A GENERALIZATION OF WEIGHTED STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC SPACE

Mohamed Zitane
(Received 07 September, 2017)

Abstract

In this paper we introduce and study a new class of functions called weighted Stepanov-like pseudo-almost automorphic functions with variable exponents, which generalizes the class of weighted Stepanov-like pseudo-almost automorphic functions. Basic properties of these new spaces are established. The existence of weighted pseudo-almost automorphic solutions to some firstorder differential equations with $S^{p, q(x)}$-pseudo-almost automorphic coefficients will also be studied.

1. Introduction

In Diagana [10] the concept of Stepanov-like pseudo-almost automorphy was introduced and studied. These spaces, which generalize pseudo-almost automorphic spaces, were then utilized to study the existence of pseudo-almost automorphic solutions to some abstract differential equations.

In Blot et al. [4], the concept of weighted pseudo-almost automorphy, using theoretical measure theory, is introduced and utilized to study the existence of weighted pseudo-almost automorphic solutions to some abstract differential equations.

In a recent paper by Diagana and Zitane [13], the concept of Stepanov-like pseudo-almost automorphy is introduced in the Lebesgue space with variable exponents $L^{p(x)}$. These functions were utilized to study the existence of pseudo-almost automorphic solutions to some differential equations.

In this paper we introduce and study a new class of functions called weighted Stepanov-like pseudo-almost automorphic functions with variable exponents, which generalizes the usual weighted Stepanov-like pseudo-almost automorphic functions. Basic properties of these new spaces are established. Afterwards, we study the existence of pseudo-almost automorphic solutions to the class of abstract nonautonomous differential equations given by

$$
\begin{equation*}
\frac{d}{d t}[u(t)+f(t, B(t) u(t))]=A(t) u(t)+g(t, C(t) u(t)), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $A(t)$ for $t \in \mathbb{R}$ is a family of closed linear operators on $D(A(t))$ satisfying the well-known Acquistapace-Terreni conditions, $B(t), C(t) \quad(t \in \mathbb{R})$ are families of (possibly unbounded) linear operators, and $f: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}_{\beta}^{t} \quad(0<\alpha<\beta<1)$ and $g: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}$ are jointly continuous satisfying some additional assumptions with \mathbb{X}_{β}^{t} being a real interpolation space between \mathbb{X} and $D(A(t))$ of order $\alpha \in(0,1)$.

[^0]
2. μ-Pseudo-Almost Automorphic Functions

Let $(\mathbb{X},\|\cdot\|),\left(\mathbb{Y},\|\cdot\|_{\mathbb{Y}}\right)$ be two Banach spaces. Let $B C(\mathbb{R}, \mathbb{X})$ (respectively, $B C(\mathbb{R} \times \mathbb{Y}, \mathbb{X}))$ denote the collection of all \mathbb{X}-valued bounded continuous functions (respectively, the class of jointly bounded continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$). The space $B C(\mathbb{R}, \mathbb{X})$ equipped with the sup norm $\|\cdot\|_{\infty}$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})$ (respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denotes the class of continuous functions from \mathbb{R} into \mathbb{Y} (respectively, the class of jointly continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$). Let $B(\mathbb{X}, \mathbb{Y})$ stand for the Banach space of bounded linear operators from \mathbb{X} into \mathbb{Y} equipped with its natural operator topology; in particular, $B(\mathbb{X}, \mathbb{X})$ is denoted by $B(\mathbb{X})$.

In this section, we recall the concept of μ-pseudo-almost automorphic functions introduced by J. Blot et al [5].
Definition $2.1([\mathbf{6}])$. A function $f \in C(\mathbb{R}, \mathbb{X})$ is said to be almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ such that

$$
g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$ and

$$
f(t)=\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)
$$

for each $t \in \mathbb{R}$.
The collection of all such functions will be denoted by $A A(\mathbb{X})$, which turns out to be a Banach space when it is equipped with the sup-norm.
Proposition $2.2([\mathbf{2 1}])$. Assume $f, g: \mathbb{R} \rightarrow \mathbb{X}$ are almost automorphic and λ is any scalar. Then the following hold true:
(a) $f+g, \lambda f, f_{\tau}(t):=f(t+\tau)$ and $\widehat{f}(t):=f(-t)$ are almost automorphic;
(b) The range R_{f} of f is precompact, so f is bounded;
(c) If $\left\{f_{n}\right\}$ is a sequence of almost automorphic functions and $f_{n} \rightarrow f$ uniformly on \mathbb{R}, then f is almost automorphic.

We denote by \mathcal{B} the Lebesgue σ-field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R})=\infty$ and $\mu([a, b])<\infty$, for all $a, b \in \mathbb{R}(a \leq b)$.
Definition 2.3 ([4]). Let $\mu \in \mathcal{M}$. A function $f \in B C(\mathbb{R}, \mathbb{X})$ is said to be μ-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|f(t)\| d \mu(t)=0
$$

where $Q_{r}:=[-r, r]$. We denote the space of all such functions by $\mathcal{E}(\mathbb{X}, \mu)$.
Proposition $2.4([4])$. Let $\mu \in \mathcal{M}$. Then $\left(\mathcal{E}(\mathbb{X}, \mu),\|\cdot\|_{\infty}\right)$ is a Banach space.
Theorem $2.5([4])$. Let $\mu \in \mathcal{M}$ and I be a bounded interval (eventually $I \neq \emptyset$). Assume that $f \in B C(\mathbb{R}, \mathbb{X})$. Then the following assertions are equivalent:
(a) $f \in \mathcal{E}(\mathbb{X}, \mu)$;
(b) $\lim _{r \rightarrow \infty} \frac{1}{\mu([-r, r] \backslash I)} \int_{[-r, r] \backslash I}\|f(t)\| d \mu(t)=0$;
(c) For any $\varepsilon>0, \lim _{r \rightarrow \infty} \frac{\mu(\{t \in[-r, r] \backslash I:\|f(t)\|>\varepsilon\})}{\mu([-r, r] \backslash I)}=0$.

Definition 2.6 ([5]). A function $f \in C(\mathbb{R}, \mathbb{X})$ is called μ-pseudo almost automorphic if it can be expressed as $f=g+\phi$, where $g \in A A(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$. The collection of such functions will be denoted by $P A A(\mathbb{X}, \mu)$.

Let \mathcal{N}_{1} denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all a, b and $c \in \mathbb{R}$ such that $0 \leq a<b \leq c$, there exist $\tau_{0} \geq 0$ and $\alpha_{0}>0$ such that

$$
|\tau| \geq \tau_{0} \Rightarrow \mu((a+\tau, b+\tau)) \geq \alpha_{0} \mu([\tau, c+\tau])
$$

And let \mathcal{N}_{2} denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all $\tau \in \mathbb{R}$, there exist $\beta>0$ and a bounded interval I such that

$$
\mu(\{a+\tau: a \in A\}) \leq \beta \mu(A) \text { for all } A \in \mathcal{B} \text { such that } A \cap I=\emptyset
$$

Theorem $2.7([5])$. Let $\mu \in \mathcal{N}_{1}$. Then the decomposition of a μ-pseudo almost automorphic function in the form $f=g+\phi$, where $g \in A A(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$ is unique.

Theorem $2.8([\mathbf{5}])$. Let $\mu \in \mathcal{N}_{1}$. Then $\left(P A A(\mathbb{X}, \mu),\|\cdot\|_{\infty}\right)$ is a Banach space.
Theorem 2.9 ([5]). Let $\mu \in \mathcal{N}_{2}$. Then the space $\mathcal{E}(\mathbb{X}, \mu)$ is translation invariant, therefore $P A A(\mathbb{X}, \mu)$ is also translation invariant, that is, if $f \in P A A(\mathbb{X}, \mu)$ implies $f_{\tau}=f(\cdot+\tau) \in P A A(\mathbb{X}, \mu)$ for all $\tau \in \mathbb{R}$.

Definition $2.10([\mathbf{1 9}])$. A function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is said to be almost automorphic if $F(t, u)$ is almost automorphic in $t \in \mathbb{R}$ uniformly for all $u \in K$, where $K \subset \mathbb{Y}$ is an arbitrary bounded subset. The collection of all such functions will be denoted by $A A(\mathbb{Y}, \mathbb{X})$.

Definition 2.11 ([18]). A function $L \in C(\mathbb{R} \times \mathbb{R}, \mathbb{X})$ is called bi-almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n}$ we can extract a subsequence $\left(s_{n}\right)_{n}$ such that

$$
H(t, s):=\lim _{n \rightarrow \infty} L\left(t+s_{n}, s+s_{n}\right)
$$

is well defined for each $t, s \in \mathbb{R}$, and

$$
L(t, s)=\lim _{n \rightarrow \infty} H\left(t-s_{n}, s-s_{n}\right)
$$

for each $t, s \in \mathbb{R}$. The collection of all such functions will be denoted by $b A A(\mathbb{R} \times$ $\mathbb{R}, \mathbb{X})$.

Definition $2.12([4])$. Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is called μ-ergodic in t uniformly with respect to x in \mathbb{Y} if the following two conditions hold:
(a) for all y in $\mathbb{Y}, f(\cdot, y) \in \mathcal{E}(\mathbb{Y}, \mu)$;
(b) f is uniformly continuous on each compact set $K \subset \mathbb{Y}$ with respect to the second variable y.
We denote the space of all such functions by $\mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$.
Definition 2.13 ([5]). Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ-pseudo almost automorphic if it can be expressed as $f=g+\phi$, where $g \in A A(\mathbb{Y}, \mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$. The collection of such functions will be denoted by $P A A(\mathbb{Y}, \mathbb{X}, \mu)$.

3. Evolution Families

Definition $3.1([\mathbf{1 , 2}])$. A family of closed linear operators $A(t)$ for $t \in \mathbb{R}$ on \mathbb{X} with domains $D(A(t))$ (possibly not densely defined) satisfy the so-called AcquistapaceTerreni conditions, if there exist constants $\omega \in \mathbb{R}, \theta \in\left(\frac{\pi}{2}, \pi\right), K, L \geq 0$ and $\mu, \nu \in$ $(0,1]$ with $\mu+\nu>1$ such that

$$
\begin{gather*}
\mathrm{S}_{\theta} \cup\{0\} \subset \rho(\mathrm{A}(\mathrm{t})-\omega \mathrm{I}), \quad\|\mathrm{R}(\lambda, \mathrm{~A}(\mathrm{t})-\omega \mathrm{I})\| \leq \frac{\mathrm{K}}{1+|\lambda|}, \text { and } \tag{3.1}\\
\|(A(t)-\omega I) R(\lambda, A(t)-\omega I)[R(\omega, A(t))-R(\omega, A(s))]\| \leq L|t-s|^{\mu}|\lambda|^{-\nu} \tag{3.2}
\end{gather*}
$$

for $t, s \in \mathbb{R}, \lambda \in S_{\theta}:=\{\lambda \in \mathbb{C} \backslash\{0\}:|\arg \lambda| \leq \theta\}$.
Among other things, the Acquistapace-Terreni Conditions do ensure the existence of a unique evolution family

$$
\mathcal{U}=\{U(t, s): t, s \in \mathbb{R} \text { such that } t \geq s\}
$$

on \mathbb{X} associated with $A(t)$ such that $U(t, s) \mathbb{X} \subseteq D(A(t))$ for all $t, s \in \mathbb{R}$ with $t>s$, and
(a) $U(t, s) U(s, r)=U(t, r)$ for $t, s \in \mathbb{R}$ such that $t \geq r \geq s$;
(b) $U(t, t)=I$ for $t \in \mathbb{R}$ where I is the identity operator of \mathbb{X}; and
(c) for $t>s$, the mapping $(t, s) \mapsto U(t, s) \in B(\mathbb{X})$ is continuous and continuously differentiable in t with $\partial_{t} U(t, s)=A(t) U(t, s)$. Moreover, there exists a constant $C^{\prime}>0$ which depends on constants in Eq. (3.1) and Eq. (3.2) such that

$$
\begin{equation*}
\left\|A^{k}(t) U(t, s)\right\|_{B(\mathbb{X})} \leq C^{\prime}(t-s)^{-k} \tag{3.3}
\end{equation*}
$$

for $0<t-s \leq 1$ and $k=0,1$.
Definition 3.2. An evolution family $\mathcal{U}=\{U(t, s): t, s \in \mathbb{R}$ such that $t \geq s\}$ is said to have an exponential dichotomy if there are projections $P(t)(t \in \mathbb{R})$ that are uniformly bounded and strongly continuous in t and constants $\delta>0$ and $N \geq 1$ such that
(f) $U(t, s) P(s)=P(t) U(t, s)$;
(g) the restriction $U_{Q}(t, s): Q(s) \mathbb{X} \rightarrow Q(t) \mathbb{X}$ of $U(t, s)$ is invertible (we then set $\left.U_{Q}(s, t):=U_{Q}(t, s)^{-1}\right)$ where $Q(t)=I-P(t) ;$ and
(h) $\|U(t, s) P(s)\| \leq N e^{-\delta(t-s)}$ and $\left\|U_{Q}(s, t) Q(t)\right\| \leq N e^{-\delta(t-s)}$ for $t \geq s$ and $t, s \in \mathbb{R}$.
If an evolution family $\mathcal{U}=\{U(t, s): t, s \in \mathbb{R}$ such that $t \geq s\}$ has an exponential dichotomy, we then define

$$
\Gamma(t, s):= \begin{cases}U(t, s) P(s), & \text { if } t \geq s, \quad t, s \in \mathbb{R} \\ -U_{Q}(t, s) Q(s), & \text { if } s>t, \quad t, s \in \mathbb{R}\end{cases}
$$

This setting requires the introduction of some interpolation spaces for $A(t)$. We refer the reader to the following excellent books [3], [9], and [20] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on \mathbb{X} (Definition 3.1 holds when $A(t)$ is replaced with A) and let $\alpha \in(0,1)$. Define the real interpolation space

$$
\mathbb{X}_{\alpha}^{A}:=\left\{x \in \mathbb{X}:\|x\|_{\alpha}^{A}:=\sup _{r>0}\left\|r^{\alpha}(A-\omega) R(r, A-\omega) x\right\|<\infty\right\}
$$

which, by the way, is a Banach space when endowed with the norm $\|\cdot\|_{\alpha}^{A}$. For convenience we further write

$$
\mathbb{X}_{0}^{A}:=\mathbb{X},\|x\|_{0}^{A}:=\|x\|, \mathbb{X}_{1}^{A}:=D(A)
$$

and $\|x\|_{1}^{A}:=\|(\omega-A) x\|$. Moreover, let $\hat{\mathbb{X}}^{A}:=\overline{D(A)}$ of \mathbb{X}. In particular, we will frequently be using the following continuous embedding

$$
\begin{equation*}
D(A) \hookrightarrow \mathbb{X}_{\beta}^{A} \hookrightarrow D\left((\omega-A)^{\alpha}\right) \hookrightarrow \mathbb{X}_{\alpha}^{A} \hookrightarrow \hat{\mathbb{X}}^{A} \hookrightarrow \mathbb{X} \tag{3.4}
\end{equation*}
$$

for all $0<\alpha<\beta<1$, where the fractional powers are defined in the usual way.
In general, $D(A)$ is not dense in the spaces \mathbb{X}_{α}^{A} and \mathbb{X}. However, we have the following continuous injection

$$
\begin{equation*}
\mathbb{X}_{\beta}^{A} \hookrightarrow \overline{D(A)}^{\|\cdot\|_{\alpha}^{A}} \tag{3.5}
\end{equation*}
$$

for $0<\alpha<\beta<1$.
Definition 3.3. Given the family of linear operators $A(t)$ for $t \in \mathbb{R}$, satisfying Acquistapace-Terreni conditions (Definition 3.1), we set

$$
\mathbb{X}_{\alpha}^{t}:=\mathbb{X}_{\alpha}^{A(t)}, \quad \hat{\mathbb{X}}^{t}:=\hat{\mathbb{X}}^{A(t)}
$$

for $0 \leq \alpha \leq 1$ and $t \in \mathbb{R}$, with the corresponding norms.
Then the embedding in (3.4) hold with constants independent of $t \in \mathbb{R}$.
These interpolation spaces are of class $\mathcal{J}_{\alpha}([\mathbf{2 0}$, Definition 1.1.1] $)$ and it can be shown that

$$
\begin{equation*}
\|y\|_{\alpha}^{t} \leq K^{\alpha} L^{1-\alpha}\|y\|^{1-\alpha}\|A(t) y\|^{\alpha}, \quad y \in D(A(t)) \tag{3.6}
\end{equation*}
$$

where K, L are the constants appearing in Definition 3.1.
Proposition $3.4([\mathbf{7}])$. For $x \in \mathbb{X}, 0 \leq \alpha \leq 1$ and $t>s$, the following hold:
(i) There is a constant $n(\alpha)$, such that

$$
\begin{equation*}
\|U(t, s) P(s) x\|_{\alpha}^{t} \leq n(\alpha) e^{-\frac{\delta}{2}(t-s)}(t-s)^{-\alpha}\|x\| \tag{3.7}
\end{equation*}
$$

(ii) There is a constant $m(\alpha)$, such that

$$
\begin{equation*}
\left\|\widetilde{U}_{Q}(s, t) Q(t) x\right\|_{\alpha}^{s} \leq m(\alpha) e^{-\delta(t-s)}\|x\|, \quad t \leq s \tag{3.8}
\end{equation*}
$$

4. Weighted Stepanov-Like Pseudo Almost Automorphic Functions with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents $L^{p(x)}(\mathbb{R}, \mathbb{X})$ developed in $[\mathbf{1 2}, 13,14,15,17,22]$.

Let $\Omega \subseteq \mathbb{R}$ be a subset and let $M(\Omega, \mathbb{X})$ denote the collection of all measurable functions $f: \Omega \mapsto \mathbb{X}$. Let us recall that two functions f and g of $M(\Omega, \mathbb{X})$ are equal whether they are equal almost everywhere. Set $m(\Omega):=M(\Omega, \mathbb{R})$ and fix
$p \in m(\Omega)$. Define

$$
\begin{gathered}
p^{-}:={\operatorname{ess} \inf _{x \in \Omega} p(x), \quad p^{+}:=\operatorname{ess}^{\sup }}_{x \in \Omega} p(x) \\
C_{+}(\Omega):=\left\{p \in m(\Omega): 1<p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\} \\
D_{+}(\Omega):=\left\{p \in m(\Omega): 1 \leq p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\} \\
\rho(u)=\rho_{p(x)}(u)=\int_{\Omega}\|u(x)\|^{p(x)} d x
\end{gathered}
$$

We then define the Lebesgue space with variable exponents $L^{p(x)}(\Omega, \mathbb{X})$ with $p \in C_{+}(\Omega)$, by

$$
L^{p(x)}(\Omega, \mathbb{X}):=\left\{u \in M(\Omega, \mathbb{X}): \int_{\Omega}\|u(x)\|^{p(x)} d x<\infty\right\}
$$

Define, for each $u \in L^{p(x)}(\Omega, \mathbb{X})$,

$$
\|u\|_{p(x)}:=\inf \left\{\lambda>0: \int_{\Omega}\left\|\frac{u(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}
$$

It can be shown that $\|\cdot\|_{p(x)}$ is a norm upon $L^{p(x)}(\Omega, \mathbb{X})$, which is referred to as the Luxemburg norm.

Remark 4.1. Let $p \in C_{+}(\Omega)$. If p is constant, then the space $L^{p(\cdot)}(\Omega, \mathbb{X})$, as defined above, coincides with the usual space $L^{p}(\Omega, \mathbb{X})$.

Proposition $4.2([\mathbf{1 5}, \mathbf{2 2}])$. Let $p \in C_{+}(\Omega)$. If $u, v \in L^{p(x)}(\Omega, \mathbb{X})$, then the following properties hold,
(a) $\|u\|_{p(x)} \geq 0$, with equality if and only if $u=0$;
(b) $\rho_{p}(u) \leq \rho_{p}(v)$ and $\|u\|_{p(x)} \leq\|v\|_{p(x)}$ if $\|u\| \leq\|v\|$;
(c) $\rho_{p}\left(u\|u\|_{p(x)}^{-1}\right)=1$ if $u \neq 0$;
(d) $\rho_{p}(u) \leq 1$ if and only if $\|u\|_{p(x)} \leq 1$;
(e) If $\|u\|_{p(x)} \leq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{-}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{+}}
$$

(f) If $\|u\|_{p(x)} \geq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{+}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{-}}
$$

Theorem $4.3([\mathbf{1 5}, \mathbf{1 7}])$. Let $p \in C_{+}(\Omega)$. The space $\left(L^{p(x)}(\Omega, \mathbb{X}),\|\cdot\|_{p(x)}\right)$ is a Banach space that is separable and uniform convex. Its topological dual is $L^{q(x)}(\Omega, \mathbb{X})$, where $p^{-1}(x)+q^{-1}(x)=1$. Moreover, for any $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{q(x)}(\Omega, \mathbb{R})$, we have

$$
\left\|\int_{\Omega} u v d x\right\| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|u\|_{p(x)} \cdot\|v\|_{q(x)}
$$

Corollary $4.4([\mathbf{2 2}])$. Let $p, r \in D_{+}(\Omega)$. If the function q defined by the equation

$$
\frac{1}{q(x)}=\frac{1}{p(x)}+\frac{1}{r(x)}
$$

is in $D_{+}(\Omega)$, then there exists a constant $C=C(p, r) \in[1,5]$ such that

$$
\|u v\|_{q(x)} \leq C\|u\|_{p(x)} \cdot\|v\|_{r(x)}
$$

for every $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{r(x)}(\Omega, \mathbb{R})$.
Corollary $4.5([\mathbf{1 5}])$. Let mes $(\Omega)<\infty$ where mes (\cdot) stands for the Lebesgue measure and $p, q \in D_{+}(\Omega)$. If $q(\cdot) \leq p(\cdot)$ almost everywhere in Ω, then the embedding $L^{p(x)}(\Omega, \mathbb{X}) \hookrightarrow L^{q(x)}(\Omega, \mathbb{X})$ is continuous whose norm does not exceed $2($ mes $(\Omega)+1)$.

Definition 4.6 ([10]). The Bochner transform $f^{b}(t, s), t \in \mathbb{R}, s \in[0,1]$ of a function $f: \mathbb{R} \rightarrow \mathbb{X}$ is defined by $f^{b}(t, s):=f(t+s)$.
Remark 4.7. (i) A function $\varphi(t, s), t \in \mathbb{R}, s \in[0,1]$, is the Bochner transform of a certain function $f, \varphi(t, s)=f^{b}(t, s)$, if and only if $\varphi(t+\tau, s-\tau)=\varphi(s, t)$ for all $t \in \mathbb{R}, s \in[0,1]$ and $\tau \in[s-1, s]$.
(ii) Note that if $f=h+\varphi$, then $f^{b}=h^{b}+\varphi^{b}$. Moreover, $(\lambda f)^{b}=\lambda f^{b}$ for each scalar λ.
Definition $4.8([\mathbf{1 0}])$. The Bochner transform $F^{b}(t, s, u), t \in \mathbb{R}, s \in[0,1], u \in \mathbb{X}$ of a function $F(t, u)$ on $\mathbb{R} \times \mathbb{X}$, with values in \mathbb{X}, is defined by $F^{b}(t, s, u):=F(t+s, u)$ for each $u \in \mathbb{X}$.

Definition $4.9([\mathbf{1 0}])$. Let $p \in[1, \infty)$. The space $B S^{p}(\mathbb{X})$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{X} such that $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}((0,1), \mathbb{X})\right)$. This is a Banach space with the norm

$$
\|f\|_{S^{p}}=\left\|f^{b}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(\tau)\|^{p} d \tau\right)^{1 / p}
$$

Note that for each $p \geq 1$, we have the following continuous inclusion:

$$
\left(B C(\mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right)
$$

Definition 4.10 ($[\mathbf{1 2}])$. Let $p \in C_{+}(\mathbb{R})$. The space $B S^{p(x)}(\mathbb{X})$ consists of all functions $f \in M(\mathbb{R}, \mathbb{X})$ such that $\|f\|_{S^{p(x)}}<\infty$, where

$$
\begin{aligned}
\|f\|_{S^{p(x)}} & =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{f(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\}\right] \\
& =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{f(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}\right]
\end{aligned}
$$

Note that the space $\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right)$ is a Banach space, which, depending on $p(\cdot)$, may or may not be translation-invariant.

Definition $4.11([12])$. If $p, q \in C_{+}(\mathbb{R})$, we then define the space $B S^{p(x), q(x)}(\mathbb{X})$ as follows:

$$
\begin{aligned}
B S^{p(x), q(x)}(\mathbb{X}) & :=B S^{p(x)}(\mathbb{X})+B S^{q(x)}(\mathbb{X}) \\
& =\left\{f=h+\varphi \in M(\mathbb{R}, \mathbb{X}): h \in B S^{p(x)}(\mathbb{X}) \text { and } \varphi \in B S^{q(x)}(\mathbb{X})\right\}
\end{aligned}
$$

We equip $B S^{p(x), q(x)}(\mathbb{X})$ with the norm $\|\cdot\|_{S^{p(x), q(x)}}$ defined by

$$
\|f\|_{S^{p(x), q(x)}}:=\inf \left\{\|h\|_{S^{p(x)}}+\|\varphi\|_{S^{q(x)}}: \quad f=h+\varphi\right\} .
$$

Clearly, $\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)$ is a Banach space, which, depending on both $p(\cdot)$ and $q(\cdot)$, may or may not be translation-invariant.
Lemma $4.12([\mathbf{1 2}])$. Let $p, q \in C_{+}(\mathbb{R})$. Then the following continuous inclusion holds,

$$
\left(B C(\mathbb{R}, \mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)
$$

Definition 4.13. Let $p \geq 1$ be a constant. A function $f \in B S^{p}(\mathbb{X})$ is said to be S^{p}-almost automorphic (or Stepanov-like almost automorphic function) if $f^{b} \in$ $A A\left(L^{p}((0,1), \mathbb{X})\right)$. That is, a function $f \in L_{\mathrm{loc}}^{p}(\mathbb{R}, \mathbb{X})$ is said to be Stepanovlike almost automorphic if its Bochner transform $f^{b}: \mathbb{R} \rightarrow L^{p}(0,1 ; \mathbb{X})$ is almost automorphic in the sense that for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n}$, there exists a subsequence $\left(s_{n}\right)_{n}$ and a function $g \in L_{\mathrm{loc}}^{p}(\mathbb{R}, \mathbb{X})$ such that
$\left(\int_{0}^{1}\left\|f\left(t+s+s_{n}\right)-g(t+s)\right\|^{p} d s\right)^{1 / p} \rightarrow 0, \quad\left(\int_{0}^{1}\left\|g\left(t+s-s_{n}\right)-f(t+s)\right\|^{p} d s\right)^{1 / p} \rightarrow 0$ as $n \rightarrow \infty$ pointwise on \mathbb{R}. The collection of such functions will be denoted by $S_{a a}^{p}(\mathbb{X})$.
Remark 4.14. It is clear that if $1 \leq p<q<\infty$ and $f \in L_{\mathrm{loc}}^{q}(\mathbb{R}, \mathbb{X})$ is S^{q}-almost automorphic, then f is S^{p}-almost automorphic. Also if $f \in A A(\mathbb{X})$, then f is S^{p}-almost automorphic for any $1 \leq p<\infty$.
Remark 4.15. There are some difficulties in defining $S_{a a}^{p(x)}(\mathbb{X})$ for a function $p \in$ $C_{+}(\mathbb{R})$ that is not necessarily constant. This is mainly due to the fact that the space $B S^{p(x)}(\mathbb{X})$ is not always translation-invariant.

Taking into account Remark 4.15, we introduce the concept of weighted $S^{p, q(x)}{ }^{\prime}$ pseudo-almost automorphy as follows, which obviously generalizes the notion of weighted S^{p}-pseudo-almost automorphy.

Definition 4.16. Let $\mu \in \mathcal{M}, p \geq 1$ be a constant and let $q \in C_{+}(\mathbb{R})$. A function $f \in B S^{p, q(x)}(\mathbb{X})$ is said to be weighted $S^{p, q(x)}$-pseudo-almost automorphic (or weighted Stepanov-like pseudo-almost automorphic with variable exponents $p, q(x)$) if it can be decomposed as $f=h+\varphi$, where $h \in S_{a a}^{p}(\mathbb{X})$ and $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$, i.e.,

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\} d \mu(t)=0
$$

The collection of such functions will be denoted by $S_{p a a}^{p, q(x)}(\mathbb{X}, \mu)$.
Proposition 4.17. Let $r, s \geq 1, p, q \in D_{+}(\mathbb{R}), \mu \in \mathcal{M}$. If $s \leq r, q(\cdot) \leq p(\cdot)$ and $f \in B S^{r, p(x)}(\mathbb{X})$ is weighted $S^{r, p(x)}$-pseudo-almost automorphic, then f is weighted $S^{s, q(x)}$-pseudo-almost automorphic.

Proof. Suppose that $f \in B S^{r, p(x)}(\mathbb{X})$ is $S^{r, p(x)}$-pseudo-almost automorphic. Thus there exist two functions $h, \varphi: \mathbb{R} \rightarrow \mathbb{X}$ such that $f=h+\varphi$, where $h \in S_{a a}^{r}(\mathbb{X})$ and $\varphi^{b} \in \mathcal{E}\left(L^{p^{b}(x)}((0,1), \mathbb{X}), \mu\right)$. From remark 4.14, h is S^{s}-almost automorphic.

From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$. By using Corollary 4.5 and the fact that $q(\cdot) \leq q^{+} \leq p^{-} \leq p(\cdot)$ and $\varphi^{b} \in \mathcal{E}\left(L^{p^{b}(x)}((0,1), \mathbb{X}), \mu\right)$, one has

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq \frac{4}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\} d \mu(t)
\end{aligned}
$$

that is $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$ and hence f is weighted $S^{s, q(x)}$-pseudo-almost automorphic.

Proposition 4.18. Let $p \geq 1$ be a constant, $q \in C_{+}(\mathbb{R})$ and let $\mu \in \mathcal{N}_{2}$. Then $P A A(\mathbb{X}, \mu) \subset S_{p a a}^{p, q(x)}(\mathbb{X}, \mu)$.
Proof. Let $f \in P A A(\mathbb{X}, \mu)$. Thus there exist two functions $h, \varphi: \mathbb{R} \rightarrow \mathbb{X}$ such that $f=h+\varphi$, where $h \in A A(\mathbb{X})$ and $\varphi \in \mathcal{E}(\mathbb{X}, \mu)$. Now from remark 4.14, $h \in A A(\mathbb{X}) \subset S_{a a}^{p}(\mathbb{X})$. The proof of $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$. was given in [14]. However for the sake of clarity, we reproduce it here. From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$.

Using (e)-(f) of Proposition 4.2, the usual Hölder inequality and Fubini's theorem it follows that

$$
\begin{aligned}
\int_{Q_{r}} & \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq \int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right)^{\gamma} d \mu(t) \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right) d \mu(t)\right]^{\gamma} \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\| \cdot\|\varphi\|_{\infty}^{q(t+x)-1} d x\right) d \mu(t)\right]^{\gamma} \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\gamma\left(q^{+}-1\right)}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\| d x\right) d \mu(t)\right]^{\gamma} \\
& =\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\gamma\left(q^{+}-1\right)}\left[\int_{0}^{1}\left(\int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right) d x\right]^{\gamma} \\
& =\left(\mu\left(Q_{r}\right)\right)\left(\|\varphi\|_{\infty}+1\right)^{\gamma\left(q^{+}-1\right)}\left[\int_{0}^{1}\left(\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right)^{\gamma} d x\right]^{\gamma}
\end{aligned}
$$

where

$$
\gamma= \begin{cases}\frac{1}{q^{+}} & \text {if }\|\varphi\|<1 \\ \frac{1}{q^{-}} & \text {if }\|\varphi\| \geq 1\end{cases}
$$

Using the fact that $\mathcal{E}(\mathbb{X}, \mu)$ is translation invariant and the (usual) Dominated Convergence Theorem, it follows that

$$
\begin{aligned}
& \lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq\left(\|\varphi\|_{\infty}+1\right)^{\gamma\left(q^{+}-1\right)}\left[\int_{0}^{1}\left(\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right) d x\right]^{\gamma}=0
\end{aligned}
$$

Theorem 4.19. Let $p, q \geq 1$ be constants, $\mu \in \mathcal{N}_{2}$ and $f \in S_{p a a}^{p, q}(\mathbb{X}, \mu)$ be such that

$$
f=h+\varphi
$$

where $h^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. Then

$$
\{h(t+.): t \in \mathbb{R}\} \subset \overline{\{f(t+.): t \in \mathbb{R}\}}, \quad \text { in } \quad B S^{p, q}(\mathbb{X})
$$

Proof. We prove it by contradiction. Indeed, if this is not true, then there exists $t_{0} \in \mathbb{R}$ and an $\varepsilon>0$ such that

$$
\left\|h\left(t_{0}+\cdot\right)-f(t+\cdot)\right\|_{S^{p, q}} \geq 2 \varepsilon, \quad t \in \mathbb{R}
$$

Since $h^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right) \hookrightarrow\left(B S^{p, q}(\mathbb{X}),\|\cdot\|_{S^{p, q}}\right)$, fix $t_{0} \in \mathbb{R}, \varepsilon>0$ and write, $B_{\varepsilon}:=\left\{\tau \in \mathbb{R} ;\left\|h\left(t_{0}+\tau+\cdot\right)-g\left(t_{0}+\cdot\right)\right\|_{S^{p, q}}<\varepsilon\right\}$. By $[\mathbf{2 3}$, Lemma 2.1], there exist $s_{1}, \ldots, s_{m} \in \mathbb{R}$ such that

$$
\cup_{i=1}^{m}\left(s_{i}+B_{\varepsilon}\right)=\mathbb{R} .
$$

Write

$$
\hat{s}_{i}=s_{i}-t_{0} \quad(1 \leq i \leq m), \quad \eta=\max _{1 \leq i \leq m}\left|\hat{s}_{i}\right| .
$$

For $r \in \mathbb{R}$ with $|r|>\eta$; we put

$$
B_{\varepsilon, r}^{(i)}=\left[-r+\eta-\hat{s}_{i}, r-\eta-\hat{s}_{i}\right] \cap\left(t_{0}+B_{\varepsilon}\right), \quad 1 \leq i \leq m,
$$

one has $\cup_{i=1}^{m}\left(\hat{s}_{i}+B_{\varepsilon, r}^{(i)}\right)=[-r+\eta, r-\eta]$.
Letting $\mu_{\tau}(\{a+\tau: a \in A\})$ for $A \in \mathcal{B}$, from $\mu \in \mathcal{N}_{2}$ it follows that μ and μ_{τ} are equivalent (see Definitions 4.22). Using the fact that $B_{\varepsilon, r}^{(i)} \subset[-r, r] \cap\left(t_{0}+B_{\varepsilon}\right)$,
$i=1, \ldots, m$, we obtain

$$
\begin{aligned}
\mu\left(Q_{r-\eta}\right) & =\mu([-r+\eta, r-\eta]) \\
& \leq \sum_{i=1}^{m} \mu\left(\hat{s}_{i}+B_{\varepsilon, r}^{(i)}\right) \\
& \leq \beta \sum_{i=1}^{m} \mu\left(B_{\varepsilon, r}^{(i)}\right) \\
& \leq m \beta \max _{1 \leq i \leq m}\left\{\mu\left(B_{\varepsilon, r}^{(i)}\right)\right\} \\
& \leq m \beta \mu\left([-r, r] \cap\left(t_{0}+B_{\varepsilon}\right)\right)
\end{aligned}
$$

On the other hand, by using the Minkowski inequality, for any $t \in t_{0}+B_{\varepsilon}$, one has

$$
\begin{aligned}
\|\varphi(t+\cdot)\|_{S^{q}} & =\|\varphi(t+\cdot)\|_{S^{p, q}} \\
& =\|f(t+\cdot)-h(t+\cdot)\|_{S^{p, q}} \\
& \geq\left\|h\left(t_{0}+\cdot\right)-f(t+\cdot)\right\|_{S^{p, q}}-\left\|h(t+\cdot)-h\left(t_{0}+\cdot\right)\right\|_{S^{p, q}}>\varepsilon
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(t+\cdot)\|_{S^{q}} d \mu(t) & \geq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r} \cap\left(t_{0}+B_{\varepsilon}\right)}\|\varphi(t+\cdot)\|_{S^{q}} d \mu(t) \\
& \geq \frac{\varepsilon}{\mu\left(Q_{r}\right)} \int_{Q_{r} \cap\left(t_{0}+B_{\varepsilon}\right)} d \mu(t) \\
& =\frac{\varepsilon}{\mu\left(Q_{r}\right)} \mu\left(Q_{r} \cap\left(t_{0}+B_{\varepsilon}\right)\right) \\
& \geq \varepsilon \frac{\mu\left(Q_{r-\eta}\right)}{\mu\left(Q_{r}\right)}(m \beta)^{-1} \rightarrow \varepsilon(m \beta)^{-1}, \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

This is a contradiction, since $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$.
Corollary 4.20. Let $p, q \geq 1$ be constants and $\mu \in \mathcal{N}_{1}$. Then the decomposition of a $S^{p, q}$ - μ-pseudo-almost automorphic function in the form $f=h+\varphi$ where $h^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, is unique.
Proof. Suppose that $f=h_{1}+\varphi_{1}=h_{2}+\varphi_{2}$ where $h_{1}^{b}, h_{2}^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi_{1}^{b}, \varphi_{1}^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. Then $0=\left(h_{1}-h_{2}\right)+\left(\varphi_{1}-\varphi_{2}\right) \in S_{p a a}^{p, q}(\mathbb{X}, \mu)$ where $h_{1}^{b}-h_{2}^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi_{1}^{b}-\varphi_{1}^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. From Theorem 4.19 we obtain $\left(h_{1}-h_{2}\right)(\mathbb{R}) \subset\{0\}$, therefore one has $h_{1}=h_{2}$ and $\varphi_{1}=\varphi_{2}$.

Theorem 4.21. Let $p, q \geq 1$ be constants and $\mu \in \mathcal{N}_{1}$. The space $S_{p a a}^{p, q}(\mathbb{X}, \mu)$ equipped with the norm $\|\cdot\|_{S^{p, q}}$ is a Banach space.
Proof. It suffices to prove that $S_{p a a}^{p, q}(\mathbb{X}, \mu)$ is a closed subspace of $B S^{p, q}(\mathbb{X})$. Let $f_{n}=h_{n}+\varphi_{n}$ be a sequence in $S_{p a a}^{p, q}(\mathbb{X}, \mu)$ with $\left(h_{n}^{b}\right)_{n \in \mathbb{N}} \subset A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\left(\varphi_{n}^{b}\right)_{n \in \mathbb{N}} \subset \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$ such that $\left\|f_{n}-f\right\|_{S^{p}, q} \rightarrow 0$ as $n \rightarrow \infty$. By Theorem 4.19, one has

$$
\left\{h_{n}(t+.): t \in \mathbb{R}\right\} \subset \overline{\left\{f_{n}(t+.): t \in \mathbb{R}\right\}}
$$

and hence

$$
\left\|h_{n}\right\|_{S^{p}}=\left\|h_{n}\right\|_{S^{p, q}} \leq\left\|f_{n}\right\|_{S^{p, q}} \quad \text { for all } n \in \mathbb{N} .
$$

Consequently, there exists a function $h \in S_{a a}^{p}(\mathbb{X})$ such that $\left\|h_{n}-h\right\|_{S^{p}} \rightarrow 0$ as $n \rightarrow$ ∞. Using the previous fact, it easily follows that the function $\varphi:=f-h \in B S^{q}(\mathbb{X})$ and that $\left\|\varphi_{n}-\varphi\right\|_{S^{q}}=\left\|\left(f_{n}-h_{n}\right)-(f-h)\right\|_{S^{q}} \rightarrow 0$ as $n \rightarrow \infty$. From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$. Using the fact that $\varphi=\left(\varphi-\varphi_{n}\right)+\varphi_{n}$ and the triangle inequality, it follows that

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} & \left(\int_{0}^{1}\|\varphi(\tau+t)\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
\leq & \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi(\tau+t)-\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
& +\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
\leq & \left\|\varphi_{n}-\varphi\right\|_{S^{q}}+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t)
\end{aligned}
$$

Letting $r \rightarrow+\infty$ and then $n \rightarrow \infty$ in the previous inequality yields

$$
\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)
$$

that is, $f=h+\varphi \in S_{p a a}^{p, q}(\mathbb{X}, \mu)$.
Definition $4.22([4])$. Let $\mu_{1}, \mu_{2} \in \mathcal{M} . \mu_{1}$ is said to be equivalent to $\mu_{2}\left(\mu_{1} \sim \mu_{2}\right)$ if there exist constants $\alpha, \beta>0$ and a bounded interval I (eventually $I \neq \emptyset$) such that

$$
\alpha \mu_{1}(A) \leq \mu_{2}(A) \leq \beta \mu_{1}(A), \text { for all } A \in \mathcal{B} \text { such that } A \cap I=\emptyset
$$

Theorem 4.23. Let $p \geq 1$ be a constant, $q \in C_{+}(\mathbb{R})$ and $\mu_{1}, \mu_{2} \in \mathcal{M}$. If μ_{1} and μ_{2} are equivalent, then $S_{p a a}^{p, q(x)}\left(\mathbb{X}, \mu_{1}\right)=S_{p a a}^{p, q(x)}\left(\mathbb{X}, \mu_{2}\right)$.
Proof. The proof is similar to that of [4, Theorem 2.21]. Since $\mu_{1} \sim \mu_{2}$, and \mathcal{B} is the Lebesgue σ-field of \mathbb{R}, we obtain for r sufficiently large

$$
\begin{aligned}
\frac{\alpha}{\beta} \frac{\mu_{1}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{S^{p, q(\cdot)}}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)} & \leq \frac{\mu_{2}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{S^{p, q(\cdot)}}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)} \\
& \leq \frac{\beta}{\alpha} \frac{\mu_{1}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{S^{p, q(\cdot)}}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)}
\end{aligned}
$$

By using Theorem 2.5, we deduce that

$$
\mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu_{1}\right)=\mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu_{1}\right)
$$

From the definition of a weighted $S^{p, q(x)}$-pseudo-almost automorphic function, we deduce that $S_{p a a}^{p, q(x)}\left(\mathbb{X}, \mu_{1}\right)=S_{p a a}^{p, q(x)}\left(\mathbb{X}, \mu_{2}\right)$.

Definition 4.24. A function $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ with $F(., u) \in B S^{p, q(x)}(\mathbb{X})$ for each $u \in \mathbb{Y}$, is said to be $S^{p, q(x)}$ - μ-pseudo-almost automorphic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{Y}$ if $t \mapsto F(t, u)$ is $S^{p, q(x)}$ - μ-pseudo-almost automorphic for each $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

This means, there exist two functions $G, H: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ such that $F=G+H$, where $G^{b} \in A A\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $H^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$, that is,

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{H(x+t, u)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t)=0
$$

uniformly in $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.
The collection of such functions will be denoted by $S_{p a a}^{p, q(x)}(\mathbb{Y}, \mathbb{X}, \mu)$.
Let $\operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ denote the collection of functions $f: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ satisfying: there exists a nonnegative function $L_{f}^{b} \in L^{r}(\mathbb{R})$ such that

$$
\begin{equation*}
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\|_{\mathbb{Y}} \text { for all } u, v \in \mathbb{Y}, \quad t \in \mathbb{R} \tag{4.1}
\end{equation*}
$$

Now, we recall the following composition theorem for $S_{a a}^{p}$ functions.
Theorem $4.25([16])$. Let $p>1$ be a constant. We suppose that the following conditions hold:
(a) $f \in S_{a a}^{p}(\mathbb{Y}, \mathbb{X}) \cap \operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ with $r \geq \max \left\{p, \frac{p}{p-1}\right\}$.
(b) $\phi \in S_{a a}^{p}(\mathbb{X})$ and there exists a set $E \subset \mathbb{R}$ such that $K:=\overline{\{\phi(t): t \in \mathbb{R} \backslash E\}}$ is compact in \mathbb{X}.
Then there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{a a}^{m}(\mathbb{X})$.
To obtain the composition theorem for weighted $S^{p, q}$ functions, we need the following lemma.
Lemma 4.26. Let $p, q>1$ be constants and let $\mu \in \mathcal{N}_{2}$. Assume that $f=g+h \in$ $S_{\text {paa }}^{p, q}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^{b} \in A A\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $h^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q}((0,1), \mathbb{X}), \mu\right)$. If $f \in \operatorname{Lip}^{p}(\mathbb{Y}, \mathbb{X})$, then g satisfies

$$
\left(\int_{0}^{1}\|g(t+s, u(s))-g(t+s, v(s))\|^{p} d s\right)^{1 / p} \leq c\left\|L_{f}\right\|_{S^{p}}\|u-v\|_{\mathbb{Y}}
$$

for all $u, v \in \mathbb{Y}$ and $t \in \mathbb{R}$, where c is a nonnegative constant.
Proof. The proof is similar to that of [13, Lemma 4.19]. So we omit it.
Theorem 4.27. Let $p, q>1$ be constants such that $p \leq q$ and $\mu \in \mathcal{N}_{2}$. Suppose that the following conditions hold:
(a) $f=g+h \in S_{p, a a}^{p, q}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^{b} \in A A\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $h^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q}((0,1), \mathbb{X}), \mu\right)$. Further, $f, g \in \operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ with $r \geq \max \left\{p, \frac{p}{p-1}\right\}$.
(b) $\phi=\alpha+\beta \in S_{p a a}^{p, q}(\mathbb{Y})$ with $\alpha^{b} \in A A\left(L^{p}((0,1), \mathbb{Y})\right)$ and $\beta^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{Y}), \mu\right)$, and there exists a set $E \subset \mathbb{R}$ with mes $(E)=0$ such that

$$
K:=\overline{\{\alpha(t): t \in \mathbb{R} \backslash E\}}
$$

is compact in \mathbb{Y}.
Then, there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{p a a}^{m, m}(\mathbb{Y}, \mathbb{X}, \mu)$.
Proof. We will make use of ideas of [13, Theorem 4.20]. Indeed, decompose f^{b} as follows:

$$
f^{b}\left(\cdot, \phi^{b}(\cdot)\right)=g^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+h^{b}\left(\cdot, \alpha^{b}(\cdot)\right) .
$$

From Lemma 4.26 , one has $g \in S_{a a}^{p}(\mathbb{R} \times \mathbb{X})$. Now using the theorem of composition of S^{p}-almost automorphic functions (Theorem 4.25), it is easy to see that there
exists $m \in[1, p)$ with $\frac{1}{m}=\frac{1}{p}+\frac{1}{r}$ such that $g^{b}\left(\cdot, \alpha^{b}(\cdot)\right) \in A A\left(\mathbb{Y}, L^{m}((0,1), \mathbb{X})\right)$. Set $\Phi^{b}(\cdot)=f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)$. Clearly, $\Phi^{b} \in \mathcal{E}\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X}), \mu\right)$. Indeed, from $\mu(\mathbb{R})=\infty$, there exists $r_{0}>0$ such that, for all $r>r_{0}$, one has

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\left\|\Phi^{b}(s)\right\|^{m} d s\right)^{1 / m} d \mu(t) \\
& =\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\left\|f^{b}\left(s, \phi^{b}(s)\right)-f^{b}\left(s, \alpha^{b}(s)\right)\right\|^{m} d s\right)^{1 / m} d \mu(t) \\
& \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\left(L_{f}^{b}(s)\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} d \mu(t) \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r}}\left[\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}^{p} d s\right)^{1 / p} d \mu(t)\right] \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r}}\left[\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\left\|\beta^{b}(s)\right\|_{\mathbb{Y}}^{q} d s\right)^{1 / q} d \mu(t)\right]
\end{aligned}
$$

Using the fact that $\beta^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{Y})\right)$, it follows that $\Phi^{b} \in \mathcal{E}\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$.
On the other hand, since $f, g \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X}) \subset \operatorname{Lip}^{p}(\mathbb{R}, \mathbb{X})$, one has

$$
\begin{aligned}
(& \left.\int_{0}^{1}\|h(t+s, u(s))-h(t+s, v(s))\|^{m} d s\right)^{1 / m} \\
\leq & \left(\int_{0}^{1}\|f(t+s, u(s))-f(t+s, v(s))\|^{m} d s\right)^{1 / m} \\
& +\left(\int_{0}^{1}\|g(t+s, u(s))-g(t+s, v(s))\|^{m} d s\right)^{1 / m} \\
\leq & \left(\int_{0}^{1}\left(L_{f}(t+s)\|u(s)-v(s)\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} \\
& +\left(\int_{0}^{1}\left(L_{g}(t+s)\|u(s)-v(s)\|_{\mathbb{Y}}\right)^{m} d s\right)^{1 / m} \\
\leq & \left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right)\|u(s)-v(s)\|_{p}
\end{aligned}
$$

Since $K:=\overline{\{\alpha(t): t \in \mathbb{R}\}}$ is compact in \mathbb{Y}, then for each $\varepsilon>0$, there exists a finite number of open balls $B_{k}=B\left(x_{k}, \varepsilon\right)$, centered at $x_{k} \in K$ with radius ε such that

$$
\{\alpha(t): t \in \mathbb{R}\} \subset \cup_{k=1}^{m} B_{k} .
$$

Therefore, for $1 \leq k \leq m$, the set $U_{k}=\left\{t \in \mathbb{R}: \alpha \in B_{k}\right\}$ is open and $\mathbb{R}=\cup_{k=1}^{m} U_{k}$. Now, for $2 \leq k \leq m$, set $V_{k}=U_{k}-\cup_{i=1}^{k-1} U_{i}$ and $V_{1}=U_{1}$. Clearly, $V_{i} \cap V_{j}=\emptyset$ for all $i \neq j$. Define the step function $\bar{x}: \mathbb{R} \rightarrow \mathbb{Y}$ by $\bar{x}(t)=x_{k}, t \in V_{k}, k=1,2, \ldots, m$. It easy to see that

$$
\|\alpha(s)-\bar{x}(s)\|_{\mathbb{Y}} \leq \varepsilon, \quad \text { for all } s \in \mathbb{R}
$$

which yields

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\|h(s, \alpha(s))\|^{m} d s\right)^{1 / m} d \mu(t) \\
& \leq \\
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\|h(s, \alpha(s))-h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d \mu(t) \\
& \quad+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t}^{t+1}\|h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d \mu(t) \\
& \leq\left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right) \varepsilon+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\sum_{k=1}^{m} \int_{V_{k} \cap[t, t+1]}\|h(s, \bar{x}(s))\|^{m} d s\right)^{1 / m} d \mu(t) \\
& \leq\left(\left\|L_{f}\right\|_{S^{r}}+\left\|L_{g}\right\|_{S^{r}}\right) \varepsilon+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\sum_{k=1}^{m} \int_{V_{k} \cap[t, t+1]}\|h(s, \bar{x}(s))\|^{q} d s\right)^{1 / q} d \mu(t)
\end{aligned}
$$

Since ε is arbitrary and $h^{b} \in \mathcal{E}\left(\mathbb{R} \times L^{q}((0,1), \mathbb{X})\right)$, it follows that the function $h^{b}\left(\cdot, \alpha^{b}(\cdot)\right)$ belongs to $\mathcal{E}\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$. This completes the proof.

Remark 4.28. A general composition theorem in $S_{p a a}^{p, q(x)}(\mathbb{R} \times \mathbb{X})$ is unlikely as compositions of elements of $S_{p a a}^{p, q(x)}(\mathbb{R} \times \mathbb{X}, \mu)$ may not be well-defined unless $q(\cdot)$ is the constant function.

5. Application to Abstract Evolution Equations

Fix $\mu \in \mathcal{N}_{2}, p, q>1$, and $\vartheta \in C_{+}(\mathbb{R})$. To study the existence of a weighted pseudo-almost automorphic solution to Eq. (1.1) with weighted $S_{p a a}^{p, q}$ coefficients we will assume that the following assumptions hold:
(H1) The family of closed linear operators $A(t)$ for $t \in \mathbb{R}$ on \mathbb{X} with domain $D(A(t))$ (possibly not densely defined) satisfy the Acquistapace and Terreni conditions, the evolution family of operators $\mathcal{U}=\{U(t, s)\}_{t \geq s}$ generated by $A(\cdot)$ has an exponential dichotomy with constants $N, \delta>0$ and dichotomy projections $P(t)(t \in \mathbb{R})$. Moreover, $0 \in \rho(A)$ for each $t \in \mathbb{R}$ and the following hold

$$
\begin{equation*}
\sup _{t, s \in \mathbb{R}}\left\|A(s) A^{-1}(t)\right\|_{B\left(\mathbb{X}, \mathbb{X}_{\beta}\right)}<c_{1} \tag{5.1}
\end{equation*}
$$

(H2) There exists $0 \leq \alpha<\beta<1$ such that $\mathbb{X}_{\alpha}^{t}=\mathbb{X}_{\alpha}$ and $\mathbb{X}_{\beta}^{t}=\mathbb{X}_{\beta}$ for all $t \in \mathbb{R}$, with uniform equivalent norms. Let $c_{2}(\alpha), c_{3}, c_{4}$ be the bounds of the continuous injections $\mathbb{X}_{\beta} \hookrightarrow \mathbb{X}_{\alpha}, \mathbb{X}_{\alpha} \hookrightarrow \mathbb{X}, \mathbb{X}_{\beta} \hookrightarrow \mathbb{X}$.
(H3) The function $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{X},(t, s) \rightarrow A(s) \Gamma(t, s) y \in b A A\left(\mathbb{T}, \mathbb{X}_{\alpha}\right)$ uniformly for $y \in \mathbb{X}_{\beta}$.
(H4) The function $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{X},(t, s) \rightarrow \Gamma(t, s) y \in b A A\left(\mathbb{T}, \mathbb{X}_{\alpha}\right)$ uniformly for $y \in \mathbb{X}$.
(H5) The linear operators $B(t), C(t): \mathbb{X}_{\alpha} \rightarrow \mathbb{X}$ are bounded uniformly in $t \in \mathbb{R}$. Moreover, both $t \mapsto B(t)$ and $t \mapsto C(t)$ belong to $A A\left(B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)\right)$. We then set

$$
c_{5}:=\max \left(\sup _{t \in \mathbb{R}}\|B\|_{B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)}, \sup _{t \in \mathbb{R}}\|C\|_{B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)}\right)
$$

(H6) The function $f=h+\varphi \in S_{p a a}^{p, q}\left(\mathbb{X}, \mathbb{X}_{\beta}, \mu\right)$ while $g=h^{\prime}+\varphi^{\prime} \in S_{p a a}^{p, q}(\mathbb{X}, \mathbb{X}, \mu)$. Moreover; $f, h \in \operatorname{Lip}^{r}\left(\mathbb{R}, \mathbb{X}_{\beta}\right)$ and $g, h^{\prime} \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X})$. with

$$
r \geq \max \left\{p, \frac{p}{p-1}\right\}
$$

Definition 5.1. A continuous function $u: \mathbb{R} \rightarrow \mathbb{X}_{\alpha}$ is said to be a mild solution to (1.1) provided that the functions $s \rightarrow A(s) U(t, s) P(s) f(s, B(s) u(s))$
and $s \rightarrow A(s) U(t, s) Q(s) f(s, B(s) u(s))$ are integrable on (t, s) and

$$
\begin{aligned}
& u(t)=-f(t, B(t) u(t))+U(t, s)(u(s)+f(s, B(s) u(s))) \\
& -\int_{s}^{t} A(s) U(t, s) P(s) f(s, B(s) u(s)) d s+\int_{t}^{s} A(s) U(t, s) Q(s) f(s, B(s) u(s)) d s \\
& +\int_{s}^{t} U(t, s) P(s) g(s, C(s) u(s)) d s-\int_{t}^{s} U(t, s) Q(s) g(s, C(s) u(s)) d s
\end{aligned}
$$

for $t \geq s$ and for all $t, s \in \mathbb{R}$.
Under previous assumptions (H1)-(H6), it can be easily shown that (1.1) has a unique mild solution given by

$$
\begin{aligned}
& u(t)=-f(t, B(t) u(t))-\int_{-\infty}^{t} A(s) U(t, s) P(s) f(s, B(s) u(s)) d s \\
& +\int_{t}^{\infty} A(s) U_{Q}(t, s) Q(s) f(s, B(s) u(s)) d s+\int_{-\infty}^{t} U(t, s) P(s) g(s, C(s) u(s)) d s \\
& -\int_{t}^{\infty} U_{Q}(t, s) Q(s) g(s, C(s) u(s)) d s
\end{aligned}
$$

for each $t \in \mathbb{R}$.
The proof of our main result requires the next technical lemmas:
Lemma 5.2. Under assumption (H5), if $u \in P A A\left(\mathbb{X}_{\alpha}, \mu\right)$, then $B(\cdot) u(\cdot)$ and $C(\cdot) u(\cdot)$ belong to $P A A(\mathbb{X}, \mu)$.
Proof. We will make use of ideas of [8, Lemma 3.2]. Let $u=h+\varphi \in P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ where $h \in A A\left(\mathbb{X}_{\alpha}\right)$ and $\varphi \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$, then $B(\cdot) u(\cdot)=B(\cdot) h(\cdot)+B(\cdot) \varphi(\cdot)$. First, it is easy to see that $B(\cdot) u(\cdot) \in B C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)$. Since $h \in A A\left(\mathbb{X}_{\alpha}\right)$, for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$, there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ and a measurable function g_{1} such that

$$
\lim _{n \rightarrow \infty}\left\|h\left(s_{n}+s\right)-g_{1}(s)\right\|_{\alpha}=0
$$

and

$$
\lim _{n \rightarrow \infty}\left\|g_{1}\left(s-s_{n}\right)-h(s)\right\|_{\alpha}=0
$$

for each $t \in \mathbb{R}$.
Since $B(\cdot) \in A A\left(B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)\right)$, there exists a subsequence $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(s_{n}\right)_{n \in \mathbb{N}}$ and a measurable function g_{2} such that

$$
\left\|B\left(s_{n_{k}}+s\right)-g_{2}(s)\right\|_{B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)} \rightarrow 0
$$

and

$$
\left\|g_{2}\left(s-s_{n_{k}}\right)-B(s)\right\|_{B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)} \rightarrow 0
$$

as $k \rightarrow \infty$ for each $t \in \mathbb{R}$.

By using the triangle inequality, one has

$$
\begin{aligned}
& \left\|B\left(s_{n_{k}}+s\right) h\left(s_{n_{k}}+s\right)-g_{2}(s) g_{1}(s)\right\| \leq\left\|B\left(s_{n_{k}}+s\right) h\left(s_{n_{k}}+s\right)-B\left(s_{n_{k}}+s\right) g_{1}(s)\right\| \\
& +\left\|B\left(s_{n_{k}}+s\right) g_{1}(s)-g_{2}(s) g_{1}(s)\right\| \\
& \leq c_{5}\left\|h\left(s_{n_{k}}+s\right)-g_{1}(s)\right\|_{X_{\alpha}}+\left\|g_{1}\right\|_{\infty}\left\|B\left(s_{n_{k}}+s\right)-g_{2}(s)\right\|_{B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)} .
\end{aligned}
$$

Then,

$$
\lim _{n \rightarrow \infty}\left\|B\left(s_{n_{k}}+s\right) h\left(s_{n_{k}}+s\right)-g_{2}(s) g_{1}(s)\right\|=0
$$

Analogously, one can prove that

$$
\lim _{n \rightarrow \infty}\left\|g_{2}\left(s-s_{n_{k}}\right) g_{1}\left(s-s_{n_{k}}\right)-B(s) h(s)\right\|=0
$$

Hence, $B(\cdot) h(\cdot) \in A A(\mathbb{X})$.
To complete the proof, it suffices to notice that for r sufficiently large

$$
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|B(s) \varphi(s)\| d \mu(s) \leq \frac{c_{5}}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(s)\|_{X_{\alpha}} d \mu(s)
$$

and hence,

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|B(s) \varphi(s)\| d \mu(s)=0
$$

Lemma 5.3 ([11]). For each $x \in \mathbb{X}$, suppose that Assumptions (H1)-(H2) hold and let α, β be real numbers such that $0<\alpha<\beta<1$ with $2 \beta>\alpha+1$, then there are constants $r(\alpha, \beta), r^{\prime}(\alpha, \beta), d(\beta)>0$ such that

$$
\begin{array}{ll}
\|A(t) U(t, s) P(s) x\|_{\beta} \leq r^{\prime}(\alpha, \beta) e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta}\|x\|, & t>s \\
\|A(s) U(t, s) P(s) x\|_{\beta} \leq r(\alpha, \beta) e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta}\|x\|, & t>s \tag{5.3}
\end{array}
$$

and

$$
\begin{equation*}
\left\|A(s) \widetilde{U}_{Q}(s, t) Q(t) x\right\|_{\beta} \leq d(\beta) e^{-\delta(s-t)}\|x\|, \quad t \leq s \tag{5.4}
\end{equation*}
$$

Lemma 5.4. Under assumptions (H1)-(H6), the integral operators Γ_{1} and Γ_{2} defined by

$$
\left(\Gamma_{1} u\right)(t):=\int_{-\infty}^{t} A(s) U(t, s) P(s) f(s, B(s) u(s)) d s
$$

and

$$
\left(\Gamma_{2} u\right)(t):=\int_{t}^{\infty} A(s) U_{Q}(t, s) Q(s) f(s, B(s) u(s)) d s
$$

map $P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ into itself.
Proof. Let $u \in P A A\left(\mathbb{X}_{\alpha}, \mu\right)$. By Lemma (5.2) one has $B(\cdot) u(\cdot) \in P A A(\mathbb{X}, \mu) \subset$ $S_{p a a}^{p, q}(\mathbb{X}, \mu)$. Using the composition theorem for weighted $S_{p a a}^{p, q}$ functions, we deduce that $F(t):=f(t, B(t) u(t)) \in S_{p a a}^{p, q}\left(\mathbb{X}_{\beta}, \mu\right)$. Now write $F=\phi+\psi$, where $\phi^{b} \in$ $A A\left(L^{p}\left((0,1), \mathbb{X}_{\beta}\right)\right)$ and $\psi^{b} \in \mathcal{E}\left(L^{q}\left((0,1), \mathbb{X}_{\beta}\right), \mu\right)$. Then Γ_{1} can be decomposed as

$$
\left(\Gamma_{1} u\right)(t)=\Phi(t)+\Psi(t)
$$

where

$$
\Phi(t)=\int_{-\infty}^{t} A(s) U(t, s) P(s) \phi(s) d s \text { and } \Psi(t)=\int_{-\infty}^{t} A(s) U(t, s) P(s) \psi(s) d s
$$

Clearly $\Phi \in A A\left(\mathbb{X}_{\alpha}\right)$. Indeed; for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set
$\Phi_{k}(t):=\int_{k-1}^{k} A(t-s) U(t, t-s) P(t-s) \phi(t-s) d s=\int_{t-k}^{t-k+1} A(s) U(t, s) P(s) \phi(s) d s$,
Let $d>1$ such that $\frac{1}{p}+\frac{1}{d}=1$, where $p>1$. Using Eq. (5.3) and the Hölder's inequality, it follows that

$$
\begin{aligned}
\left\|\Phi_{k}(t)\right\|_{\alpha} \leq & c_{2}(\alpha)\left\|\Phi_{k}(t)\right\|_{\beta} \leq c_{2}(\alpha) r(\alpha, \beta) \int_{t-k}^{t-k+1} e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta}\|\phi(s)\|_{\beta} d s \\
\leq & c_{2}(\alpha) r(\alpha, \beta)\left[\int_{t-k}^{t-k+1} e^{\frac{-d \delta}{4}(t-s)}(t-s)^{-d \beta} d s\right]^{1 / d} \\
& \times\left[\int_{t-k}^{t-k+1}\|\phi(s)\|_{\beta}^{p} d s\right]^{1 / p} \\
\leq & c_{2}(\alpha) r(\alpha, \beta)\left[\int_{k-1}^{k} e^{\frac{-d \delta}{4} s} s^{-d \beta} d s\right]^{1 / d}\|\phi\|_{S^{p}\left(\mathbb{X}_{\beta}\right)} \\
\leq & c_{2}(\alpha) r(\alpha, \beta) \sqrt[d]{\frac{1+e^{\frac{d \delta}{4}}}{\frac{d \delta}{4}}}(k-1)^{-\beta} e^{\frac{-\delta}{4} k}\|\phi\|_{S^{p}\left(\mathbb{X}_{\beta}\right)} \\
:= & C_{d}(\alpha, \beta, \delta)\|\phi\|_{S^{p}\left(\mathbb{X}_{\beta}\right) .}
\end{aligned}
$$

Since the series $\sum_{k=1}^{\infty}\left((k-1)^{-\beta} e^{\frac{-\delta}{4} k}\right)$ is convergent, we deduce from the wellknown Weierstrass test that the series $\sum_{k=1}^{\infty} \Phi_{k}(t)$ is uniformly convergent on \mathbb{R}. Furthermore

$$
\Phi(t)=\int_{-\infty}^{t} A(s) U(t, s) P(s) \phi(s) d s=\sum_{k=1}^{\infty} \Phi_{k}(t)
$$

$\Phi \in C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)$ and

$$
\|\Phi(t)\|_{\alpha} \leq \sum_{k=1}^{\infty}\left\|\Phi_{k}(t)\right\|_{\alpha} \leq \sum_{k=1}^{\infty} C_{d}(\alpha, \beta, \delta)\|\phi\|_{S^{p}\left(\mathbb{X}_{\beta}\right)}
$$

Fix $k \in \mathbb{N}$, let us take a sequence $\left(s_{n}^{\prime}\right)_{n}$ of real numbers. Since $\phi^{b} \in A A\left(L^{p}\left((0,1), \mathbb{X}_{\beta}\right)\right)$ and $A(s) U(t, s) P(s) y \in b A A\left(\mathbb{T}, \mathbb{X}_{\alpha}\right)$ uniformly for $y \in X_{\beta}$, then for every sequence $\left(s_{n}^{\prime}\right)_{n}$ there exists a subsequence $\left(s_{n}\right)_{n}$ and functions θ, h such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} A\left(s+s_{n}\right) U\left(t+s_{n}, s+s_{n}\right) P\left(s+s_{n}\right) x=\theta(t, s) x \text { for each } t, s \in \mathbb{R}, x \in \mathbb{X}_{\beta} \tag{5.5}\\
\lim _{n \rightarrow \infty} \theta\left(t-s_{n}, s-s_{n}\right) x=A(s) U(t, s) P(s) x \text { for each } t, s \in \mathbb{R}, x \in \mathbb{X}_{\beta} \tag{5.6}\\
\lim _{n \rightarrow \infty}\left\|\phi\left(t+s_{n}+\cdot\right)-h(t+\cdot)\right\|_{S^{p}\left(\mathbb{X}_{\beta}\right)}=0, \text { for each } t \in \mathbb{R} . \tag{5.7}\\
\lim _{n \rightarrow \infty}\left\|h\left(t-s_{n}+\cdot\right)-\phi(t+\cdot)\right\|_{S^{p}\left(\mathbb{X}_{\beta}\right)}=0 \text { for each } t \in \mathbb{R} . \tag{5.8}
\end{gather*}
$$

We set

$$
G_{k}(t):=\int_{k-1}^{k} \theta(t, t-s) h(t-s) d s
$$

Using triangle inequality, we obtain that

$$
\left\|\Phi_{k}\left(t+s_{n}\right)-G_{k}(t)\right\|_{\alpha} \leq a_{n}^{k}(t)+b_{n}^{k}(t)
$$

where
$a_{n}^{k}(t):=\int_{k-1}^{k}\left\|A\left(t+s_{n}-s\right) U\left(t+s_{n}, t+s_{n}-s\right) P\left(t+s_{n}-s\right)\left(\phi\left(t+s_{n}-s\right)-h(t-s)\right)\right\|_{\alpha} d s$,
and
$b_{n}^{k}(t):=\int_{k-1}^{k}\left\|\left[A\left(t+s_{n}-s\right) U\left(t+s_{n}, t+s_{n}-s\right) P\left(t+s_{n}-s\right)-\theta(t, t-s)\right] h(t-s)\right\|_{\alpha} d s$
Using Eq. (5.3) and the Hölder's inequality it follows that

$$
a_{n}^{k}(t) \leq C_{d}(\alpha, \beta, \delta)\left\|\phi\left(t+s_{n}-s\right)-h(t-s)\right\|_{S^{p}\left(\mathbb{X}_{\beta}\right)} .
$$

Then, by (5.7), $\lim _{n \rightarrow \infty} a_{n}^{k}(t)=0$. Again, using the Lebesgue dominated convergence theorem and (5.5), one can get $\lim _{n \rightarrow \infty} b_{n}^{k}(t)=0$. Thus,

$$
\lim _{n \rightarrow \infty} \Phi_{k}\left(t+s_{n}\right)=\int_{k-1}^{k} \theta(t, t-\sigma) h(t-\sigma) d \sigma, \text { for each } t \in \mathbb{R}
$$

Analogously, one can prove that

$$
\lim _{n \rightarrow \infty} \int_{k-1}^{k} \theta\left(t-s_{n}, t-s_{n}-s\right) h\left(t-s_{n}-s\right) d s=\Phi_{k}(t), \quad \text { for each } t \in \mathbb{R}
$$

Therefore, $\Phi_{k} \in A A\left(\mathbb{X}_{\alpha}\right)$. Applying Proposition (2.2), we deduce that the uniform limit

$$
\Phi(\cdot)=\sum_{k=1}^{\infty} \Phi_{k}(\cdot) \in A A\left(\mathbb{X}_{\alpha}\right)
$$

Now, we prove that $\Psi \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$. For this; for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set
$\Psi_{k}(t):=\int_{k-1}^{k} A(t-s) U(t, t-s) P(t-s) \psi(t-s) d s=\int_{t-k}^{t-k+1} A(s) U(t, s) P(s) \psi(s) d s$.
By carrying similar arguments as above, we deduce that $\Psi_{k}(t) \in B C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)$, $\sum_{k=1}^{\infty} \Psi_{k}(t)$ is uniformly convergent on \mathbb{R} and

$$
\Psi(t)=\sum_{k=1}^{\infty} \Psi_{k}(t)=\int_{-\infty}^{t} A(s) U(t, s) P(s) \psi(s) d s \in B C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)
$$

To complete the proof, it remains to show that

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\Psi(t)\|_{\alpha} d \mu(t)=0
$$

In fact, the estimate in Eq. (5.3) yields

$$
\begin{aligned}
\left\|\Psi_{k}(t)\right\|_{\alpha} & \leq c_{2}(\alpha) r(\alpha, \beta)\left(\int_{t-k}^{t-k+1} e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta}\|\psi(s)\|_{\beta} d s\right) \\
& \leq c_{2}(\alpha) r(\alpha, \beta) \sqrt[d^{\prime}]{\frac{1+e^{\frac{d^{\prime} \delta}{4}}}{\frac{d^{\prime} \delta}{4}}}(k-1)^{-\beta} e^{\frac{-\delta}{4} k}\left(\int_{t-k}^{t-k+1}\|\psi(s)\|_{\beta}^{q} d s\right)^{1 / q} \\
& =C_{d^{\prime}}(\alpha, \beta, \delta)\left(\int_{t-k}^{t-k+1}\|\psi(s)\|_{\beta}^{q} d s\right)^{1 / q}
\end{aligned}
$$

where $d^{\prime}>1$ such that $\frac{1}{q}+\frac{1}{d^{\prime}}=1$. Then, one has

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left\|\Psi_{k}(t)\right\|_{\alpha} d \mu(t) & \leq \frac{C_{d^{\prime}}(\alpha, \beta, \delta)}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t-k}^{t-k+1}\|\psi(s)\|_{\beta}^{q} d s\right)^{1 / q} d \mu(t) \\
& \leq \frac{C_{d^{\prime}}(\alpha, \beta, \delta)}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\|\psi(s+t-k)\|_{\beta}^{q} d s\right)^{\frac{1}{q}} d \mu(t)
\end{aligned}
$$

Since $\psi^{b} \in \mathcal{E}\left(L^{q}\left((0,1), \mathbb{X}_{\beta}\right), \mu\right)$, the above inequality leads to $\Psi_{k} \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$. Then by the following inequality

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\Psi(t)\|_{\alpha} d \mu(t) \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \| \Psi(t)- & \sum_{k=1}^{\infty} \Psi_{k}(t) \|_{\alpha} d \mu(t) \\
& +\sum_{k=1}^{\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left\|\Psi_{k}(t)\right\|_{\alpha} d \mu(t)
\end{aligned}
$$

we deduce that the uniform limit $\Psi(\cdot)=\sum_{k=1}^{\infty} \Psi_{k}(\cdot) \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$, which ends the proof.

Of course, the proof for $\left(\Gamma_{2} u\right)(\cdot)$ is similar to that for $\left(\Gamma_{1} u\right)(\cdot)$. However, one makes use of Eq. (5.4) rather than Eq. (5.3).

Lemma 5.5. Under assumptions (H1)-(H6), the integral operators Γ_{3} and Γ_{4} defined by

$$
\left(\Gamma_{3} u\right)(t):=\int_{-\infty}^{t} U(t, s) P(s) g(s, C(s) u(s)) d s
$$

and

$$
\left(\Gamma_{4} u\right)(t):=\int_{t}^{\infty} U_{Q}(t, s) Q(s) g(s, C(s) u(s)) d s
$$

$\operatorname{map} P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ into itself.
Proof. Let $u \in P A A\left(\mathbb{X}_{\alpha}, \mu\right)$, since $C(\cdot) \in A A\left(B\left(\mathbb{X}_{\alpha}, \mathbb{X}\right)\right)$; by Lemma (5.2); it follows that $C(\cdot) u(\cdot) \in P A A(\mathbb{X}, \mu) \subset S_{p a a}^{p, q}(\mathbb{X}, \mu)$ Using the composition theorem for weighted $S_{p a a}^{p, q}$ functions (Theorem (4.27)), we deduce that $G(t):=g(t, C(t) u(t)) \in$ $S_{p a a}^{p, q}(\mathbb{X}, \mu)$. Now write $G=\phi+\psi$, where $\phi^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $\psi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. Thus Γ_{3} can be rewritten as

$$
\left(\Gamma_{3} u\right)(t)=\Phi(t)+\Psi(t),
$$

where

$$
\Phi(t)=\int_{-\infty}^{t} U(t, s) P(s) \phi(s) d s \text { and } \Psi(t)=\int_{-\infty}^{t} U(t, s) P(s) \psi(s) d s
$$

Now we will show that $\Phi \in A A\left(\mathbb{X}_{\alpha}\right)$. For each $t \in \mathbb{R}$ and $k \in \mathbb{N}$ we set

$$
\Phi_{k}(t):=\int_{k-1}^{k} U(t, t-s) P(t-s) \phi(t-s) d s=\int_{t-k}^{t-k+1} U(t, s) P(s) \phi(s) d s
$$

Let $d>1$ such that $\frac{1}{p}+\frac{1}{d}=1$, where $p>1$. Using Eq. (3.7) and the Hölder's inequality, it follows that

$$
\begin{aligned}
\left\|\Phi_{k}(t)\right\|_{\alpha} & \leq \int_{t-k}^{t-k+1}\|U(t, s) P(s) \phi(s)\|_{\alpha} d s \\
& \leq n(\alpha) \int_{t-k}^{t-k+1} e^{\frac{-\delta}{2}(t-s)}(t-s)^{-\alpha}\|\phi(s)\| d s \\
& \leq n(\alpha)\left[\int_{t-k}^{t-k+1} e^{\frac{-d \delta}{2}(t-s)}(t-s)^{-d \alpha} d s\right]^{1 / d} \times\left[\int_{t-k}^{t-k+1}\|\phi(s)\|^{p} d s\right]^{1 / p} \\
& \leq n(\alpha)\left[\int_{k-1}^{k} e^{\frac{-d \delta}{2} s} s^{-d \alpha} d s\right]^{1 / d}\|\phi\|_{S^{p}(\mathbb{X})} \\
& \leq n(\alpha) \sqrt[d]{\frac{1+e^{\frac{d \delta}{2}}}{\frac{d \delta}{2}}}(k-1)^{-\alpha} e^{\frac{-\delta}{2} k}\|\phi\|_{S^{p}(\mathbb{X})} \\
& :=C_{d}(\alpha, \delta)\|\phi\|_{S^{p}(\mathbb{X})}
\end{aligned}
$$

Since the series $\sum_{k=1}^{\infty}\left((k-1)^{-\alpha} e^{\frac{-\delta}{2} k}\right)$ is convergent, we deduce from the well-known Weierstrass test that the series $\sum_{k=1}^{\infty} \Phi_{k}(t)$ is uniformly convergent on \mathbb{R}. Furthermore

$$
\Phi(t)=\int_{-\infty}^{t} U(t, s) P(s) \phi(s) d s=\sum_{k=1}^{\infty} \Phi_{k}(t)
$$

$\Phi \in C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)$ and

$$
\|\Phi(t)\|_{\alpha} \leq \sum_{k=1}^{\infty}\left\|\Phi_{k}(t)\right\| \leq \sum_{k=1}^{\infty} C_{d}(\alpha, \delta)\|\phi\|_{S^{p}(\mathbb{X})}
$$

Fix $k \in \mathbb{N}$, let us take a sequence $\left(s_{n}^{\prime}\right)_{n}$ of real numbers. Since $\phi^{b} \in A A\left(L^{p}((0,1), \mathbb{X})\right)$ and $U(t, s) y \in b A A\left(\mathbb{T}, \mathbb{X}_{\alpha}\right)$ uniformly for $y \in \mathbb{X}$, then for every sequence $\left(s_{n}^{\prime}\right)_{n}$ there exists a subsequence $\left(s_{n}\right)_{n}$ and functions θ, h such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} U\left(t+s_{n}, s+s_{n}\right) P\left(s+s_{n}\right) x=\theta(t, s) x \text { for each } t, s \in \mathbb{R}, x \in \mathbb{X} . \tag{5.9}\\
\lim _{n \rightarrow \infty} \theta\left(t-s_{n}, s-s_{n}\right) x=U(t, s) P(s) x \text { for each } t, s \in \mathbb{R}, x \in \mathbb{X} . \tag{5.10}\\
\lim _{n \rightarrow \infty}\left\|\phi\left(t+s_{n}+\cdot\right)-h(t+\cdot)\right\|_{S^{p}(\mathbb{X})}=0, \text { for each } t \in \mathbb{R} . \tag{5.11}\\
\lim _{n \rightarrow \infty}\left\|h\left(t-s_{n}+\cdot\right)-\phi(t+\cdot)\right\|_{S^{p}(\mathbb{X})}=0 \text { for each } t \in \mathbb{R} . \tag{5.12}
\end{gather*}
$$

We set

$$
H_{k}(t):=\int_{k-1}^{k} \theta(t, t-s) h(t-s) d s
$$

Using triangle inequality, Eq. (3.7) and the Hölder's inequality, we obtain that

$$
\left\|\Phi_{k}\left(t+s_{n}\right)-H_{k}(t)\right\|_{\alpha} \leq c_{n}^{k}(t)+d_{n}^{k}(t)
$$

where

$$
\begin{aligned}
c_{n}^{k}(t) & :=\left\|\int_{k-1}^{k} U\left(t+s_{n}, t+s_{n}-s\right) P\left(t+s_{n}-s\right)\left(\phi\left(t+s_{n}-s\right)-h(t-s)\right) d s\right\|_{\alpha} \\
& \leq n(\alpha)\left(\int_{k-1}^{k} e^{\frac{-\delta}{2} s} s^{-\alpha}\left\|\phi\left(t+s_{n}-s\right)-h(t-s)\right\| d s\right) \\
& \leq C_{d}(\alpha, \delta)\left\|\phi\left(t+s_{n}-s\right)-h(t-s)\right\|_{S^{p}(\mathbb{X})},
\end{aligned}
$$

and

$$
\begin{aligned}
d_{n}^{k}(t) & :=\left\|\int_{k-1}^{k}\left[U\left(t+s_{n}, t+s_{n}-s\right) P\left(t+s_{n}-s\right)-\theta(t, t-s)\right] h(t-s) d s\right\|_{\alpha} \\
& \leq \int_{k-1}^{k}\left\|U\left(t+s_{n}, t+s_{n}-s\right) P\left(t+s_{n}-s\right)-\theta(t, t-s) h(t-s)\right\|_{\alpha} d s
\end{aligned}
$$

By (5.11), $\lim _{n \rightarrow \infty} c_{n}^{k}(t)=0$ and by using the Lebesgue dominated convergence theorem and (5.9), one can get $\lim _{n \rightarrow \infty} c_{n}^{k}(t)=0$. Thus,

$$
\lim _{n \rightarrow \infty} \Phi_{k}\left(t+s_{n}\right)=\int_{k-1}^{k} \theta(t, t-\sigma) h(t-\sigma) d \sigma, \text { for each } t \in \mathbb{R}
$$

Analogously, one can prove that

$$
\lim _{n \rightarrow \infty} \int_{k-1}^{k} \theta\left(t-s_{n}, t-s_{n}-s\right) h\left(t-s_{n}-s\right) d s=\Phi_{k}(t), \text { for each } t \in \mathbb{R}
$$

Therefore, $\Phi_{k} \in A A\left(\mathbb{X}_{\alpha}\right)$. Applying Proposition (2.2), we deduce that the uniform limit

$$
\Phi(\cdot)=\sum_{k=1}^{\infty} \Phi_{k}(\cdot) \in A A\left(\mathbb{X}_{\alpha}\right)
$$

Now, we prove that $\Psi \in P A P_{0}\left(\mathbb{X}_{\alpha}\right)$. For this; for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set

$$
\Psi_{k}(t):=\int_{k-1}^{k} U(t, t-s) P(t-s) \psi(t-s) d s=\int_{t-k}^{t-k+1} U(t, s) P(s) \psi(s) d s
$$

By carrying similar arguments as above, we deduce that $\Psi_{k}(t) \in B C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)$, $\sum_{k=1}^{\infty} \Psi_{k}(t)$ is uniformly convergent on \mathbb{R} and

$$
\Psi(t)=\sum_{k=1}^{\infty} \Psi_{k}(t)=\int_{-\infty}^{t} A(s) U(t, s) P(s) \psi(s) d s \in B C\left(\mathbb{R}, \mathbb{X}_{\alpha}\right)
$$

To complete the proof, it remains to show that

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\Psi(t)\|_{\alpha} d \mu(t)=0
$$

In fact, the estimate in Eq. (3.7) yields

$$
\begin{aligned}
\left\|\Psi_{k}(t)\right\|_{\alpha} & \leq n(\alpha)\left(\int_{t-k}^{t-k+1} e^{\frac{-\delta}{2}(t-s)}(t-s)^{-\alpha}\|\psi(s)\| d s\right) \\
& \leq n(\alpha) \sqrt[d^{\prime}]{\frac{1+e^{\frac{d^{\prime} \delta}{2}}}{\frac{d^{\prime} \delta}{2}}}(k-1)^{-\alpha} e^{\frac{-\delta}{2} k}\left(\int_{t-k}^{t-k+1}\|\psi(s)\|^{q} d s\right)^{1 / q} \\
& =C_{d^{\prime}}(\alpha, \delta)\|\psi\|_{S^{q}(\mathbb{X})}
\end{aligned}
$$

where $d^{\prime}>1$ such that $\frac{1}{q}+\frac{1}{d^{\prime}}=1$. Then, one has

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left\|\Psi_{k}(t)\right\|_{\alpha} d \mu(t) & \leq \frac{C_{d^{\prime}}(\alpha, \delta)}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{t-k}^{t-k+1}\|\psi(s)\|^{q} d s\right)^{\frac{1}{q}} d \mu(t) \\
& \leq \frac{C_{d^{\prime}}(\alpha, \delta)}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\|\psi(s+t-k)\|^{q} d s\right)^{\frac{1}{q}} d \mu(t)
\end{aligned}
$$

Since $\psi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, the above inequality leads to $\Psi_{k} \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$. Then, by the following inequality

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\Psi(t)\|_{\alpha} d \mu(t) \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \| \Psi(t)- & \sum_{k=1}^{\infty} \Psi_{k}(t) \|_{\alpha} d \mu(t) \\
& +\sum_{k=1}^{\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left\|\Psi_{k}(t)\right\|_{\alpha} d \mu(t)
\end{aligned}
$$

we deduce that the uniform limit $\Psi(\cdot)=\sum_{k=1}^{\infty} \Psi_{k}(\cdot) \in \mathcal{E}\left(\mathbb{X}_{\alpha}, \mu\right)$, which ends the proof.

Of course, the proof for $\left(\Gamma_{4} u\right)(\cdot)$ is similar to that for $\left(\Gamma_{3} u\right)(\cdot)$. However, one makes use of Eq. (3.8) rather than Eq. (3.7).

Theorem 5.6. Under the assumptions (H1)-(H6), the evolution equation (1.1) has a unique μ-pseudo-almost automorphic mild solution whenever $L=$ $\max \left(\left\|L_{f}\right\|_{S^{r}} ;\left\|L_{g}\right\|_{S^{r}}\right)$ is small enough.

Proof. Consider the nonlinear operator Π defined on $P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ by

$$
\begin{aligned}
& \Pi u(t)=-f(t, B(t) u(t))-\int_{-\infty}^{t} A(s) U(t, s) P(s) f(s, B(s) u(s)) d s \\
& +\int_{t}^{\infty} A(s) U_{Q}(t, s) Q(s) f(s, B(s) u(s)) d s+\int_{-\infty}^{t} U(t, s) P(s) g(s, C(s) u(s)) d s \\
& -\int_{t}^{\infty} U_{Q}(t, s) Q(s) g(s, C(s) u(s)) d s
\end{aligned}
$$

for each $t \in \mathbb{R}$. As we have previously seen, for every $u \in P A A\left(\mathbb{X}_{\alpha}, \mu\right), f(\cdot, B u(\cdot)) \in$ $P A A\left(\mathbb{X}_{\beta}, \mu\right) \subset P A A\left(\mathbb{X}_{\alpha}, \mu\right)$. In view of Lemmas (5.4) and (5.5), it follows that Π maps $P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ into its self. To complete the proof one has to show that Π has a unique fixed point.

Let $u, v \in P A A\left(\mathbb{X}_{\alpha}, \mu\right)$. For Γ_{1} and Γ_{2}, we have the following approximations:

$$
\begin{aligned}
& \|\left(\Gamma_{1} u\right)(t)-\left(\Gamma_{1} v\right)(t)\left\|_{\alpha} \leq \int_{-\infty}^{t}\right\| A(s) U(t, s) P(s)[f(s, B(s) u(s))-f(s, B(s) v(s))] \|_{\alpha} d s \\
& \leq c_{2}(\alpha) c_{4} r(\alpha, \beta) \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{4}(t-s)}\|f(s, B(s) u(s))-f(s, B(s) v(s))\|_{\beta} d s \\
& \leq c_{2}(\alpha) c_{4} r(\alpha, \beta) \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{4}(t-s)} L_{f}(s)\|B(s) u(s)-B(s) v(s)\| d s \\
& \leq c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{4}(t-s)} L_{f}(s)\|u(s)-v(s)\|_{\alpha} d s \\
& \leq c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) \sum_{n=1}^{\infty} \int_{t-n}^{t-n+1}(t-s)^{-\alpha} e^{\frac{-\delta}{4}(t-s)} L_{f}(s)\|u-v\|_{\alpha, \infty} d s \\
& \leq c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) \sum_{n=1}^{\infty}\left(\int_{t-n}^{t-n+1}(t-s)^{-\alpha r_{0}} e^{\frac{-r_{0} \delta}{4}(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{f}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \leq c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) \sum_{n=1}^{\infty}(n-1)^{-\alpha}\left(\int_{t-n}^{t-n+1} e^{\frac{-r_{0} \delta}{4}(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{f}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \quad \leq c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) \sqrt[r]{\frac{4\left(1+e^{\frac{r_{0} \delta}{4}}\right)}{r_{0} \delta}} \sum_{n=1}^{\infty}(n-1)^{-\alpha} e^{\frac{-n \delta}{4}}\left\|L_{f}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \quad=c_{2}(\alpha) c_{4} c_{5} r(\alpha, \beta) S\left(r_{0}, \frac{\delta}{4}\right)\left\|L_{f}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty}
\end{aligned}
$$

where r_{0} is such that $\frac{1}{r}+\frac{1}{r_{0}}=1$ and $S\left(r_{0}, \delta\right)=\sqrt[r]{\frac{1+e^{r_{0} \delta}}{r_{0} \delta}} \sum_{n=1}^{\infty}(n-1)^{-\alpha} e^{-n \delta}$.
$\left\|\left(\Gamma_{2} u\right)(t)-\left(\Gamma_{2} v\right)(t)\right\|_{\alpha} \leq \int_{t}^{\infty}\left\|A(s) U_{Q}(t, s) Q(s)[f(s, B(s) u(s))-f(s, B(s) v(s))]\right\|_{\alpha} d s$
$\leq c_{2}(\alpha) c_{4} d(\beta) \int_{t}^{\infty} e^{-\delta(s-t)}\|f(s, B(s) u(s))-f(s, B(s) v(s))\|_{\beta} d s$
$\leq L c_{2}(\alpha) c_{4} d(\beta) \int_{t}^{\infty} e^{-\delta(s-t)}\|B(s) u(s)-B(s) v(s)\| d s$
$\leq L c_{2}(\alpha) c_{4} c_{5} d(\beta) \int_{t}^{\infty} e^{-\delta(s-t)}\|u(s)-v(s)\|_{\alpha} d s$
$\leq L c_{2}(\alpha) c_{4} c_{5} d(\beta) \delta^{-1}\|u-v\|_{\alpha, \infty}$.

Similarly, For Γ_{3} and Γ_{4}, we have the following approximations

$$
\begin{aligned}
&\left\|\left(\Gamma_{3} u\right)(t)-\left(\Gamma_{3} v\right)(t)\right\|_{\alpha} \leq \int_{-\infty}^{t}\|U(t, s) P(s)[g(s, C(s) u(s))-f(s, C(s) v(s))]\|_{\alpha} d s \\
& \leq n(\alpha) \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)}\|g(s, C(s) u(s))-g(s, C(s) v(s))\|_{\beta} d s \\
& \leq n(\alpha) \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g}\|C(s) u(s)-C(s) v(s)\| d s \\
& \leq n(\alpha) c_{5} \int_{-\infty}^{t}(t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g}\|u(s)-v(s)\|_{\alpha} d s \\
& \quad \leq n(\alpha) c_{5} \sum_{n=1}^{\infty} \int_{t-n}^{t-n+1}(t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g}(s)\|u-v\|_{\alpha, \infty} d s \\
& \quad \leq n(\alpha) c_{5} \sum_{n=1}^{\infty}\left(\int_{t-n}^{t-n+1}(t-s)^{-\alpha r_{0}} e^{\frac{-r_{0} \delta}{2}(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{g}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \quad \leq n(\alpha) c_{5} \sum_{n=1}^{\infty}(n-1)^{-\alpha}\left(\int_{t-n}^{t-n+1} e^{\frac{-r_{0} \delta}{2}(t-s)} d s\right)^{\frac{1}{r_{0}}}\left\|L_{g}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \quad \leq n(\alpha) c_{5} \int_{\frac{r_{0}}{r}}^{\frac{2\left(1+e^{\frac{r_{0} \delta}{2}}\right)}{r_{0} \delta}} \sum_{n=1}^{\infty}(n-1)^{-\alpha} e^{\frac{-n \delta}{2}}\left\|L_{g}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty} \\
& \quad=n(\alpha) c_{5} S\left(r_{0}, \frac{\delta}{2}\right)\left\|L_{g}\right\|_{S^{r}}\|u-v\|_{\alpha, \infty},
\end{aligned}
$$

and

$$
\begin{aligned}
& \|\left(\Gamma_{4} u\right)(t)-\left(\Gamma_{4} v\right)(t)\left\|_{\alpha} \leq \int_{t}^{\infty}\right\| U_{Q}(t, s) Q(s)[g(s, C(s) u(s))-g(s, C(s) v(s))] \|_{\alpha} d s \\
& \quad \leq m(\alpha) \int_{t}^{\infty} e^{-\delta(s-t)}\|g(s, C(s) u(s))-g(s, C(s) v(s))\| d s \\
& \quad \leq \operatorname{Lm}(\alpha) \int_{t}^{\infty} e^{-\delta(s-t)}\|C(s) u(s)-C(s) v(s)\| d s \\
& \quad \leq L m(\alpha) c_{5} \int_{t}^{\infty} e^{-\delta(s-t)}\|u(s)-v(s)\|_{\alpha} d s \\
& \quad \leq L m(\alpha) c_{5} \delta^{-1}\|u-v\|_{\alpha, \infty}
\end{aligned}
$$

Consequently,

$$
\|\Pi u-\Pi v\|_{\alpha, \infty} \leq L \Theta\|u-v\|_{\alpha, \infty}
$$

where

$$
\Theta:=c_{5}\left(c_{2}(\alpha) c_{4} r(\alpha, \beta) S\left(r_{0}, \frac{\delta}{4}\right)+c_{2}(\alpha) c_{4} d(\beta) \delta^{-1}+n(\alpha) S\left(r_{0}, \frac{\delta}{2}\right)+m(\alpha) \delta^{-1}\right) .
$$

By taking L small enough, that is, $L<\Theta^{-1}$, the operator Π becomes a contraction on $P A A\left(\mathbb{X}_{\alpha}, \mu\right)$ and hence has a unique fixed point in $P A A\left(\mathbb{X}_{\alpha}, \mu\right)$, which obviously is the unique μ-pseudo-almost automorphic mild solution to (1.1).

References

[1] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (4) (1988), 433-457.
[2] P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47107.
[3] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin 1995.
[4] J. Blot, P. Cieutat, and K. Ezzinbi, New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis: An International Journal, 92 (3) (2013), 493-526.
[5] J. Blot, P. Cieutat, and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Anal. (TMA), 75 (2012), 2426-2447.
[6] S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.
[7] M. Baroun, S. Boulite, T. Diagana, and L. Maniar, Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations, J. Math. Anal. Appl., 349 (1) (2009), 74-84.
[8] C. Bensouda, and M. Zitane, Generalized Stepanov-like pseudo almost automorphic solutions to some classes of nonautonomous partial evolution equations, J. Math. Comput. Sci., 3 (1) (2013), 278-303.
[9] K. J. Engel and R. Nagel; One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer Verlag, 1999.
[10] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2013.
[11] T. Diagana, Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations, J. of The Franklin Institute, 348 (2011), 2082-2098.
[12] T. Diagana and M. Zitane, Stepanov-like pseudo-almost periodic functions in Lebesgue space with variable exponents $L^{p(x)}$, New Frontiers of Multidisciplinary Research in STEAM-H, 90 (2014), 295-314. In Springer Proceedings in Mathematics and Statistics, editor B. Toni.
[13] T. Diagana and M. Zitane, Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents $L^{p(x)}$, Electron. J. Diff. Equ., 2013 (188) (2013), 1-20.
[14] T. Diagana and M. Zitane, Weighted Stepanov-like pseudo-almost periodic funcitons in Lebesgue spaces with variable exponents $L^{p(x)}$, Afr. Diaspora J. Math. 15 (2) (2013), 56-75.
[15] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
[16] W. Long, and H. S. Ding, Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo-almost periodic functions, Advance in Difference Equations, Article ID 654695 (2011), 12 pages.
[17] X.L. Fan and D. Zhao, On the spaces $L^{p(x)}(O)$ and $W^{m, p(x)}(O)$, J. Math. Anal. Appl., 263 (2001), 424-446.
[18] Z. Hu and Z. Jin, Stepanov-like pseudo-almost automorphic mild solutions to nonautonomous evolution equations, Nonlinear Anal., 71 (2009), 2349-2360.
[19] J. Liang, J. Zhang, and T.J. Xiao, Composition of pseudo-almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340 (2008), 1493-1499.
[20] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
[21] G.M. N'Guérékata, Topics in Almost Automorphy. Springer-Verlag, New York, 2005.
[22] P.Q.H. Nguyen, On Variable Lebesgue Spaces. Ph.D. Thesis, Kansas State University. ProQuest LLC, Ann Arbor, MI, 2011.
[23] T. J. Xiao, J. Liang, and J. Zhang, Pseudo-almost automorphic solutions to semilinear differential equations in Banach space, Semigroup Forum, 76 (2008), 518-524.

Mohamed ZITANE

Moulay Ismaïl University,
Faculty of Sciences,
Department of Mathematics,
Research team: Algebra, Operator Theory and
Applications (AOTA),
Meknès, Morocco.
zitanem@gmail.com

[^0]: 2010 Mathematics Subject Classification 34C27, 35B15, 46E30.
 Key words and phrases: weighted pseudo-almost automorphy, Lebesgue space with variable exponents, Stepanov-like pseudo-almost automorphy with variable exponents.

