λ denote one of the two rings O or k. If g ∈ G (and if

we set s = gp′), we denote by BrΛ
g the Λ-linear map

BrΛ
g : ΛCG(s) −→ ΛCG(g)

such that

BrΛ
g (h) =

{
h if h ∈ CG(g),

0 if h 6∈ CG(g),

for all h ∈ CG(s). Recall [2, Lemma 15.32] that

(1.1) Brkg induces a morphism of algebras Z(kCG(s))→ Z(kCG(g)).

Therefore, if e ∈ Blocks(OCG(s)), then Brkg(e) is an idempotent of Z(kCG(g))

(possibly equal to zero) and we can write it a sum Brkg(e) = e1 + · · · + en, where
e1,. . . , en are pairwise distinct block idempotents of kCG(g). We then set

βOg (e) =

n∑
i=1

ẽi.

It is an idempotent (possibly equal to zero, possibly non-primitive) of Z(OCG(g)).

1.6. The main result. In order to state more easily our main result, it will
be more convenient (though it is not strictly necessary) to fix a particular set of
representatives of conjugacy classes of G.

Hypothesis and notation. From now on, and until
the end of this paper, we denote by:

• [Gp′/∼] a set of representatives of conjugacy
classes of p′-elements in G.
• [G/∼] a set of representatives of conjugacy

classes of elements of G such that, for all g ∈
[G/∼], gp′ ∈ [Gp′/∼].

We also assume that, if (g, γ) ∈ M(G) or (s, e) ∈
Mp(G), then g ∈ [G/∼] and s ∈ [Gp′/∼].

If (s, e) ∈Mp(G), we define BG(s, e) to be the set of
pairs (g, γ) ∈M(G) such that:

(1) gp′ = s.
(2) γ ∈ Irr(KCG(g)βOg (e)).

Theorem 1.2. The map (s, e) 7→ BG(s, e) induces a bijection between Mp(G) to
the set of p-blocks of M(G).
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2. Proof of Theorem 1.2

2.1. Central characters and congruences. If (g, γ) ∈ IrrPairs(G), we de-
note by ωg,γ : Z(KCG(g)) → K the central character associated with γ (if z ∈
Z(KCG(g)), then ωg,γ(z) is the scalar through which z acts on an irreducible
KCG(g)-module affording the character γ). It is a morphism of algebras: when
restricted to Z(OCG(g)), it has values in O.

If h ∈ CG(g), we denote by Σg(h) conjugacy class of h in CG(g) and we set

Σ̂g(h) =
∑

v∈Σg(h)

v ∈ Z(OCG(g)).

We have

(2.1) ωg,γ
(
Σ̂g(h)

)
=
|Σg(h)| · γ(h)

γ(1)
.

We also recall the following classical results:

Proposition 2.2. If g ∈ G and γ, γ′ are two irreducible characters of CG(g), then
γ and γ′ lie in the same p-block of CG(g) if and only if

ωg,γ(Σ̂g(h)) ≡ ωg,γ′(Σ̂g(h)) mod p

for all h ∈ CG(g).

Proposition 2.3. Let (g, γ) and (g′, γ′) be two elements of M(G). Then (g, γ)
and (g′, γ′) belong to the same p-block of M(G) if and only if

Ψg,γ(Vh,η) ≡ Ψg′,γ′(Vh,η) mod p

for all (h, η) ∈M(G).

2.2. Around the Brauer map. As Brauer maps are morphisms of algebras, we
have ∑

e∈Blocks(kCG(gp′ ))

Brpg(e) = 1,

and so

(2.4) The family
(
BG(g, e)

)
(g,e)∈Mp(G)

is a partition of M(G).

Now, let (g, γ) ∈ M(G) and let s = gp′ . If e ∈ Blocks(OCG(s)) is such that
γ ∈ Irr(KCG(g)βOg (e)), and if σ ∈ Irr(KCG(s)e), then [2, Lemma 15.44]

(2.5) ωs,σ(z) ≡ ωg,γ
(
BrOg (z)

)
mod p

for all z ∈ Z(OCG(s)).
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2.3. Rearranging the formula for Ψg,γ. If (g, γ), (h, η) ∈ IrrPairs(g) then

(2.6) Ψg,γ(Vh,η) =
∑

x∈[CG(g)\G/CG(h)]

xhx−1∈CG(g)

η(x−1gx)ωg,γ
(
Σ̂g(xhx

−1)
)
.

Proof. By definition,

Ψg,γ(Vh,η) =
1

γ(1) · |CG(h)|
∑
x∈G

xhx−1∈CG(g)

η(x−1gx)γ(xhx−1)

=
1

γ(1)

∑
x∈[G/CG(h)]

xhx−1∈CG(g)

η(x−1gx)γ(xhx−1).

Now, if x ∈ G is such that xhx−1 ∈ CG(g) and if u ∈ CG(g), then

η
(
(ux)−1g(ux)

)
γ
(
(ux)h(ux)x−1

)
= η(x−1gx)γ(xhx−1).

So we can gather the terms in the last sum according to their CG(g)-orbit. We get

Ψg,γ(Vh,η) =
∑

x∈[CG(g)\G/CG(h)]

xhx−1∈CG(g)

η(x−1gx)
|CG(g)|

|CG(g) ∩ xCG(h)x−1|
· γ(xhx−1)

γ(1)
.

But, for x in G such that xhx−1 ∈ CG(g),

|CG(g)|
|CG(g) ∩ xCG(h)x−1|

= |Σg(xhx−1)|,

so the result follows from 2.1. �

Corollary 2.7. Let g ∈ [G/∼] and let γ, γ′ ∈ Irr(KCG(g)) lying in the same
p-block of CG(g). Then (g, γ) and (g, γ′) lie in the same p-block of M(G).

Proof. This follows from 2.6 and Proposition 2.3. �

2.4. p′-part. Fix (g, γ) ∈ M(G). Then it follows from 2.6 that, for all χ ∈
Irr(KG),

(2.8) Ψg,γ(V1,χ) = χ(g).

Proposition 2.9. Let (g, γ) and (h, η) be two elements in M(G) which lie in the
same p-block. Then gp′ = hp′ .

Proof. By Proposition 2.3 and Equality 2.8, it follows from the hypothesis that

χ(g) ≡ χ(h) mod p

for all χ ∈ Irr(KG). Hence gp′ and hp′ are conjugate in G (see [1, Proposition 2.14]),
so they are equal according to our conventions explained in §1.6. �
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Proposition 2.10. Let s ∈ Gp′ and let σ, σ′ ∈ Irr(KCG(s)). Then (s, σ) and
(s, σ′) lie in the same p-block if and only if σ and σ′ lie in the same p-block of
CG(s).

Proof. The if part has been proved in Corollary 2.7. Conversely, assume that
(s, σ) and (s, σ′) lie in the same p-block. Fix h ∈ CG(s). Then s ∈ CG(h). Let
ηs,h : CG(h)→ K be the class function on CG(h) defined by:

ηs,h(g) =

{
1 if gp′ and s are conjugate in CG(h),

0 otherwise.

It follows from [1, Proposition 2.20] that ηs,h ∈ O Irr(KCG(h)). Therefore, by 2.6
and Proposition 2.3,
(#) ∑
x∈[CG(s)\G/CG(h)]

xhx−1∈CG(s)

ηs,h(x−1sx)
(
ωs,σ

(
Σ̂g(xhx

−1))− ωs,σ′(Σ̂g(xhx−1)
))
≡ 0 mod p.

Now, let x ∈ G be such that xhx−1 ∈ CG(s). Since x−1sx is also a p′-element,
ηs,h(x−1sx) = 1 if and only if s and x−1sx are conjugate in CG(h) that is, if and
only if x ∈ CG(s)CG(h). So it follows from (#) that

ωs,σ(Σ̂g(h)) ≡ ωs,σ′(Σ̂g(h)) mod p

for all h ∈ CG(s). This shows that σ and σ′ lie in the same p-block of CG(s). �

2.5. Last step. We shall prove here the last intermediate result:

Proposition 2.11. Let (s, e) ∈ Mp(G) and let (g, γ), (g′, γ′) ∈ BG(s, e). Then
(g, γ) and (g′, γ′) are in the same p-block of M(G).

Proof. We fix σ ∈ Irr(KCG(s)e). It is sufficient to show that (g, γ) and (s, σ) are
in the same p-block of M(G). For this, let (h, η) ∈M(G). By Proposition 2.9, we
have gp′ = s, so CG(g) ⊂ CG(s). So 2.6 can be rewritten:

Ψg,γ(Vh,η) =
∑

x∈[CG(s)\G/CG(h)]

∑
y∈[CG(g)\CG(s)xCG(h)/CG(h)]

yhy−1∈CG(g)

η(y−1gy)ωg,γ(Σ̂g(yhy
−1)).

Now, let x ∈ [CG(s)\G/CG(h)] and y ∈ [CG(g)\CG(s)xCG(h)/CG(h)] be such that
yhy−1 ∈ CG(g). Then yhy−1 ∈ CG(s) and so xhx−1 ∈ CG(s). Moreover y−1sy is
conjugate to x−1sx in CG(h). Finally, it is well-known (and easy to prove) that
η(y−1hy) ≡ η(y−1sy) mod p (see for instance [1, Proposition 2.14]). Therefore:

(♦) Ψg,γ(Vh,η) ≡∑
x∈[CG(s)\G/CG(h)]

xhx−1∈CG(s)

η(x−1sx) ωg,γ

( ∑
y∈[CG(g)\CG(s)xCG(h)/CG(h)]

yhy−1∈CG(g)

Σ̂g(yhy
−1)
)

mod p.
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Now, let x ∈ [CG(s)\G/CG(h)] be such that xhx−1 ∈ CG(s). Then, by definition
of the Brauer map,

(♥) BrOg (Σ̂s(xhx
−1)) =

∑
z∈[CG(g)\CG(s)/(CG(s)∩CG(xhx−1))]

z(xhx−1)z−1∈CG(g)

Σ̂g((zx)h(zx)−1).

But (zx)z∈[CG(g)\CG(s)/(CG(s)∩CG(xhx−1))] is a set of representatives of double classes
in CG(g)\CG(s)xCG(h)/CG(h). So it follows from (♦) and (♥) that

Ψg,h(Vh,η) ≡
∑

x∈[CG(s)\G/CG(h)]

xhx−1∈CG(s)

η(x−1sx) ωg,γ
(
BrOg (Σ̂s(xhx

−1))
)
.

Using now 2.5 and 2.6, we obtain that

Ψg,h(Vh,η) ≡ Ψs,σ(Vh,η) mod p,

as desired. �

Proof of Theorem 1.2. Let (s, e) and (s′, e′) be two elements of Mp(G) such that
BG(s, e) and BG(s′, e′) are contained in the same p-block of M(G) (see Proposi-
tion 2.11). Let σ ∈ Irr

(
KCG(s)e

)
and σ′ ∈ Irr

(
KCG(s′)e′

)
.

Then (s, σ) and (s′, σ′) are in the same p-block, so it follows from Proposition 2.9
that s = s′ and it follows from Proposition 2.10 that γ and γ′ are in the same p-block
of CG(s), that is e = e′. This completes the proof of Theorem 1.2. �
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