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Abstract. In this paper we introduce and study a new class of functions called

weighted Stepanov-like pseudo-almost automorphic functions with variable ex-
ponents, which generalizes the class of weighted Stepanov-like pseudo-almost

automorphic functions. Basic properties of these new spaces are established.

The existence of weighted pseudo-almost automorphic solutions to some first-
order differential equations with Sp,q(x)-pseudo-almost automorphic coeffi-

cients will also be studied.

1. Introduction

In Diagana [10] the concept of Stepanov-like pseudo-almost automorphy was
introduced and studied. These spaces, which generalize pseudo-almost automorphic
spaces, were then utilized to study the existence of pseudo-almost automorphic
solutions to some abstract differential equations.

In Blot et al. [4], the concept of weighted pseudo-almost automorphy, using theo-
retical measure theory, is introduced and utilized to study the existence of weighted
pseudo-almost automorphic solutions to some abstract differential equations.

In a recent paper by Diagana and Zitane [13], the concept of Stepanov-like
pseudo-almost automorphy is introduced in the Lebesgue space with variable expo-
nents Lp(x). These functions were utilized to study the existence of pseudo-almost
automorphic solutions to some differential equations.

In this paper we introduce and study a new class of functions called weighted
Stepanov-like pseudo-almost automorphic functions with variable exponents, which
generalizes the usual weighted Stepanov-like pseudo-almost automorphic functions.
Basic properties of these new spaces are established. Afterwards, we study the
existence of pseudo-almost automorphic solutions to the class of abstract nonau-
tonomous differential equations given by

d

dt

[
u(t) + f(t, B(t)u(t))

]
= A(t)u(t) + g(t, C(t)u(t)), t ∈ R, (1.1)

where A(t) for t ∈ R is a family of closed linear operators on D(A(t)) satisfying
the well-known Acquistapace-Terreni conditions, B(t), C(t) (t ∈ R) are families of
(possibly unbounded) linear operators, and f : R×X→ Xtβ (0 < α < β < 1) and
g : R× X → X are jointly continuous satisfying some additional assumptions with
Xtβ being a real interpolation space between X and D(A(t)) of order α ∈ (0, 1).
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2. µ-Pseudo-Almost Automorphic Functions

Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be two Banach spaces. Let BC(R,X) (respectively,
BC(R×Y,X)) denote the collection of all X-valued bounded continuous functions
(respectively, the class of jointly bounded continuous functions F : R×Y→ X). The
space BC(R,X) equipped with the sup norm ‖·‖∞ is a Banach space. Furthermore,
C(R,Y) (respectively, C(R×Y,X)) denotes the class of continuous functions from
R into Y (respectively, the class of jointly continuous functions F : R × Y → X).
Let B(X,Y) stand for the Banach space of bounded linear operators from X into Y
equipped with its natural operator topology; in particular, B(X,X) is denoted by
B(X).

In this section, we recall the concept of µ-pseudo-almost automorphic functions
introduced by J. Blot et al [5].

Definition 2.1 ([6]). A function f ∈ C(R,X) is said to be almost automorphic if
for every sequence of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N such
that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R and

f(t) = lim
n→∞

g(t− sn)

for each t ∈ R.

The collection of all such functions will be denoted by AA(X), which turns out
to be a Banach space when it is equipped with the sup-norm.

Proposition 2.2 ([21]). Assume f, g : R → X are almost automorphic and λ is
any scalar. Then the following hold true:

(a) f + g, λf, fτ (t) := f(t+ τ) and f̂(t) := f(−t) are almost automorphic;
(b) The range Rf of f is precompact, so f is bounded;
(c) If {fn} is a sequence of almost automorphic functions and fn → f uniformly

on R, then f is almost automorphic.

We denote by B the Lebesgue σ-field of R and by M the set of all positive
measures µ on B satisfying µ(R) =∞ and µ([a, b]) <∞, for all a, b ∈ R (a ≤ b).

Definition 2.3 ([4]). Let µ ∈M. A function f ∈ BC(R,X) is said to be µ-ergodic
if

lim
r→∞

1

µ(Qr)

∫
Qr

‖f(t)‖ dµ(t) = 0

where Qr := [−r, r]. We denote the space of all such functions by E (X, µ).

Proposition 2.4 ([4]). Let µ ∈M. Then (E (X, µ), ‖ · ‖∞) is a Banach space.

Theorem 2.5 ([4]). Let µ ∈ M and I be a bounded interval (eventually I 6= ∅).
Assume that f ∈ BC(R,X). Then the following assertions are equivalent:
(a) f ∈ E (X, µ);

(b) lim
r→∞

1

µ([−r, r] \ I)

∫
[−r,r]\I

‖f(t)‖ dµ(t) = 0;

(c) For any ε > 0, lim
r→∞

µ
({
t ∈ [−r, r] \ I : ‖f(t)‖ > ε

})
µ([−r, r] \ I)

= 0 .
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Definition 2.6 ([5]). A function f ∈ C(R,X) is called µ-pseudo almost automor-
phic if it can be expressed as f = g + φ, where g ∈ AA(X) and φ ∈ E (X, µ). The
collection of such functions will be denoted by PAA(X, µ).

Let N1 denotes the set of all positive measure µ ∈ M such that for all a, b and
c ∈ R such that 0 ≤ a < b ≤ c, there exist τ0 ≥ 0 and α0 > 0 such that

|τ | ≥ τ0 ⇒ µ((a+ τ, b+ τ)) ≥ α0µ([τ, c+ τ ]).

And let N2 denotes the set of all positive measure µ ∈M such that for all τ ∈ R,
there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) ≤ βµ(A) for all A ∈ B such that A ∩ I = ∅.

Theorem 2.7 ([5]). Let µ ∈ N1. Then the decomposition of a µ-pseudo almost
automorphic function in the form f = g + φ, where g ∈ AA(X) and φ ∈ E (X, µ) is
unique.

Theorem 2.8 ([5]). Let µ ∈ N1. Then (PAA(X, µ), ‖ · ‖∞) is a Banach space.

Theorem 2.9 ([5]). Let µ ∈ N2. Then the space E (X, µ) is translation invariant,
therefore PAA(X, µ) is also translation invariant, that is, if f ∈ PAA(X, µ) implies
fτ = f(·+ τ) ∈ PAA(X, µ) for all τ ∈ R.

Definition 2.10 ([19]). A function F ∈ C(R × Y,X) is said to be almost auto-
morphic if F (t, u) is almost automorphic in t ∈ R uniformly for all u ∈ K, where
K ⊂ Y is an arbitrary bounded subset. The collection of all such functions will be
denoted by AA(Y,X).

Definition 2.11 ([18]). A function L ∈ C(R× R,X) is called bi-almost automor-
phic if for every sequence of real numbers (s′n)n we can extract a subsequence (sn)n
such that

H(t, s) := lim
n→∞

L(t+ sn, s+ sn)

is well defined for each t, s ∈ R, and

L(t, s) = lim
n→∞

H(t− sn, s− sn)

for each t, s ∈ R. The collection of all such functions will be denoted by bAA(R×
R,X).

Definition 2.12 ([4]). Let µ ∈M. A function f ∈ C(R×Y,X) is called µ-ergodic
in t uniformly with respect to x in Y if the following two conditions hold:
(a) for all y in Y, f(·, y) ∈ E (Y, µ);
(b) f is uniformly continuous on each compact set K ⊂ Y with respect to the

second variable y.
We denote the space of all such functions by E (Y,X, µ).

Definition 2.13 ([5]). Let µ ∈M. A function f ∈ C(R×X,Y) is called µ-pseudo
almost automorphic if it can be expressed as f = g + φ, where g ∈ AA(Y,X) and
φ ∈ E (Y,X, µ). The collection of such functions will be denoted by PAA(Y,X, µ).
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3. Evolution Families

Definition 3.1 ([1, 2]). A family of closed linear operators A(t) for t ∈ R on X with
domains D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace–
Terreni conditions, if there exist constants ω ∈ R, θ ∈ (π2 , π), K,L ≥ 0 and µ, ν ∈
(0, 1] with µ+ ν > 1 such that

Sθ ∪ {0} ⊂ ρ(A(t)− ωI), ‖R(λ,A(t)− ωI)‖ ≤ K

1 + |λ|
, and (3.1)

‖(A(t)− ωI)R(λ,A(t)− ωI) [R(ω,A(t))−R(ω,A(s))]‖ ≤ L |t− s|µ |λ|−ν (3.2)

for t, s ∈ R, λ ∈ Sθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}.

Among other things, the Acquistapace–Terreni Conditions do ensure the exis-
tence of a unique evolution family

U = {U(t, s) : t, s ∈ R such that t ≥ s}
on X associated with A(t) such that U(t, s)X ⊆ D(A(t)) for all t, s ∈ R with t > s,
and
(a) U(t, s)U(s, r) = U(t, r) for t, s ∈ R such that t ≥ r ≥ s;
(b) U(t, t) = I for t ∈ R where I is the identity operator of X; and
(c) for t > s, the mapping (t, s) 7→ U(t, s) ∈ B(X) is continuous and continuously

differentiable in t with ∂tU(t, s) = A(t)U(t, s). Moreover, there exists a con-
stant C ′ > 0 which depends on constants in Eq. (3.1) and Eq. (3.2) such
that

‖Ak(t)U(t, s)‖B(X) ≤ C ′(t− s)−k (3.3)

for 0 < t− s ≤ 1 and k = 0, 1.

Definition 3.2. An evolution family U = {U(t, s) : t, s ∈ R such that t ≥ s} is
said to have an exponential dichotomy if there are projections P (t) (t ∈ R) that are
uniformly bounded and strongly continuous in t and constants δ > 0 and N ≥ 1
such that
(f) U(t, s)P (s) = P (t)U(t, s);
(g) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (we then set

UQ(s, t) := UQ(t, s)−1) where Q(t) = I − P (t); and

(h) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and
t, s ∈ R.

If an evolution family U = {U(t, s) : t, s ∈ R such that t ≥ s} has an exponential
dichotomy, we then define

Γ(t, s) :=

 U(t, s)P (s), if t ≥ s, t, s ∈ R,

−UQ(t, s)Q(s), if s > t, t, s ∈ R.
This setting requires the introduction of some interpolation spaces for A(t). We

refer the reader to the following excellent books [3], [9], and [20] for proofs and
further information on theses interpolation spaces.

Let A be a sectorial operator on X (Definition 3.1 holds when A(t) is replaced
with A) and let α ∈ (0, 1). Define the real interpolation space

XAα :=
{
x ∈ X : ‖x‖Aα := supr>0 ‖rα (A− ω)R (r,A− ω)x‖ <∞

}
,
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which, by the way, is a Banach space when endowed with the norm ‖·‖Aα . For
convenience we further write

XA0 := X, ‖x‖A0 := ‖x‖ , XA1 := D(A)

and ‖x‖A1 := ‖(ω −A)x‖. Moreover, let X̂A := D(A) of X. In particular, we will
frequently be using the following continuous embedding

D(A) ↪→ XAβ ↪→ D((ω −A)α) ↪→ XAα ↪→ X̂A ↪→ X, (3.4)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
In general, D(A) is not dense in the spaces XAα and X. However, we have the

following continuous injection

XAβ ↪→ D(A)
‖·‖Aα

(3.5)

for 0 < α < β < 1.

Definition 3.3. Given the family of linear operators A(t) for t ∈ R, satisfying
Acquistapace-Terreni conditions (Definition 3.1), we set

Xtα := XA(t)
α , X̂t := X̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms.
Then the embedding in (3.4) hold with constants independent of t ∈ R.

These interpolation spaces are of class Jα ([20, Definition 1.1.1 ]) and it can be
shown that

‖y‖tα ≤ K
αL1−α ‖y‖1−α ‖A(t)y‖α , y ∈ D(A(t)) (3.6)

where K,L are the constants appearing in Definition 3.1.

Proposition 3.4 ([7]). For x ∈ X, 0 ≤ α ≤ 1 and t > s, the following hold:
(i) There is a constant n(α), such that

‖U(t, s)P (s)x‖tα ≤ n(α)e−
δ
2 (t−s)(t− s)−α‖x‖, (3.7)

(ii) There is a constant m(α), such that

‖ŨQ(s, t)Q(t)x‖sα ≤ m(α)e−δ(t−s)‖x‖, t ≤ s. (3.8)

4. Weighted Stepanov-Like Pseudo Almost Automorphic Functions
with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents
Lp(x)(R,X) developed in [12, 13, 14, 15, 17, 22].

Let Ω ⊆ R be a subset and let M(Ω,X) denote the collection of all measurable
functions f : Ω 7→ X. Let us recall that two functions f and g of M(Ω,X) are
equal whether they are equal almost everywhere. Set m(Ω) := M(Ω,R) and fix
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p ∈ m(Ω). Define

p− := ess infx∈Ω p(x), p+ := ess supx∈Ω p(x),

C+(Ω) :=
{
p ∈ m(Ω) : 1 < p− ≤ p(x) ≤ p+ <∞, for each x ∈ Ω

}
,

D+(Ω) :=

{
p ∈ m(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞, for each x ∈ Ω

}
,

ρ(u) = ρp(x)(u) =

∫
Ω

‖u(x)‖p(x)dx.

We then define the Lebesgue space with variable exponents Lp(x)(Ω,X) with
p ∈ C+(Ω), by

Lp(x)(Ω,X) :=
{
u ∈M(Ω,X) :

∫
Ω

‖u(x)‖p(x)dx <∞
}
.

Define, for each u ∈ Lp(x)(Ω,X),

‖u‖p(x) := inf

{
λ > 0 :

∫
Ω

∥∥∥u(x)

λ

∥∥∥p(x)

dx ≤ 1

}
.

It can be shown that ‖ · ‖p(x) is a norm upon Lp(x)(Ω,X), which is referred to as
the Luxemburg norm.

Remark 4.1. Let p ∈ C+(Ω). If p is constant, then the space Lp(·)(Ω,X), as defined
above, coincides with the usual space Lp(Ω,X).

Proposition 4.2 ([15, 22]). Let p ∈ C+(Ω). If u, v ∈ Lp(x)(Ω,X), then the
following properties hold,
(a) ‖u‖p(x) ≥ 0, with equality if and only if u = 0;
(b) ρp(u) ≤ ρp(v) and ‖u‖p(x) ≤ ‖v‖p(x) if ‖u‖ ≤ ‖v‖;
(c) ρp(u‖u‖−1

p(x)) = 1 if u 6= 0;

(d) ρp(u) ≤ 1 if and only if ‖u‖p(x) ≤ 1;
(e) If ‖u‖p(x) ≤ 1, then[

ρp(u)
]1/p−

≤ ‖u‖p(x) ≤
[
ρp(u)

]1/p+
.

(f) If ‖u‖p(x) ≥ 1, then[
ρp(u)

]1/p+
≤ ‖u‖p(x) ≤

[
ρp(u)

]1/p−
.

Theorem 4.3 ([15, 17]). Let p ∈ C+(Ω). The space (Lp(x)(Ω,X), ‖ ·‖p(x)) is a Ba-

nach space that is separable and uniform convex. Its topological dual is Lq(x)(Ω,X),
where p−1(x) + q−1(x) = 1. Moreover, for any u ∈ Lp(x)(Ω,X) and v ∈ Lq(x)(Ω,R),
we have ∥∥∥∫

Ω

uvdx
∥∥∥ ≤ ( 1

p−
+

1

q−

)
‖u‖p(x). ‖v‖q(x).

Corollary 4.4 ([22]). Let p, r ∈ D+(Ω). If the function q defined by the equation

1

q(x)
=

1

p(x)
+

1

r(x)
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is in D+(Ω), then there exists a constant C = C(p, r) ∈ [1, 5] such that

‖uv‖q(x) ≤ C‖u‖p(x). ‖v‖r(x),

for every u ∈ Lp(x)(Ω,X) and v ∈ Lr(x)(Ω,R).

Corollary 4.5 ([15]). Let mes (Ω) < ∞ where mes (·) stands for the Lebesgue
measure and p, q ∈ D+(Ω). If q(·) ≤ p(·) almost everywhere in Ω, then the em-
bedding Lp(x)(Ω,X) ↪→ Lq(x)(Ω,X) is continuous whose norm does not exceed
2(mes (Ω) + 1).

Definition 4.6 ([10]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a
function f : R→ X is defined by f b(t, s) := f(t+ s).

Remark 4.7. (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of
a certain function f , ϕ(t, s) = f b(t, s) , if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all
t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h+ ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each
scalar λ.

Definition 4.8 ([10]). The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of
a function F (t, u) on R×X, with values in X, is defined by F b(t, s, u) := F (t+ s, u)
for each u ∈ X.

Definition 4.9 ([10]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f b ∈ L∞

(
R, Lp((0, 1),X)

)
. This is a Banach space with the

norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ
)1/p

.

Note that for each p ≥ 1, we have the following continuous inclusion:

(BC(X), ‖ · ‖∞) ↪→ (BSp(X), ‖ · ‖Sp).

Definition 4.10 ( [12]). Let p ∈ C+(R). The space BSp(x)(X) consists of all
functions f ∈M(R,X) such that ‖f‖Sp(x) <∞, where

‖f‖Sp(x) = sup
t∈R

[
inf
{
λ > 0 :

∫ 1

0

∥∥∥f(x+ t)

λ

∥∥∥p(x+t)

dx ≤ 1
}]

= sup
t∈R

[
inf
{
λ > 0 :

∫ t+1

t

∥∥∥f(x)

λ

∥∥∥p(x)

dx ≤ 1
}]
.

Note that the space
(
BSp(x)(X), ‖ · ‖Sp(x)

)
is a Banach space, which, depending

on p(·), may or may not be translation-invariant.

Definition 4.11 ([12]). If p, q ∈ C+(R), we then define the space BSp(x),q(x)(X)
as follows:

BSp(x),q(x)(X) := BSp(x)(X) +BSq(x)(X)

=
{
f = h+ ϕ ∈M(R,X) : h ∈ BSp(x)(X) and ϕ ∈ BSq(x)(X)

}
.
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We equip BSp(x),q(x)(X) with the norm ‖ · ‖Sp(x),q(x) defined by

‖f‖Sp(x),q(x) := inf

{
‖h‖Sp(x) + ‖ϕ‖Sq(x) : f = h+ ϕ

}
.

Clearly,
(
BSp(x),q(x)(X), ‖ · ‖Sp(x),q(x)

)
is a Banach space, which, depending on

both p(·) and q(·), may or may not be translation-invariant.

Lemma 4.12 ([12]). Let p, q ∈ C+(R). Then the following continuous inclusion
holds,(
BC(R,X), ‖ · ‖∞

)
↪→
(
BSp(x)(X), ‖ · ‖Sp(x)

)
↪→
(
BSp(x),q(x)(X), ‖ · ‖Sp(x),q(x)

)
.

Definition 4.13. Let p ≥ 1 be a constant. A function f ∈ BSp(X) is said to
be Sp-almost automorphic (or Stepanov-like almost automorphic function) if f b ∈
AA
(
Lp((0, 1),X)

)
. That is, a function f ∈ Lploc(R,X) is said to be Stepanov-

like almost automorphic if its Bochner transform f b : R → Lp(0, 1;X) is almost
automorphic in the sense that for every sequence of real numbers (s′n)n, there
exists a subsequence (sn)n and a function g ∈ Lploc(R,X) such that(∫ 1

0

‖f(t+s+sn)−g(t+s)‖pds
)1/p

→ 0,
(∫ 1

0

‖g(t+s−sn)−f(t+s)‖pds
)1/p

→ 0

as n → ∞ pointwise on R. The collection of such functions will be denoted by
Spaa(X).

Remark 4.14. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R,X) is Sq-almost
automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is
Sp-almost automorphic for any 1 ≤ p <∞.

Remark 4.15. There are some difficulties in defining S
p(x)
aa (X) for a function p ∈

C+(R) that is not necessarily constant. This is mainly due to the fact that the
space BSp(x)(X) is not always translation-invariant.

Taking into account Remark 4.15, we introduce the concept of weighted Sp,q(x)-
pseudo-almost automorphy as follows, which obviously generalizes the notion of
weighted Sp-pseudo-almost automorphy.

Definition 4.16. Let µ ∈ M, p ≥ 1 be a constant and let q ∈ C+(R). A
function f ∈ BSp,q(x)(X) is said to be weighted Sp,q(x)-pseudo-almost automor-
phic (or weighted Stepanov-like pseudo-almost automorphic with variable expo-
nents p, q(x)) if it can be decomposed as f = h + ϕ, where h ∈ Spaa(X) and

ϕb ∈ E (Lq
b(x)((0, 1),X), µ

)
, i.e.,

lim
r→∞

1

µ(Qr)

∫
Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥ϕ(x+ t)

λ

∥∥∥p(x+t)

dx ≤ 1

}
dµ(t) = 0.

The collection of such functions will be denoted by S
p,q(x)
paa (X, µ).

Proposition 4.17. Let r, s ≥ 1, p, q ∈ D+(R) , µ ∈ M. If s ≤ r, q(·) ≤ p(·) and
f ∈ BSr,p(x)(X) is weighted Sr,p(x)-pseudo-almost automorphic, then f is weighted
Ss,q(x)-pseudo-almost automorphic.
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Proof. Suppose that f ∈ BSr,p(x)(X) is Sr,p(x)-pseudo-almost automorphic. Thus
there exist two functions h, ϕ : R→ X such that f = h+ ϕ, where h ∈ Sraa(X) and

ϕb ∈ E (Lp
b(x)((0, 1),X), µ

)
. From remark 4.14, h is Ss-almost automorphic.

From µ(R) = ∞, we deduce the existence of r0 ≥ 0 such that µ(Qr) > 0 for
all r ≥ r0. By using Corollary 4.5 and the fact that q(·) ≤ q+ ≤ p− ≤ p(·) and

ϕb ∈ E (Lp
b(x)((0, 1),X), µ

)
, one has

1

µ(Qr)

∫
Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥ϕ(x+ t)

λ

∥∥∥q(x+t)

dx ≤ 1

}
dµ(t)

≤ 4

µ(Qr)

∫
Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥ϕ(x+ t)

λ

∥∥∥p(x+t)

dx ≤ 1

}
dµ(t).

that is ϕb ∈ E (Lq
b(x)((0, 1),X), µ

)
and hence f is weighted Ss,q(x)-pseudo-almost

automorphic. �

Proposition 4.18. Let p ≥ 1 be a constant, q ∈ C+(R) and let µ ∈ N2. Then

PAA(X, µ) ⊂ Sp,q(x)
paa (X, µ).

Proof. Let f ∈ PAA(X, µ). Thus there exist two functions h, ϕ : R → X such
that f = h + ϕ, where h ∈ AA(X) and ϕ ∈ E

(
X, µ

)
. Now from remark 4.14,

h ∈ AA(X) ⊂ Spaa(X). The proof of ϕb ∈ E (Lq
b(x)((0, 1),X), µ

)
. was given in [14].

However for the sake of clarity, we reproduce it here. From µ(R) = ∞, we deduce
the existence of r0 ≥ 0 such that µ(Qr) > 0 for all r ≥ r0.

Using (e)-(f) of Proposition 4.2, the usual Hölder inequality and Fubini’s theorem
it follows that∫

Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥ϕ(x+ t)

λ

∥∥∥q(x+t)

dx ≤ 1

}
dµ(t)

≤
∫
Qr

(∫ 1

0

‖ϕ(t+ x)‖q(t+x) dx

)γ
dµ(t)

≤ (µ(Qr))
1−γ

[∫
Qr

(∫ 1

0

‖ϕ(t+ x)‖q(t+x) dx

)
dµ(t)

]γ

≤ (µ(Qr))
1−γ

[∫
Qr

(∫ 1

0

‖ϕ(t+ x)‖. ‖ϕ‖q(t+x)−1
∞ dx

)
dµ(t)

]γ

≤ (µ(Qr))
1−γ
(
‖ϕ‖∞ + 1

)γ(q+−1)
[∫

Qr

(∫ 1

0

‖ϕ(t+ x)‖ dx

)
dµ(t)

]γ

= (µ(Qr))
1−γ
(
‖ϕ‖∞ + 1

)γ(q+−1)
[∫ 1

0

(∫
Qr

‖ϕ(t+ x)‖ dµ(t)

)
dx

]γ

= (µ(Qr))
(
‖ϕ‖∞ + 1

)γ(q+−1)
[∫ 1

0

(
1

µ(Qr)

∫
Qr

‖ϕ(t+ x)‖ dµ(t)

)
dx

]γ
,
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where

γ =


1
q+ if ‖ϕ‖ < 1,

1
q− if ‖ϕ‖ ≥ 1.

Using the fact that E (X, µ) is translation invariant and the (usual) Dominated
Convergence Theorem, it follows that

lim
r→+∞

1

µ(Qr)

∫
Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥ϕ(x+ t)

λ

∥∥∥q(x+t)

dx ≤ 1

}
dµ(t)

≤
(
‖ϕ‖∞ + 1

)γ(q+−1)
[∫ 1

0

(
lim

r→+∞

1

µ(Qr)

∫
Qr

‖ϕ(t+ x)‖ dµ(t)

)
dx

]γ
= 0.

�

Theorem 4.19. Let p, q ≥ 1 be constants, µ ∈ N2 and f ∈ Sp,qpaa(X, µ) be such
that

f = h+ ϕ

where hb ∈ AA
(
Lp((0, 1),X)

)
and ϕb ∈ E (Lq((0, 1),X), µ

)
. Then{

h(t+ .) : t ∈ R
}
⊂
{
f(t+ .) : t ∈ R

}
, in BSp,q(X).

Proof. We prove it by contradiction. Indeed, if this is not true, then there exists
t0 ∈ R and an ε > 0 such that

‖h(t0 + ·)− f(t+ ·)‖Sp,q ≥ 2ε, t ∈ R.

Since hb ∈ AA
(
Lp((0, 1),X)

)
and

(
BSp(X), ‖ · ‖Sp

)
↪→
(
BSp,q(X), ‖ · ‖Sp,q

)
, fix

t0 ∈ R, ε > 0 and write, Bε := {τ ∈ R; ‖h(t0 + τ + ·)− g(t0 + ·)‖Sp,q < ε}. By [23,
Lemma 2.1], there exist s1, . . . , sm ∈ R such that

∪mi=1(si +Bε) = R.

Write

ŝi = si − t0 (1 ≤ i ≤ m), η = max
1≤i≤m

|ŝi|.

For r ∈ R with |r| > η; we put

B(i)
ε,r = [−r + η − ŝi, r − η − ŝi] ∩ (t0 +Bε), 1 ≤ i ≤ m,

one has ∪mi=1(ŝi +B
(i)
ε,r) = [−r + η, r − η].

Letting µτ ({a + τ : a ∈ A}) for A ∈ B, from µ ∈ N2 it follows that µ and µτ
are equivalent (see Definitions 4.22). Using the fact that B

(i)
ε,r ⊂ [−r, r]∩ (t0 +Bε),



WEIGHTED STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC SPACE 139

i = 1, . . . ,m, we obtain

µ(Qr−η) = µ([−r + η, r − η])

≤
m∑
i=1

µ(ŝi +B(i)
ε,r)

≤ β
m∑
i=1

µ(B(i)
ε,r)

≤ mβ max
1≤i≤m

{
µ(B(i)

ε,r)
}

≤ mβ µ([−r, r] ∩ (t0 +Bε)),

On the other hand, by using the Minkowski inequality, for any t ∈ t0 +Bε, one has

‖ϕ(t+ ·)‖Sq = ‖ϕ(t+ ·)‖Sp,q
= ‖f(t+ ·)− h(t+ ·)‖Sp,q
≥ ‖h(t0 + ·)− f(t+ ·)‖Sp,q − ‖h(t+ ·)− h(t0 + ·)‖Sp,q > ε.

Then
1

µ(Qr)

∫
Qr

‖ϕ(t+ ·)‖Sq dµ(t) ≥ 1

µ(Qr)

∫
Qr∩(t0+Bε)

‖ϕ(t+ ·)‖Sq dµ(t)

≥ ε

µ(Qr)

∫
Qr∩(t0+Bε)

dµ(t)

=
ε

µ(Qr)
µ
(
Qr ∩ (t0 +Bε)

)
≥ εµ(Qr−η)

µ(Qr)
(mβ)−1 → ε(mβ)−1, as r →∞.

This is a contradiction, since ϕb ∈ E (Lq((0, 1),X), µ
)
. �

Corollary 4.20. Let p, q ≥ 1 be constants and µ ∈ N1. Then the decomposition
of a Sp,q-µ-pseudo-almost automorphic function in the form f = h + ϕ where
hb ∈ AA

(
Lp((0, 1),X)

)
and ϕb ∈ E (Lq((0, 1),X), µ

)
, is unique.

Proof. Suppose that f = h1 +ϕ1 = h2 +ϕ2 where hb1, h
b
2 ∈ AA

(
Lp((0, 1),X)

)
and

ϕb1, ϕ
b
1 ∈ E

(
Lq((0, 1),X), µ

)
. Then 0 = (h1 − h2) + (ϕ1 − ϕ2) ∈ Sp,qpaa(X, µ) where

hb1−hb2 ∈ AA
(
Lp((0, 1),X)

)
and ϕb1−ϕb1 ∈ E (Lq((0, 1),X), µ

)
. From Theorem 4.19

we obtain (h1 − h2)(R) ⊂ {0}, therefore one has h1 = h2 and ϕ1 = ϕ2.
�

Theorem 4.21. Let p, q ≥ 1 be constants and µ ∈ N1. The space Sp,qpaa(X, µ)
equipped with the norm ‖ · ‖Sp,q is a Banach space.

Proof. It suffices to prove that Sp,qpaa(X, µ) is a closed subspace of BSp,q(X). Let

fn = hn + ϕn be a sequence in Sp,qpaa(X, µ) with (hbn)n∈N ⊂ AA
(
Lp((0, 1),X)

)
and

(ϕbn)n∈N ⊂ E (Lq((0, 1),X), µ
)

such that ‖fn − f‖Sp,q → 0 as n→∞. By Theorem
4.19, one has

{hn(t+ .) : t ∈ R} ⊂ {fn(t+ .) : t ∈ R},
and hence

‖hn‖Sp = ‖hn‖Sp,q ≤ ‖fn‖Sp,q for all n ∈ N.
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Consequently, there exists a function h ∈ Spaa(X) such that ‖hn−h‖Sp → 0 as n→
∞. Using the previous fact, it easily follows that the function ϕ := f −h ∈ BSq(X)
and that ‖ϕn − ϕ‖Sq = ‖(fn − hn)− (f − h)‖Sq → 0 as n→∞. From µ(R) =∞,
we deduce the existence of r0 ≥ 0 such that µ(Qr) > 0 for all r ≥ r0. Using the
fact that ϕ = (ϕ− ϕn) + ϕn and the triangle inequality, it follows that

1

µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥ϕ(τ + t)
∥∥∥qdτ) 1

q

dµ(t)

≤ 1

µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥ϕ(τ + t)− ϕn(τ + t)
∥∥∥qdτ) 1

q

dµ(t)

+
1

µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥ϕn(τ + t)
∥∥∥qdτ) 1

q

dµ(t)

≤ ‖ϕn − ϕ‖Sq +
1

µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥ϕn(τ + t)
∥∥∥qdτ) 1

q

dµ(t).

Letting r → +∞ and then n→∞ in the previous inequality yields

ϕb ∈ E (Lq((0, 1),X), µ
)
,

that is, f = h+ ϕ ∈ Sp,qpaa(X, µ). �

Definition 4.22 ([4]). Let µ1, µ2 ∈M. µ1 is said to be equivalent to µ2 (µ1 ∼ µ2)
if there exist constants α, β > 0 and a bounded interval I (eventually I 6= ∅) such
that

αµ1(A) ≤ µ2(A) ≤ βµ1(A), for all A ∈ B such that A ∩ I = ∅.

Theorem 4.23. Let p ≥ 1 be a constant, q ∈ C+(R) and µ1, µ2 ∈ M. If µ1 and

µ2 are equivalent, then S
p,q(x)
paa (X, µ1) = S

p,q(x)
paa (X, µ2).

Proof. The proof is similar to that of [4, Theorem 2.21]. Since µ1 ∼ µ2, and B is
the Lebesgue σ-field of R, we obtain for r sufficiently large

α

β

µ1

({
t ∈ Qr \ I : ‖f(t)‖Sp,q(·) > ε

})
µ(Qr \ I)

≤
µ2

({
t ∈ Qr \ I : ‖f(t)‖Sp,q(·) > ε

})
µ(Qr \ I)

≤ β

α

µ1

({
t ∈ Qr \ I : ‖f(t)‖Sp,q(·) > ε

})
µ(Qr \ I)

.

By using Theorem 2.5, we deduce that

E (Lq
b(x)((0, 1),X), µ1

)
= E (Lq

b(x)((0, 1),X), µ1

)
.

From the definition of a weighted Sp,q(x)-pseudo-almost automorphic function, we

deduce that S
p,q(x)
paa (X, µ1) = S

p,q(x)
paa (X, µ2). �

Definition 4.24. A function F : R × Y → X with F (., u) ∈ BSp,q(x)(X) for each
u ∈ Y, is said to be Sp,q(x)-µ-pseudo-almost automorphic in t ∈ R uniformly in
u ∈ Y if t 7→ F (t, u) is Sp,q(x)-µ-pseudo-almost automorphic for each u ∈ B where
B ⊂ Y is an arbitrary bounded set.
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This means, there exist two functions G,H : R× Y→ X such that F = G+H,

where Gb ∈ AA(Y, Lp((0, 1),X)) and Hb ∈ E
(
Y, Lqb(x)((0, 1),X), µ

)
, that is,

lim
r→+∞

1

µ(Qr)

∫
Qr

inf

{
λ > 0 :

∫ 1

0

∥∥∥H(x+ t, u)

λ

∥∥∥q(x+t)

dx ≤ 1

}
dµ(t) = 0,

uniformly in u ∈ B where B ⊂ Y is an arbitrary bounded set.

The collection of such functions will be denoted by S
p,q(x)
paa (Y,X, µ).

Let Lipr(Y,X) denote the collection of functions f : R×Y→ X satisfying: there
exists a nonnegative function Lbf ∈ Lr(R) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖Y for all u, v ∈ Y, t ∈ R. (4.1)

Now, we recall the following composition theorem for Spaa functions.

Theorem 4.25 ([16]). Let p > 1 be a constant. We suppose that the following
conditions hold:
(a) f ∈ Spaa(Y,X) ∩ Lipr(Y,X) with r ≥ max{p, p

p−1}.
(b) φ ∈ Spaa(X) and there exists a set E ⊂ R such that K := {φ(t) : t ∈ R \ E} is

compact in X.
Then there exists m ∈ [1, p) such that f(·, φ(·)) ∈ Smaa(X).

To obtain the composition theorem for weighted Sp,q functions, we need the
following lemma.

Lemma 4.26. Let p, q > 1 be constants and let µ ∈ N2. Assume that f = g+h ∈
Sp,qpaa(Y,X, µ) with gb ∈ AA(Y, Lp((0, 1),X)

)
and hb ∈ E

(
Y, Lq((0, 1),X), µ

)
. If

f ∈ Lipp(Y,X), then g satisfies(∫ 1

0

‖g(t+ s, u(s))− g(t+ s, v(s))‖p ds
)1/p

≤ c‖Lf‖Sp‖u− v‖Y.

for all u, v ∈ Y and t ∈ R, where c is a nonnegative constant.

Proof. The proof is similar to that of [13, Lemma 4.19]. So we omit it. �

Theorem 4.27. Let p, q > 1 be constants such that p ≤ q and µ ∈ N2. Suppose
that the following conditions hold:
(a) f = g + h ∈ Sp,qpaa(Y,X, µ) with gb ∈ AA

(
Y, Lp((0, 1),X)

)
and

hb ∈ E
(
Y, Lq((0, 1),X), µ

)
. Further, f, g ∈ Lipr(Y,X) with r ≥ max{p, p

p−1}.
(b) φ = α+β ∈ Sp,qpaa(Y) with αb ∈ AA

(
Lp((0, 1),Y)

)
and βb ∈ E

(
Lq((0, 1),Y), µ

)
,

and there exists a set E ⊂ R with mes (E) = 0 such that

K := {α(t) : t ∈ R \ E}
is compact in Y.

Then, there exists m ∈ [1, p) such that f(·, φ(·)) ∈ Sm,mpaa

(
Y,X, µ

)
.

Proof. We will make use of ideas of [13, Theorem 4.20]. Indeed, decompose f b as
follows:

f b(·, φb(·)) = gb(·, αb(·)) + f b(·, φb(·))− f b(·, αb(·)) + hb(·, αb(·)).
From Lemma 4.26, one has g ∈ Spaa(R×X). Now using the theorem of composition
of Sp-almost automorphic functions (Theorem 4.25), it is easy to see that there
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exists m ∈ [1, p) with 1
m = 1

p + 1
r such that gb(·, αb(·)) ∈ AA(Y, Lm((0, 1),X)). Set

Φb(·) = f b(·, φb(·)) − f b(·, αb(·)). Clearly, Φb ∈ E (R × Lm((0, 1),X), µ). Indeed,
from µ(R) =∞, there exists r0 > 0 such that, for all r > r0, one has

1

µ(Qr)

∫
Qr

(∫ t+1

t

‖Φb(s)‖mds

)1/m

dµ(t)

=
1

µ(Qr)

∫
Qr

(∫ t+1

t

‖f b(s, φb(s))− f b(s, αb(s))‖mds

)1/m

dµ(t)

≤ 1

µ(Qr)

∫
Qr

(∫ t+1

t

(
Lbf (s)‖βb(s)‖Y

)m
ds

)1/m

dµ(t)

≤ ‖Lbf‖Sr
[ 1

µ(Qr)

∫
Qr

(∫ t+1

t

‖βb(s)‖pYds

)1/p

dµ(t)
]

≤ ‖Lbf‖Sr
[ 1

µ(Qr)

∫
Qr

(∫ t+1

t

‖βb(s)‖qYds

)1/q

dµ(t)
]
.

Using the fact that βb ∈ E (Lq((0, 1),Y)
)
, it follows that Φb ∈ E (R×Lm((0, 1),X)).

On the other hand, since f, g ∈ Lipr(R,X) ⊂ Lipp(R,X), one has(∫ 1

0

‖h(t+ s, u(s))− h(t+ s, v(s))‖mds
)1/m

≤
(∫ 1

0

‖f(t+ s, u(s))− f(t+ s, v(s))‖mds
)1/m

+
(∫ 1

0

‖g(t+ s, u(s))− g(t+ s, v(s))‖mds
)1/m

≤
(∫ 1

0

(
Lf (t+ s)‖u(s)− v(s)‖Y

)m
ds
)1/m

+
(∫ 1

0

(
Lg(t+ s)‖u(s)− v(s)‖Y

)m
ds
)1/m

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
‖u(s)− v(s)‖p.

Since K := {α(t) : t ∈ R} is compact in Y, then for each ε > 0, there exists a
finite number of open balls Bk = B(xk, ε), centered at xk ∈ K with radius ε such
that

{α(t) : t ∈ R} ⊂ ∪mk=1Bk.

Therefore, for 1 ≤ k ≤ m, the set Uk = {t ∈ R : α ∈ Bk} is open and R = ∪mk=1Uk.

Now, for 2 ≤ k ≤ m, set Vk = Uk − ∪k−1
i=1 Ui and V1 = U1. Clearly, Vi ∩ Vj = ∅ for

all i 6= j. Define the step function x : R → Y by x(t) = xk, t ∈ Vk, k = 1, 2, . . . ,m.
It easy to see that

‖α(s)− x(s)‖Y ≤ ε, for all s ∈ R.
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which yields

1

µ(Qr)

∫
Qr

(∫ t+1

t

‖h(s, α(s))‖mds

)1/m

dµ(t)

≤ 1

µ(Qr)

∫
Qr

(∫ t+1

t

‖h(s, α(s))− h(s, x(s))‖mds

)1/m

dµ(t)

+
1

µ(Qr)

∫
Qr

(∫ t+1

t

‖h(s, x(s))‖mds

)1/m

dµ(t)

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
ε+

1

µ(Qr)

∫
Qr

(
m∑
k=1

∫
Vk∩[t,t+1]

‖h(s, x(s))‖mds

)1/m

dµ(t)

≤
(
‖Lf‖Sr + ‖Lg‖Sr

)
ε+

1

µ(Qr)

∫
Qr

(
m∑
k=1

∫
Vk∩[t,t+1]

‖h(s, x(s))‖qds

)1/q

dµ(t).

Since ε is arbitrary and hb ∈ E (R × Lq((0, 1),X)
)
, it follows that the function

hb(·, αb(·)) belongs to E (R× Lm((0, 1),X)). This completes the proof. �

Remark 4.28. A general composition theorem in S
p,q(x)
paa (R × X) is unlikely as

compositions of elements of S
p,q(x)
paa (R×X, µ) may not be well-defined unless q(·) is

the constant function.

5. Application to Abstract Evolution Equations

Fix µ ∈ N2, p, q > 1, and ϑ ∈ C+(R). To study the existence of a weighted
pseudo-almost automorphic solution to Eq. (1.1) with weighted Sp,qpaa coefficients
we will assume that the following assumptions hold:

(H1) The family of closed linear operators A(t) for t ∈ R on X with domain D(A(t))
(possibly not densely defined) satisfy the Acquistapace and Terreni conditions,
the evolution family of operators U = {U(t, s)}t≥s generated by A(·) has an
exponential dichotomy with constants N, δ > 0 and dichotomy projections
P (t) (t ∈ R). Moreover, 0 ∈ ρ(A) for each t ∈ R and the following hold

sup
t,s∈R
‖A(s)A−1(t)‖B(X,Xβ) < c1 (5.1)

(H2) There exists 0 ≤ α < β < 1 such that Xtα = Xα and Xtβ = Xβ for all t ∈ R, with

uniform equivalent norms. Let c2(α), c3, c4 be the bounds of the continuous
injections Xβ ↪→ Xα,Xα ↪→ X,Xβ ↪→ X.

(H3) The function R × R → X, (t, s) → A(s)Γ(t, s)y ∈ bAA(T,Xα) uniformly for
y ∈ Xβ .

(H4) The function R× R→ X, (t, s)→ Γ(t, s)y ∈ bAA(T,Xα) uniformly for y ∈ X.
(H5) The linear operators B(t), C(t) : Xα → X are bounded uniformly in t ∈ R.

Moreover, both t 7→ B(t) and t 7→ C(t) belong to AA(B(Xα,X)). We then set

c5 := max
(
sup
t∈R
‖B‖B(Xα,X), sup

t∈R
‖C‖B(Xα,X)

)
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(H6) The function f = h + ϕ ∈ Sp,qpaa(X,Xβ , µ) while g = h′ + ϕ′ ∈ Sp,qpaa(X,X, µ).
Moreover; f, h ∈ Lipr(R,Xβ) and g, h′ ∈ Lipr(R,X). with

r ≥ max

{
p,

p

p− 1

}
.

Definition 5.1. A continuous function u : R→ Xα is said to be a mild solution to
(1.1) provided that the functions s→ A(s)U(t, s)P (s)f(s,B(s)u(s))
and s→ A(s)U(t, s)Q(s)f(s,B(s)u(s)) are integrable on (t, s) and

u(t) = −f(t, B(t)u(t)) + U(t, s)(u(s) + f(s,B(s)u(s)))

−
∫ t

s

A(s)U(t, s)P (s)f(s,B(s)u(s))ds+

∫ s

t

A(s)U(t, s)Q(s)f(s,B(s)u(s))ds

+

∫ t

s

U(t, s)P (s)g(s, C(s)u(s))ds−
∫ s

t

U(t, s)Q(s)g(s, C(s)u(s))ds

for t ≥ s and for all t, s ∈ R.

Under previous assumptions (H1)–(H6), it can be easily shown that (1.1) has a
unique mild solution given by

u(t) = −f(t, B(t)u(t))−
∫ t

−∞
A(s)U(t, s)P (s)f(s,B(s)u(s))ds

+

∫ ∞
t

A(s)UQ(t, s)Q(s)f(s,B(s)u(s))ds+

∫ t

−∞
U(t, s)P (s)g(s, C(s)u(s))ds

−
∫ ∞
t

UQ(t, s)Q(s)g(s, C(s)u(s))ds

for each t ∈ R.
The proof of our main result requires the next technical lemmas:

Lemma 5.2. Under assumption (H5), if u ∈ PAA(Xα, µ), then B(·)u(·) and
C(·)u(·) belong to PAA(X, µ).

Proof. We will make use of ideas of [8, Lemma 3.2]. Let u = h+ϕ ∈ PAA(Xα, µ)
where h ∈ AA(Xα) and ϕ ∈ E

(
Xα, µ

)
, then B(·)u(·) = B(·)h(·) + B(·)ϕ(·). First,

it is easy to see that B(·)u(·) ∈ BC(R,Xα). Since h ∈ AA(Xα), for every sequence
of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and a measurable
function g1 such that

lim
n→∞

‖h(sn + s)− g1(s)‖α = 0,

and
lim
n→∞

‖g1(s− sn)− h(s)‖α = 0

for each t ∈ R.
Since B(·) ∈ AA(B(Xα,X)), there exists a subsequence (snk)k∈N of (sn)n∈N and a
measurable function g2 such that

‖B(snk + s)− g2(s)‖B(Xα,X) → 0,

and
‖g2(s− snk)−B(s)‖B(Xα,X) → 0

as k →∞ for each t ∈ R.
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By using the triangle inequality, one has

‖B(snk + s)h(snk + s)− g2(s)g1(s)‖ ≤ ‖B(snk + s)h(snk + s)−B(snk + s)g1(s)‖
+ ‖B(snk + s)g1(s)− g2(s)g1(s)‖
≤ c5‖h(snk + s)− g1(s)‖Xα + ‖g1‖∞‖B(snk + s)− g2(s)‖B(Xα,X).

Then,

lim
n→∞

‖B(snk + s)h(snk + s)− g2(s)g1(s)‖ = 0,

Analogously, one can prove that

lim
n→∞

‖g2(s− snk)g1(s− snk)−B(s)h(s)‖ = 0.

Hence, B(·)h(·) ∈ AA(X).
To complete the proof, it suffices to notice that for r sufficiently large

1

µ(Qr)

∫
Qr

‖B(s)ϕ(s)‖ dµ(s) ≤ c5
µ(Qr)

∫
Qr

‖ϕ(s)‖Xα dµ(s)

and hence,

lim
r→∞

1

µ(Qr)

∫
Qr

‖B(s)ϕ(s)‖ dµ(s) = 0.

�

Lemma 5.3 ([11]). For each x ∈ X, suppose that Assumptions (H1)–(H2) hold
and let α, β be real numbers such that 0 < α < β < 1 with 2β > α+ 1, then there
are constants r(α, β), r

′
(α, β), d(β) > 0 such that

‖A(t)U(t, s)P (s)x‖β ≤ r
′
(α, β)e

−δ
4 (t−s)(t− s)−β‖x‖, t > s (5.2)

‖A(s)U(t, s)P (s)x‖β ≤ r(α, β)e
−δ
4 (t−s)(t− s)−β‖x‖, t > s (5.3)

and

‖A(s)ŨQ(s, t)Q(t)x‖β ≤ d(β)e−δ(s−t)‖x‖, t ≤ s (5.4)

Lemma 5.4. Under assumptions (H1)–(H6), the integral operators Γ1 and Γ2

defined by

(Γ1u)(t) :=

∫ t

−∞
A(s)U(t, s)P (s)f(s,B(s)u(s))ds

and

(Γ2u)(t) :=

∫ ∞
t

A(s)UQ(t, s)Q(s)f(s,B(s)u(s))ds

map PAA(Xα, µ) into itself.

Proof. Let u ∈ PAA(Xα, µ). By Lemma (5.2) one has B(·)u(·) ∈ PAA(X, µ) ⊂
Sp,qpaa(X, µ). Using the composition theorem for weighted Sp,qpaa functions, we deduce

that F (t) := f(t, B(t)u(t)) ∈ Sp,qpaa(Xβ , µ). Now write F = φ + ψ, where φb ∈
AA
(
Lp((0, 1),Xβ)

)
and ψb ∈ E

(
Lq((0, 1),Xβ), µ

)
. Then Γ1 can be decomposed as

(Γ1u)(t) = Φ(t) + Ψ(t)

where

Φ(t) =

∫ t

−∞
A(s)U(t, s)P (s)φ(s)ds and Ψ(t) =

∫ t

−∞
A(s)U(t, s)P (s)ψ(s)ds,
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Clearly Φ ∈ AA(Xα). Indeed; for each t ∈ R and k ∈ N; we set

Φk(t) :=

∫ k

k−1

A(t−s)U(t, t−s)P (t−s)φ(t−s)ds =

∫ t−k+1

t−k
A(s)U(t, s)P (s)φ(s)ds,

Let d > 1 such that 1
p + 1

d = 1, where p > 1. Using Eq. (5.3) and the Hölder’s

inequality, it follows that

‖Φk(t)‖α ≤ c2(α)‖Φk(t)‖β ≤ c2(α)r(α, β)

∫ t−k+1

t−k
e
−δ
4 (t−s)(t− s)−β‖φ(s)‖βds

≤ c2(α)r(α, β)
[ ∫ t−k+1

t−k
e
−dδ
4 (t−s)(t− s)−dβds

]1/d
×
[ ∫ t−k+1

t−k
‖φ(s)‖pβds

]1/p
≤ c2(α)r(α, β)

[ ∫ k

k−1

e
−dδ
4 ss−dβds

]1/d
‖φ‖Sp(Xβ)

≤ c2(α)r(α, β) d

√
1 + e

dδ
4

dδ
4

(k − 1)−βe
−δ
4 k‖φ‖Sp(Xβ)

:= Cd(α, β, δ)‖φ‖Sp(Xβ).

Since the series

∞∑
k=1

(
(k − 1)−βe

−δ
4 k
)

is convergent, we deduce from the well-

known Weierstrass test that the series

∞∑
k=1

Φk(t) is uniformly convergent on R.

Furthermore

Φ(t) =

∫ t

−∞
A(s)U(t, s)P (s)φ(s)ds =

∞∑
k=1

Φk(t),

Φ ∈ C(R,Xα) and

‖Φ(t)‖α ≤
∞∑
k=1

‖Φk(t)‖α ≤
∞∑
k=1

Cd(α, β, δ)‖φ‖Sp(Xβ).

Fix k ∈ N, let us take a sequence (s′n)n of real numbers. Since φb ∈ AA
(
Lp((0, 1),Xβ)

)
and A(s)U(t, s)P (s)y ∈ bAA(T,Xα) uniformly for y ∈ Xβ , then for every sequence
(s′n)n there exists a subsequence (sn)n and functions θ, h such that

lim
n→∞

A(s+sn)U(t+sn, s+sn)P (s+sn)x = θ(t, s)x for each t, s ∈ R, x ∈ Xβ . (5.5)

lim
n→∞

θ(t− sn, s− sn)x = A(s)U(t, s)P (s)x for each t, s ∈ R, x ∈ Xβ . (5.6)

lim
n→∞

‖φ(t+ sn + ·)− h(t+ ·)‖Sp(Xβ) = 0, for each t ∈ R. (5.7)

lim
n→∞

‖h(t− sn + ·)− φ(t+ ·)‖Sp(Xβ) = 0 for each t ∈ R. (5.8)

We set

Gk(t) :=

∫ k

k−1

θ(t, t− s)h(t− s)ds.
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Using triangle inequality, we obtain that

‖Φk(t+ sn)−Gk(t)‖α ≤ akn(t) + bkn(t),

where

akn(t) :=

∫ k

k−1

∥∥A(t+sn−s)U(t+sn, t+sn−s)P (t+sn−s) (φ(t+ sn − s)− h(t− s))
∥∥
α
ds,

and

bkn(t) :=

∫ k

k−1

∥∥ [A(t+ sn − s)U(t+ sn, t+ sn − s)P (t+ sn − s)− θ(t, t− s)]h(t−s)
∥∥
α
ds

Using Eq. (5.3) and the Hölder’s inequality it follows that

akn(t) ≤ Cd(α, β, δ)‖φ(t+ sn − s)− h(t− s)‖Sp(Xβ).

Then, by (5.7), lim
n→∞

akn(t) = 0. Again, using the Lebesgue dominated convergence

theorem and (5.5), one can get lim
n→∞

bkn(t) = 0. Thus,

lim
n→∞

Φk(t+ sn) =

∫ k

k−1

θ(t, t− σ)h(t− σ)dσ, for each t ∈ R.

Analogously, one can prove that

lim
n→∞

∫ k

k−1

θ(t− sn, t− sn − s)h(t− sn − s)ds = Φk(t), for each t ∈ R.

Therefore, Φk ∈ AA(Xα). Applying Proposition (2.2), we deduce that the uniform
limit

Φ(·) =

∞∑
k=1

Φk(·) ∈ AA(Xα).

Now, we prove that Ψ ∈ E
(
Xα, µ

)
. For this; for each t ∈ R and k ∈ N; we set

Ψk(t) :=

∫ k

k−1

A(t−s)U(t, t−s)P (t−s)ψ(t−s)ds =

∫ t−k+1

t−k
A(s)U(t, s)P (s)ψ(s)ds.

By carrying similar arguments as above, we deduce that Ψk(t) ∈ BC(R,Xα),∑∞
k=1 Ψk(t) is uniformly convergent on R and

Ψ(t) =

∞∑
k=1

Ψk(t) =

∫ t

−∞
A(s)U(t, s)P (s)ψ(s)ds ∈ BC(R,Xα).

To complete the proof, it remains to show that

lim
r→∞

1

µ(Qr)

∫
Qr

‖Ψ(t)‖α dµ(t) = 0.
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In fact, the estimate in Eq. (5.3) yields

‖Ψk(t)‖α ≤ c2(α)r(α, β)

(∫ t−k+1

t−k
e
−δ
4 (t−s)(t− s)−β‖ψ(s)‖βds

)

≤ c2(α)r(α, β) d′

√√√√1 + e
d′δ
4

d′δ
4

(k − 1)−βe
−δ
4 k

(∫ t−k+1

t−k
‖ψ(s)‖qβds

)1/q

= Cd′(α, β, δ)

(∫ t−k+1

t−k
‖ψ(s)‖qβds

)1/q

,

where d′ > 1 such that 1
q + 1

d′ = 1. Then, one has

1

µ(Qr)

∫
Qr

‖Ψk(t)‖α dµ(t) ≤ Cd′(α, β, δ)

µ(Qr)

∫
Qr

(∫ t−k+1

t−k
‖ψ(s)‖qβds

)1/q

dµ(t)

≤ Cd′(α, β, δ)

µ(Qr)

∫
Qr

(∫ 1

0

‖ψ(s+ t− k)‖qβds
) 1
q

dµ(t).

Since ψb ∈ E
(
Lq((0, 1),Xβ), µ

)
, the above inequality leads to Ψk ∈ E

(
Xα, µ). Then

by the following inequality

1

µ(Qr)

∫
Qr

‖Ψ(t)‖α dµ(t) ≤ 1

µ(Qr)

∫
Qr

‖Ψ(t)−
∞∑
k=1

Ψk(t)‖α dµ(t)

+

∞∑
k=1

1

µ(Qr)

∫
Qr

‖Ψk(t)‖α dµ(t),

we deduce that the uniform limit Ψ(·) =
∑∞
k=1 Ψk(·) ∈ E

(
Xα, µ), which ends the

proof.
Of course, the proof for (Γ2u)(·) is similar to that for (Γ1u)(·). However, one

makes use of Eq. (5.4) rather than Eq. (5.3). �

Lemma 5.5. Under assumptions (H1)–(H6), the integral operators Γ3 and Γ4

defined by

(Γ3u)(t) :=

∫ t

−∞
U(t, s)P (s)g(s, C(s)u(s))ds

and

(Γ4u)(t) :=

∫ ∞
t

UQ(t, s)Q(s)g(s, C(s)u(s))ds

map PAA(Xα, µ) into itself.

Proof. Let u ∈ PAA(Xα, µ), since C(·) ∈ AA(B(Xα,X)); by Lemma (5.2); it fol-
lows that C(·)u(·) ∈ PAA(X, µ) ⊂ Sp,qpaa(X, µ) Using the composition theorem for
weighted Sp,qpaa functions (Theorem (4.27)), we deduce that G(t) := g(t, C(t)u(t)) ∈
Sp,qpaa(X, µ).Now writeG = φ+ψ, where φb ∈ AA

(
Lp((0, 1),X)

)
and ψb ∈ E

(
Lq((0, 1),X), µ

)
.

Thus Γ3 can be rewritten as

(Γ3u)(t) = Φ(t) + Ψ(t),
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where

Φ(t) =

∫ t

−∞
U(t, s)P (s)φ(s)ds and Ψ(t) =

∫ t

−∞
U(t, s)P (s)ψ(s)ds,

Now we will show that Φ ∈ AA(Xα). For each t ∈ R and k ∈ N we set

Φk(t) :=

∫ k

k−1

U(t, t− s)P (t− s)φ(t− s)ds =

∫ t−k+1

t−k
U(t, s)P (s)φ(s)ds.

Let d > 1 such that 1
p + 1

d = 1, where p > 1. Using Eq. (3.7) and the Hölder’s

inequality, it follows that

‖Φk(t)‖α ≤
∫ t−k+1

t−k
‖U(t, s)P (s)φ(s)‖αds

≤ n(α)

∫ t−k+1

t−k
e
−δ
2 (t−s)(t− s)−α‖φ(s)‖ds

≤ n(α)
[ ∫ t−k+1

t−k
e
−dδ
2 (t−s)(t− s)−dαds

]1/d
×
[ ∫ t−k+1

t−k
‖φ(s)‖pds

]1/p
≤ n(α)

[ ∫ k

k−1

e
−dδ
2 ss−dαds

]1/d
‖φ‖Sp(X)

≤ n(α) d

√
1 + e

dδ
2

dδ
2

(k − 1)−αe
−δ
2 k‖φ‖Sp(X)

:= Cd(α, δ)‖φ‖Sp(X).

Since the series

∞∑
k=1

(
(k − 1)−αe

−δ
2 k
)

is convergent, we deduce from the well-known

Weierstrass test that the series
∑∞
k=1 Φk(t) is uniformly convergent on R. Further-

more

Φ(t) =

∫ t

−∞
U(t, s)P (s)φ(s)ds =

∞∑
k=1

Φk(t),

Φ ∈ C(R,Xα) and

‖Φ(t)‖α ≤
∞∑
k=1

‖Φk(t)‖ ≤
∞∑
k=1

Cd(α, δ)‖φ‖Sp(X).

Fix k ∈ N, let us take a sequence (s′n)n of real numbers. Since φb ∈ AA
(
Lp((0, 1),X)

)
and U(t, s)y ∈ bAA(T,Xα) uniformly for y ∈ X, then for every sequence (s′n)n there
exists a subsequence (sn)n and functions θ, h such that

lim
n→∞

U(t+ sn, s+ sn)P (s+ sn)x = θ(t, s)x for each t, s ∈ R, x ∈ X. (5.9)

lim
n→∞

θ(t− sn, s− sn)x = U(t, s)P (s)x for each t, s ∈ R, x ∈ X. (5.10)

lim
n→∞

‖φ(t+ sn + ·)− h(t+ ·)‖Sp(X) = 0, for each t ∈ R. (5.11)

lim
n→∞

‖h(t− sn + ·)− φ(t+ ·)‖Sp(X) = 0 for each t ∈ R. (5.12)
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We set

Hk(t) :=

∫ k

k−1

θ(t, t− s)h(t− s)ds.

Using triangle inequality, Eq. (3.7) and the Hölder’s inequality, we obtain that

‖Φk(t+ sn)−Hk(t)‖α ≤ ckn(t) + dkn(t),

where

ckn(t) :=
∥∥∫ k

k−1

U(t+ sn, t+ sn − s)P (t+ sn − s) (φ(t+ sn − s)− h(t− s)) ds
∥∥
α

≤ n(α)

(∫ k

k−1

e
−δ
2 ss−α‖φ(t+ sn − s)− h(t− s)‖ds

)
≤ Cd(α, δ)‖φ(t+ sn − s)− h(t− s)‖Sp(X),

and

dkn(t) :=
∥∥∫ k

k−1

[U(t+ sn, t+ sn − s)P (t+ sn − s)− θ(t, t− s)]h(t− s)ds
∥∥
α

≤
∫ k

k−1

‖U(t+ sn, t+ sn − s)P (t+ sn − s)− θ(t, t− s)h(t− s)‖αds.

By (5.11), lim
n→∞

ckn(t) = 0 and by using the Lebesgue dominated convergence theo-

rem and (5.9), one can get lim
n→∞

ckn(t) = 0. Thus,

lim
n→∞

Φk(t+ sn) =

∫ k

k−1

θ(t, t− σ)h(t− σ)dσ, for each t ∈ R.

Analogously, one can prove that

lim
n→∞

∫ k

k−1

θ(t− sn, t− sn − s)h(t− sn − s)ds = Φk(t), for each t ∈ R.

Therefore, Φk ∈ AA(Xα). Applying Proposition (2.2), we deduce that the uniform
limit

Φ(·) =

∞∑
k=1

Φk(·) ∈ AA(Xα).

Now, we prove that Ψ ∈ PAP0(Xα). For this; for each t ∈ R and k ∈ N; we set

Ψk(t) :=

∫ k

k−1

U(t, t− s)P (t− s)ψ(t− s)ds =

∫ t−k+1

t−k
U(t, s)P (s)ψ(s)ds.

By carrying similar arguments as above, we deduce that Ψk(t) ∈ BC(R,Xα),∑∞
k=1 Ψk(t) is uniformly convergent on R and

Ψ(t) =

∞∑
k=1

Ψk(t) =

∫ t

−∞
A(s)U(t, s)P (s)ψ(s)ds ∈ BC(R,Xα).

To complete the proof, it remains to show that

lim
r→∞

1

µ(Qr)

∫
Qr

‖Ψ(t)‖α dµ(t) = 0.
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In fact, the estimate in Eq. (3.7) yields

‖Ψk(t)‖α ≤ n(α)

(∫ t−k+1

t−k
e
−δ
2 (t−s)(t− s)−α‖ψ(s)‖ds

)

≤ n(α) d′

√√√√1 + e
d′δ
2

d′δ
2

(k − 1)−αe
−δ
2 k

(∫ t−k+1

t−k
‖ψ(s)‖qds

)1/q

= Cd′(α, δ)‖ψ‖Sq(X),

where d′ > 1 such that 1
q + 1

d′ = 1. Then, one has

1

µ(Qr)

∫
Qr

‖Ψk(t)‖α dµ(t) ≤ Cd′(α, δ)

µ(Qr)

∫
Qr

(∫ t−k+1

t−k
‖ψ(s)‖qds

) 1
q

dµ(t)

≤ Cd′(α, δ)

µ(Qr)

∫
Qr

(∫ 1

0

‖ψ(s+ t− k)‖qds
) 1
q

dµ(t).

Since ψb ∈ E
(
Lq((0, 1),X), µ

)
, the above inequality leads to Ψk ∈ E

(
Xα, µ). Then,

by the following inequality

1

µ(Qr)

∫
Qr

‖Ψ(t)‖α dµ(t) ≤ 1

µ(Qr)

∫
Qr

‖Ψ(t)−
∞∑
k=1

Ψk(t)‖α dµ(t)

+

∞∑
k=1

1

µ(Qr)

∫
Qr

‖Ψk(t)‖α dµ(t),

we deduce that the uniform limit Ψ(·) =
∑∞
k=1 Ψk(·) ∈ E

(
Xα, µ), which ends the

proof.
Of course, the proof for (Γ4u)(·) is similar to that for (Γ3u)(·). However, one

makes use of Eq. (3.8) rather than Eq. (3.7). �

Theorem 5.6. Under the assumptions (H1)–(H6), the evolution equation
(1.1) has a unique µ-pseudo-almost automorphic mild solution whenever L =
max

(
‖Lf‖Sr ; ‖Lg‖Sr

)
is small enough.

Proof. Consider the nonlinear operator Π defined on PAA(Xα, µ) by

Πu(t) = −f(t, B(t)u(t))−
∫ t

−∞
A(s)U(t, s)P (s)f(s,B(s)u(s))ds

+

∫ ∞
t

A(s)UQ(t, s)Q(s)f(s,B(s)u(s))ds+

∫ t

−∞
U(t, s)P (s)g(s, C(s)u(s))ds

−
∫ ∞
t

UQ(t, s)Q(s)g(s, C(s)u(s))ds

for each t ∈ R. As we have previously seen, for every u ∈ PAA(Xα, µ), f(·, Bu(·)) ∈
PAA(Xβ , µ) ⊂ PAA(Xα, µ). In view of Lemmas (5.4) and (5.5), it follows that Π
maps PAA(Xα, µ) into its self. To complete the proof one has to show that Π has
a unique fixed point.
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Let u, v ∈ PAA(Xα, µ). For Γ1 and Γ2, we have the following approximations:

‖(Γ1u)(t)− (Γ1v)(t)‖α ≤
∫ t

−∞
‖A(s)U(t, s)P (s) [f(s,B(s)u(s))− f(s,B(s)v(s))] ‖αds

≤ c2(α)c4r(α, β)

∫ t

−∞
(t− s)−αe

−δ
4 (t−s)‖f(s,B(s)u(s))− f(s,B(s)v(s))‖βds

≤ c2(α)c4r(α, β)

∫ t

−∞
(t− s)−αe

−δ
4 (t−s)Lf (s)‖B(s)u(s)−B(s)v(s)‖ds

≤ c2(α)c4c5r(α, β)

∫ t

−∞
(t− s)−αe

−δ
4 (t−s)Lf (s)‖u(s)− v(s)‖αds

≤ c2(α)c4c5r(α, β)

∞∑
n=1

∫ t−n+1

t−n
(t− s)−αe

−δ
4 (t−s)Lf (s)‖u− v‖α,∞ds

≤ c2(α)c4c5r(α, β)

∞∑
n=1

(∫ t−n+1

t−n
(t− s)−αr0e

−r0δ
4 (t−s) ds

) 1
r0 ‖Lf‖Sr‖u− v‖α,∞

≤ c2(α)c4c5r(α, β)

∞∑
n=1

(n− 1)−α
(∫ t−n+1

t−n
e
−r0δ

4 (t−s) ds
) 1
r0 ‖Lf‖Sr‖u− v‖α,∞

≤ c2(α)c4c5r(α, β)
r0

√
4
(
1 + e

r0δ
4

)
r0δ

∞∑
n=1

(n− 1)−αe
−nδ
4 ‖Lf‖Sr‖u− v‖α,∞

= c2(α)c4c5r(α, β)S(r0,
δ

4
)‖Lf‖Sr‖u− v‖α,∞,

where r0 is such that 1
r + 1

r0
= 1 and S(r0, δ) = r0

√
1+er0δ

r0δ

∑∞
n=1(n− 1)−αe−nδ.

‖(Γ2u)(t)− (Γ2v)(t)‖α ≤
∫ ∞
t

‖A(s)UQ(t, s)Q(s) [f(s,B(s)u(s))− f(s,B(s)v(s))] ‖αds

≤ c2(α)c4d(β)

∫ ∞
t

e−δ(s−t)‖f(s,B(s)u(s))− f(s,B(s)v(s))‖βds

≤ Lc2(α)c4d(β)

∫ ∞
t

e−δ(s−t)‖B(s)u(s)−B(s)v(s)‖ds

≤ Lc2(α)c4c5d(β)

∫ ∞
t

e−δ(s−t)‖u(s)− v(s)‖αds

≤ Lc2(α)c4c5d(β)δ−1‖u− v‖α,∞.
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Similarly, For Γ3 and Γ4, we have the following approximations

‖(Γ3u)(t)− (Γ3v)(t)‖α ≤
∫ t

−∞
‖U(t, s)P (s) [g(s, C(s)u(s))− f(s, C(s)v(s))] ‖αds

≤ n(α)

∫ t

−∞
(t− s)−αe

−δ
2 (t−s)‖g(s, C(s)u(s))− g(s, C(s)v(s))‖βds

≤ n(α)

∫ t

−∞
(t− s)−αe

−δ
2 (t−s)Lg‖C(s)u(s)− C(s)v(s)‖ds

≤ n(α)c5

∫ t

−∞
(t− s)−αe

−δ
2 (t−s)Lg‖u(s)− v(s)‖αds

≤ n(α)c5

∞∑
n=1

∫ t−n+1

t−n
(t− s)−αe

−δ
2 (t−s)Lg(s)‖u− v‖α,∞ds

≤ n(α)c5

∞∑
n=1

(∫ t−n+1

t−n
(t− s)−αr0e

−r0δ
2 (t−s) ds

) 1
r0 ‖Lg‖Sr‖u− v‖α,∞

≤ n(α)c5

∞∑
n=1

(n− 1)−α
(∫ t−n+1

t−n
e
−r0δ

2 (t−s) ds
) 1
r0 ‖Lg‖Sr‖u− v‖α,∞

≤ n(α)c5
r0

√
2
(
1 + e

r0δ
2

)
r0δ

∞∑
n=1

(n− 1)−αe
−nδ
2 ‖Lg‖Sr‖u− v‖α,∞

= n(α)c5S(r0,
δ

2
)‖Lg‖Sr‖u− v‖α,∞,

and

‖(Γ4u)(t)− (Γ4v)(t)‖α ≤
∫ ∞
t

‖UQ(t, s)Q(s) [g(s, C(s)u(s))− g(s, C(s)v(s))] ‖αds

≤ m(α)

∫ ∞
t

e−δ(s−t)‖g(s, C(s)u(s))− g(s, C(s)v(s))‖ds

≤ Lm(α)

∫ ∞
t

e−δ(s−t)‖C(s)u(s)− C(s)v(s)‖ds

≤ Lm(α)c5

∫ ∞
t

e−δ(s−t)‖u(s)− v(s)‖αds

≤ Lm(α)c5δ
−1‖u− v‖α,∞.

Consequently,

‖Πu−Πv‖α,∞ ≤ LΘ‖u− v‖α,∞,
where

Θ := c5

(
c2(α)c4r(α, β)S

(
r0,

δ

4

)
+ c2(α)c4d(β)δ−1 + n(α)S

(
r0,

δ

2

)
+m(α)δ−1

)
.

By taking L small enough, that is, L < Θ−1, the operator Π becomes a contraction
on PAA(Xα, µ) and hence has a unique fixed point in PAA(Xα, µ), which obviously
is the unique µ-pseudo-almost automorphic mild solution to (1.1). �
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Birkhäuser Verlag, Basel, 1995.
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