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Abstract. In this paper we introduce and study a new class of functions called
weighted Stepanov-like pseudo-almost automorphic functions with variable ex-
ponents, which generalizes the class of weighted Stepanov-like pseudo-almost
automorphic functions. Basic properties of these new spaces are established.
The existence of weighted pseudo-almost automorphic solutions to some first-
order differential equations with SP>2(*)_pseudo-almost automorphic coeffi-
cients will also be studied.

1. Introduction

In Diagana [10] the concept of Stepanov-like pseudo-almost automorphy was
introduced and studied. These spaces, which generalize pseudo-almost automorphic
spaces, were then utilized to study the existence of pseudo-almost automorphic
solutions to some abstract differential equations.

In Blot et al. [4], the concept of weighted pseudo-almost automorphy, using theo-
retical measure theory, is introduced and utilized to study the existence of weighted
pseudo-almost automorphic solutions to some abstract differential equations.

In a recent paper by Diagana and Zitane [13], the concept of Stepanov-like
pseudo-almost automorphy is introduced in the Lebesgue space with variable expo-
nents LP(*). These functions were utilized to study the existence of pseudo-almost
automorphic solutions to some differential equations.

In this paper we introduce and study a new class of functions called weighted
Stepanov-like pseudo-almost automorphic functions with variable exponents, which
generalizes the usual weighted Stepanov-like pseudo-almost automorphic functions.
Basic properties of these new spaces are established. Afterwards, we study the
existence of pseudo-almost automorphic solutions to the class of abstract nonau-
tonomous differential equations given by

%[u(t) + f(t, B(t)u(t))] = A(t)u(t) + g(t,C(t)u(t)), teR, (1.1)

where A(t) for t € R is a family of closed linear operators on D(A(t)) satisfying
the well-known Acquistapace-Terreni conditions, B(t), C(t) (t € R) are families of
(possibly unbounded) linear operators, and f: R x X — Xtﬁ (0<a<f<1)and
g : R x X — X are jointly continuous satisfying some additional assumptions with
X[ being a real interpolation space between X and D(A(t)) of order o € (0,1).
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2. p-Pseudo-Almost Automorphic Functions

Let (X,| - 1D, (Y|l - ly) be two Banach spaces. Let BC(R,X) (respectively,
BC(R x Y,X)) denote the collection of all X-valued bounded continuous functions
(respectively, the class of jointly bounded continuous functions F' : RxY — X). The
space BC'(R, X) equipped with the sup norm || ||« is a Banach space. Furthermore,
C(R,Y) (respectively, C(R x Y, X)) denotes the class of continuous functions from
R into Y (respectively, the class of jointly continuous functions F' : R x Y — X).
Let B(X,Y) stand for the Banach space of bounded linear operators from X into Y
equipped with its natural operator topology; in particular, B(X,X) is denoted by
B(X).

In this section, we recall the concept of u-pseudo-almost automorphic functions
introduced by J. Blot et al [5].

Definition 2.1 ([6]). A function f € C(R,X) is said to be almost automorphic if
for every sequence of real numbers (s, ),cn there exists a subsequence (s, )nen such
that

g(t) = T f(t+s,)
is well defined for each ¢t € R and

ft) = lim g(t = sn)
for each t € R.

The collection of all such functions will be denoted by AA(X), which turns out
to be a Banach space when it is equipped with the sup-norm.

Proposition 2.2 ([21]). Assume f,g : R — X are almost automorphic and \ is
any scalar. Then the following hold true:
(@) f+g,Mf, f-(t) = f(t+7) and f(t) := f(—t) are almost automorphic;
(b) The range Ry of f is precompact, so f is bounded,;
(c) If {f.} is a sequence of almost automorphic functions and f,, — f uniformly
on R, then f is almost automorphic.

We denote by B the Lebesgue o-field of R and by M the set of all positive
measures p on B satisfying p(R) = oo and p([a, b]) < oo, for all a,b € R(a < b).

Definition 2.3 ([4]). Let u € M. A function f € BC(R,X) is said to be p-ergodic

if
1
lim 7/ f@®|ldu(t) =0
tim s | 1@l
where @, := [—r,r]. We denote the space of all such functions by & (X, u).

Proposition 2.4 ([4]). Let p € M. Then (£ (X, ), || - ||ls) is a Banach space.

Theorem 2.5 ([4]). Let u € M and I be a bounded interval (eventually I # ().
Assume that f € BC(R, X). Then the following assertions are equivalent:

(a) fe&X pm);
©) i gy S @) =0
(c) For any € > 0, lim p({tel=r,r]\I: |f@)] >e})

e P\ D) -
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Definition 2.6 ([5]). A function f € C(R,X) is called p-pseudo almost automor-
phic if it can be expressed as f = g + ¢, where g € AA(X) and ¢ € € (X, u). The
collection of such functions will be denoted by PAA(X, u).

Let N denotes the set of all positive measure p € M such that for all a,b and
c € R such that 0 < a < b < ¢, there exist 7p > 0 and «g > 0 such that

I7| > 10 = p((a+ 7,0+ 7)) > apu([r,c+ 7]).

And let N3 denotes the set of all positive measure u € M such that for all 7 € R,
there exist 8 > 0 and a bounded interval I such that

p{a+7:a€ A}) < Bu(A) for all A€ B such that ANT=0.

Theorem 2.7 ([5]). Let u € Nj. Then the decomposition of a p-pseudo almost
automorphic function in the form f = g + ¢, where g € AA(X) and ¢ € £ (X, p) is
unique.

Theorem 2.8 ([5]). Let u € N;. Then (PAA(X, 1), | - ||so) is a Banach space.

Theorem 2.9 ([5]). Let u € Na. Then the space € (X, ) is translation invariant,
therefore PAA(X, 1) is also translation invariant, that is, if f € PAA(X, u) implies
fr=f(+71)€ PAAX, ) for all 7 € R.

Definition 2.10 ([19]). A function F € C(R x Y, X) is said to be almost auto-
morphic if F(t,u) is almost automorphic in ¢ € R uniformly for all u € K, where

K C Y is an arbitrary bounded subset. The collection of all such functions will be
denoted by AA(Y, X).

Definition 2.11 ([18]). A function L € C'(R x R,X) is called bi-almost automor-
phic if for every sequence of real numbers (s/,),, we can extract a subsequence (s ),
such that

H(t,s) == lim L(t+ sp,s+ sp)

n— oo

is well defined for each ¢, s € R, and

L(t,s) = nh_{I;OH(t — 81,8 — Sn)
for each ¢, s € R. The collection of all such functions will be denoted by bAA(R x
R, X).

Definition 2.12 ([4]). Let u € M. A function f € C(R x Y, X) is called p-ergodic
in ¢ uniformly with respect to x in Y if the following two conditions hold:
(a) forall y in Y, f(-,y) € € (Y, pu);
(b) f is uniformly continuous on each compact set K C Y with respect to the
second variable y.
We denote the space of all such functions by £ (Y, X, ).

Definition 2.13 ([5]). Let 4 € M. A function f € C(R x X,Y) is called u-pseudo
almost automorphic if it can be expressed as f = g + ¢, where g € AA(Y,X) and
¢ € E(Y,X, ). The collection of such functions will be denoted by PAA(Y, X, u).
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3. Evolution Families

Definition 3.1 ([1, 2]). A family of closed linear operators A(t) for t € R on X with

domains D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace—

Terreni conditions, if there exist constants w € R, 6 € (§,7), K,L >0 and p,v €

(0,1] with g+ v > 1 such that

I < K an

I+

[(A(t) = wD) R(A, A(t) = wI) [R(w, A(t)) — R(w, A(s))]| < Lt —s|* A" (3:2)

fort,s e R, A€ Sp:={A e C\{0}:|arg )| <6}.

Among other things, the Acquistapace-Terreni Conditions do ensure the exis-
tence of a unique evolution family

U={U(t,s):t,s €R such that ¢t > s}

on X associated with A(¢) such that U(t,s)X C D(A(t)) for all t,s € R with t > s,

and

(a) U(t,s)U(s,r) =U(t,r) for t,s € R such that t > r > s;

(b) U(t,t) =1 for ¢t € R where I is the identity operator of X; and

(¢c) for ¢t > s, the mapping (¢, s) — U(t,s) € B(X) is continuous and continuously
differentiable in ¢ with 0,U(¢,s) = A(¢t)U(t,s). Moreover, there exists a con-
stant C’ > 0 which depends on constants in Eq. (3.1) and Eq. (3.2) such
that

So U {0} C p(A(t) —wl), IR(A, A(t) —wI) d (3.1)

|A* (Ut 5)| By < C'(t— )" (3.3)
for0<t—s<1land k=0,1.

Definition 3.2. An evolution family U = {U(¢t,s) : t,s € R such that ¢ > s} is

said to have an exponential dichotomy if there are projections P(t) (¢t € R) that are

uniformly bounded and strongly continuous in ¢ and constants § > 0 and N > 1

such that

(f) U(t,s)P(s) = P(t)U(t,s);

(g) the restriction Ug(t,s) : Q(s)X — Q(t)X of U(t, s) is invertible (we then set
Ug(s,t) :=Ugq(t,s)™") where Q(t) = I — P(t); and

(h) |U(t,s)P(s)|| < Ne=%¢=%) and ||Ug(s,t)Q(t)]| < Ne %= for ¢t > s and
t,s € R.

If an evolution family & = {U(¢,s) : ¢, s € R such that ¢ > s} has an exponential

dichotomy, we then define
Ul(t,s)P(s), ift>s, t,s€R,

I(t,s) :=
—Ug(t,s)Q(s), ifs>t, t,seR.

This setting requires the introduction of some interpolation spaces for A(t). We
refer the reader to the following excellent books [3], [9], and [20] for proofs and
further information on theses interpolation spaces.

Let A be a sectorial operator on X (Definition 3.1 holds when A(t) is replaced
with A) and let o € (0,1). Define the real interpolation space

X4 = {ac eX: ||9c||£ ==sup,~ |r*(A—w)R(r,A—w)z| < oo} )
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which, by the way, is a Banach space when endowed with the norm ||H2 For
convenience we further write

A
Xg =X, |lzll§ = ll=ll, X' := D(4)

and ||:r;||14 := ||(w — A)z||. Moreover, let X4 := D(A) of X. In particular, we will
frequently be using the following continuous embedding

D(A) < X§ < D((w — A)*) = X — X* & X, (3.4)

for all 0 < a < 8 < 1, where the fractional powers are defined in the usual way.
In general, D(A) is not dense in the spaces X2 and X. However, we have the
following continuous injection

I-a

X4 < D(A) (3.5)

for0<a<pg<l.

Definition 3.3. Given the family of linear operators A(¢) for ¢ € R, satisfying
Acquistapace-Terreni conditions (Definition 3.1), we set

Xt = Xé(t), Xt = XA4®

for 0 < a <1 andt € R, with the corresponding norms.
Then the embedding in (3.4) hold with constants independent of ¢ € R.

These interpolation spaces are of class 7, ([20, Definition 1.1.1 |) and it can be
shown that

@ —a 11—« @
lylle, < KL Iy |A@)yl* .y € D(A()) (3.6)
where K, L are the constants appearing in Definition 3.1.

Proposition 3.4 ([7]). For x € X, 0 < a <1 and ¢t > s, the following hold:
(i) There is a constant n(a), such that

1T (t,5)P(s)allt, < mla)e™ 2072 (= 5) =], (3.7)
(ii) There is a constant m(«), such that

Ta(s, Q)]s < m(@)e™* = z], ¢ <s. (3-8)

4. Weighted Stepanov-Like Pseudo Almost Automorphic Functions
with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents
LP®) (R, X) developed in [12, 13, 14, 15, 17, 22].

Let Q@ C R be a subset and let M (2, X) denote the collection of all measurable
functions f : @ — X. Let us recall that two functions f and g of M(Q,X) are
equal whether they are equal almost everywhere. Set m(Q) := M(Q,R) and fix
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p € m(Q). Define

p~ :=essinfieqp(z), pT = esssup,cqp(),
Ci(Q) := {p em(Q):1<p <plx) <p't < oo, for each z € Q},
D, (Q):= {p em(Q):1<p <plx) <p'" <oo, foreach z € Q},

p(u) = pya) (w) = /Q Ju(z) [P@ d.

We then define the Lebesgue space with variable exponents LP(®)(Q,X) with
p € C(2), by

LP@(Q,X) = {u € M(,X): /Q ||u(2)|[P® de < oo}.

Define, for each u € LP(®)(Q, X),

(@)
l[wllp(a) iinf{k>0:/ H@ 3 dxgl}.
Q

It can be shown that || - ||(,) is a norm upon LP(®) (€, X), which is referred to as
the Luzemburg norm.

Remark 4.1. Let p € C(Q). If p is constant, then the space LP() (€2, X), as defined
above, coincides with the usual space LP (£, X).

Proposition 4.2 ([15, 22]). Let p € C(Q). If u,o € LP™®)(Q,X), then the
following properties hold,
(a) [Jullp@y > 0, with equality if and only if u = 0;

)

() pplullullyy) =1 u#0;

(d) pp(u) < 1if and only if ||ul],e) < 1;
)

o] < o < o]

(f) If [|lul|pzy) > 1, then
[op(@)] " < Nl < [p(w)

Theorem 4.3 ([15, 17]). Let p € C (). The space (LP(®) (€, X), || || (x)) is a Ba-
nach space that is separable and uniform convex. Its topological dual is L(*) (Q, X),
where p~!(x) + ¢~ (z) = 1. Moreover, for any u € LP(*)(Q,X) and v € L1®)(Q, R),

we have
H/ dH<_<*1+*1)II | [[v]]
wvdx Wiz |0l gz
o - g p(z) q(x)

Corollary 4.4 ([22]). Let p,r € D4 (). If the function ¢ defined by the equation

1/p* }1/197.
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is in D4 (), then there exists a constant C' = C(p,r) € [1,5] such that
[uvllg(zy < Cllullpea)- |1V]lr(a),
for every u € LP(*) (€, X) and v € L"®) (Q, R).
Corollary 4.5 ([15]). Let mes () < oo where mes () stands for the Lebesgue
measure and p,q € D, (). If ¢(-) < p(-) almost everywhere in 2, then the em-

bedding LP®)(Q,X) — L1®)(Q,X) is continuous whose norm does not exceed
2(mes () + 1).

Definition 4.6 ([10]). The Bochner transform f(t,s), t € R, s € [0,1] of a
function f: R — X is defined by fb(t,s) := f(t + s).
Remark 4.7. (i) A function ¢(t,s), t € R, s € [0, 1], is the Bochner transform of
a certain function f, o(t,s) = f°(t,s), if and only if p(t + 7,5 — 7) = (s, t) for all
teR,s€(0,1] and 7 € [s — 1, 5].

(ii) Note that if f = h + ¢, then f° = h® + ©°. Moreover, (Af)? = Af® for each
scalar A.
Definition 4.8 ([10]). The Bochner transform F®(¢,s,u), t € R, s € [0,1], u € X of
a function F(t,u) on R x X, with values in X, is defined by F°(t,s,u) := F(t +s,u)
for each u € X.
Definition 4.9 ([10]). Let p € [1,00). The space BSP(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with

values in X such that f* € L>® (R, Lr((0, 1),X)). This is a Banach space with the
norm

t+1 1/p
Iflse =1 mmmy =sup ([ Il ar)
teR t

Note that for each p > 1, we have the following continuous inclusion:
(BOX), [ [loc) <= (BSP(X), [| - [[sr)-

Definition 4.10 ( [12]). Let p € C(R). The space BSP(®)(X) consists of all
functions f € M(R,X) such that || f]|gr) < 00, where
p(z+t)
dr < 1}]

1
- z+t
lfllgpzy = sup [1nf{>\>0:/ H%
teR o
(z)
3 dxgl}].

sup [inf{)\>0;/t+l HM

teR A

Note that the space (BSP(””) (X), | - ||S,,<w>) is a Banach space, which, depending

on p(-), may or may not be translation-invariant.

Definition 4.11 ([12]). If p,q € C(R), we then define the space BSP(*):1(*)(X)
as follows:

BSP(I)ﬁq(m)(X) .— Bgr@ (X) + BSQ(@(X)
- {f =h+peMRX):heBSP(X) and ¢ € BSQ(””)(X)}.
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We equip BSp(x)’q(x)(X) with the norm || - || gp(e).a) defined by
| fllsp(@).ate) := inf {||h||sm> + lellgea@ = f = h+<ﬁ}-

Clearly, (BSP($)7‘1(I)(X), Il - ||Sp(x>,q<z>> is a Banach space, which, depending on

both p(-) and ¢(+), may or may not be translation-invariant.

Lemma 4.12 ([12]). Let p,q € C+(R). Then the following continuous inclusion
holds,

(BO®.X). |- lls0) = (B X), |- o0 ) = (BT X, - lgoierac0)-

Definition 4.13. Let p > 1 be a constant. A function f € BSP(X) is said to
be SP-almost automorphic (or Stepanov-like almost automorphic function) if f* €
AA(LP((0,1),X)). That is, a function f € L} (R,X) is said to be Stepanov-
like almost automorphic if its Bochner transform f* : R — LP?(0,1;X) is almost
automorphic in the sense that for every sequence of real numbers (s} ),, there
exists a subsequence (s, ), and a function g € Lt (R,X) such that

1/p
/||f (t+s+58n)— (t—i—s)H"ds /||g t+s—8,)— (t—i—s)des) -0

as n — oo pointwise on R. The collection of such functions will be denoted by

SP(X).

Remark 4.14. It is clear that if 1 <p < ¢ < oo and f € L{ (R,X) is S%almost
automorphic, then f is SP-almost automorphic. Also if f € AA(X), then f is
SP-almost automorphic for any 1 < p < oco.

Remark 4.15. There are some difficulties in defining S’géx) (X) for a function p €
C+(R) that is not necessarily constant. This is mainly due to the fact that the
space BSP(®)(X) is not always translation-invariant.

Taking into account Remark 4.15, we introduce the concept of weighted S?:2(*)
pseudo-almost automorphy as follows, which obviously generalizes the notion of
weighted SP-pseudo-almost automorphy.

Definition 4.16. Let © € M,p > 1 be a constant and let ¢ € C(R). A
function f € BSP4(®)(X) is said to be weighted SP+4(®)-pseudo-almost automor-
phic (or weighted Stepanov-like pseudo-almost automorphic with variable expo-
nents p,q( )) if it can be decomposed as f = h + ¢, where h € S?_ (X) and

o’ e £ (L1 (w)((O 1),X), ), ie.,

lim #(227) /Qr inf {)\ >0 / H‘p )Hp(m“)dx < 1} dp(t) = 0.

The collection of such functions will be denoted by Sﬁaqa(z (X, ).

Proposition 4.17. Let r,s > 1,p,q € Dy (R) , p € M. If s < r,q(-) < p(-) and
f € BS™P(®)(X) is weighted S™P(*)-pseudo-almost automorphic, then f is weighted
5%:4(%)_pseudo-almost automorphic.
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Proof. Suppose that f € BS”’(“”)(X) is §™P(#)_pseudo-almost automorphic. Thus
there exist two functions h, ¢ : R — X such that f = h + ¢, where h € S7,(X) and
e & (Lpb(””)((O7 1),X), ). From remark 4.14, h is S®-almost automorphic.

From p(R) = oo, we deduce the existence of g > 0 such that u(Q,) > 0 for
all 7 > 7. By using Corollary 4.5 and the fact that ¢(-) < ¢© < p~ < p(-) and
e & (Lpb(“”)((O7 1),X), ), one has

u(ém/f“f{““/o 25
u(gr) /Qrinf{)\>0;/01 HWHP(H”MQ}@@),

that is ¢® € & (qu(“’)((O, 1),X), ) and hence f is weighted S*9(*)-pseudo-almost
automorphic. O

q(z+t)

dx < 1} du(t)

Proposition 4.18. Let p > 1 be a constant, ¢ € C; (R) and let y € Ny. Then
PAA(X, 1) C Spf™ (X, ).

Proof. Let f € PAA(X, ). Thus there exist two functions h,¢ : R — X such
that f = h + ¢, where h € AA(X) and ¢ € & (X, ,u). Now from remark 4.14,
h € AA(X) C S?,(X). The proof of ¢’ € £ (qu(x)((o, 1),X), u). was given in [14].
However for the sake of clarity, we reproduce it here. From u(R) = oo, we deduce
the existence of g > 0 such that p(Q,) > 0 for all r > r.

Using (e)-(f) of Proposition 4.2, the usual Holder inequality and Fubini’s theorem
it follows that

[ [P o
<[ ( [ et |q<t+f>das>7du<t>
< (@) [ L ( [ vt e dx) du(t)r
< (@) [ | ( [ et 2 ol dx) du(t)r
< (@) (el + )”(q)[/ (/ w+x|dx> <>]
— (@) (el + 1) [ A ( [ tet+a du(ﬂ) dx]
— (@) (el 1) [ A (l@) /

~

r

lle(t + )| du(ﬂ) dx] :
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where

if [l <1,

»Q+‘H

s

if [l = 1.

Using the fact that £ (X, p) is translation invariant and the (usual) Dominated
Convergence Theorem, it follows that

. 1 . Vel +t) e+
lim ——— fdaso0: [ [|AAETY dr < 1% du(t
Tiku@gl;m{ >0[ﬁ‘ X ‘ z<1pdut)

< (e +1)™ ‘”l / <rgglm@ | |I¢(t+x)lldu(t)> dx] -0,

O

Theorem 4.19. Let p,q > 1 be constants, u € N and f € Sh? (X, u) be such
that

f=h+e
where h® € AA(LP((0,1),X)) and ¢” € € (L9((0,1),X), ). Then

{h(tJr.):tER}C{f(tJr.):teR}, in  BSPI(X).

Proof. We prove it by contradiction. Indeed, if this is not true, then there exists
to € R and an € > 0 such that

|h(to+-) — f(t+ )|lspa >2e, tER.

Since h® € AA(L*((0,1),X)) and (BSP(X), || - |ls») = (BSPUX), || - |lsra), fix
to € R,e > 0 and write, B := {7 € R;||h(to + 7+ ) — g(to + *)||sre < e}. By [23,
Lemma 2.1], there exist s1,..., Sy € R such that

;-7;1(81' + BE) =R.

Write

Si=s;—to (1<i<m), n:11<11ia<)57b|§i|.

For r € R with |r| > n; we put

Béi =[-r+n—38,r—n—3]N({to+ B:), 1<i<m,
one has U™, (8; + Bgl) =[-r+nr—n.
Letting ur({a + 7 : a € A}) for A € B, from p € N3 it follows that p and
are equivalent (see Definitions 4.22). Using the fact that Bézl C [-r,r]N(to + Be),
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i=1,...,m, we obtain

< (2)
<mp max {n(B:,)}
< mBul[—r,7] N (to + B.)),
On the other hand, by using the Minkowski inequality, for any ¢ € ty 4+ B, one has

et +)llsa = [t + )|l sp.a
=[1£+-) = h(t+)lsra
> ||h(t0 + ) - f(t + ')”SP*Q - ||h(t + ) — h(to + ')”Sp,q > €.

Then

1

1
m /QT ||<p(t + -)HS‘Z du(t) > m /Cng(to+BE) ||(p(t + ')HS‘? d/,t(t)

3

H(Qr) /Qrﬂ(to—ﬁ—BE) d’u(t)
— ﬁu(@ N (to + B.))
ﬂ(Qr—n)

> et (mp) Tt = e(mB)h, asr — oo

@)
This is a contradiction, since ¢ € € (L9((0,1),X), ). O

>

Corollary 4.20. Let p,q > 1 be constants and . € Np. Then the decomposition
of a SP9-p-pseudo-almost automorphic function in the form f = h + ¢ where
h* € AA(LP((0,1),X)) and ¢” € £ (L%((0,1),X), 1), is unique.

Proof. Suppose that f = hy + @1 = ha + 2 where hY, b} € AA(LP((0,1),X)) and
oh,b e & (Lq((O, 1),X),,u). Then 0 = (hy — ha) + (p1 — @2) € Sg;{{l(X, 1) where
Ry —hS € AA(LP((0,1),X)) and ¢} — b € € (L((0,1),X), ). From Theorem 4.19
we obtain (hy — hg)(R) C {0}, therefore one has h1 = hy and ¢1 = @o.

(I

Theorem 4.21. Let p,q¢ > 1 be constants and u € Ni. The space SB (X, )
equipped with the norm || - ||se.« is a Banach space.

Proof. It suffices to prove that S22 (X, u) is a closed subspace of BSP4(X). Let

paa

fn = hn + ©n be a sequence in S24 (X, 1) with (h)nen € AA(LP((0,1),X)) and

(¢ )nen C € (L9((0,1),X), 1) such that || f, — f|lsr.e — 0 as n — oo. By Theorem
4.19, one has

{hn(t+.):teR}C{fut+.):t € R},
and hence
th”SP = th“Sp,q < ||fn||5p,q for all n € N.
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Consequently, there exists a function h € S?,(X) such that |k, —h|lsr — 0asn —
oo. Using the previous fact, it easily follows that the function ¢ := f —h € BS?(X)
and that ||¢n — @llse = |(fn — hn) = (f — h)|lse = 0 as n — oo. From u(R) = oo,
we deduce the existence of 19 > 0 such that u(Q,) > 0 for all 7 > ro. Using the
fact that ¢ = (¢ — @) + @, and the triangle inequality, it follows that

1

@ </o HS”(T“)HQ‘”> e
<@l (/ e+ —@n<r+t>qur>q aut)
(4]
g||sansosq+u(é2r)/®</ol\

Letting » — 400 and then n — oo in the previous inequality yields
" € £ (LI((0,1),X), ),
that is, f = h+ ¢ € S2:4 (X, p). O

paa

on(T+1) qu7> ’ du(t)

on (T + t)quT> ' du(t).

Definition 4.22 ([4]). Let uy, po € M. py is said to be equivalent to po (g1 ~ pi2)
if there exist constants «, 8 > 0 and a bounded interval I (eventually I # () such
that

api(A) < pa(A) < Bui(A4), forall A€ B such that ANI=40.
Theorem 4.23. Let p > 1 be a constant, ¢ € C(R) and py, pe € M. If py and
2 are equivalent, then Sg&%(x) (X, 1) = Sg;l’ﬁm)(x, U2)-

Proof. The proof is similar to that of [4, Theorem 2.21]. Since p; ~ p2, and B is
the Lebesgue o-field of R, we obtain for r sufficiently large

am({teQ\I: [fOllswacr >2}) _ pa({t € Q\T: [FO)llsoacr > €})

B w(Qr\ 1) B m(Qr \ 1)

Bm({t€ @ \I: |f(¥)llsrac) >e})
a w(Qr\ 1) '

By using Theorem 2.5, we deduce that
E(LL@((0,1),X), 1) = € (L@ ((0,1),X), 1)

From the definition of a weighted SP-4(*)-pseudo-almost automorphic function, we
deduce that S5 (X, 1) = S (X, pa). O

Definition 4.24. A function F : R x Y — X with F(.,u) € BS?*)(X) for each
u €Y, is said to be SP2*)_y-pseudo-almost automorphic in ¢ € R uniformly in
ueYif t — F(t,u) is SPa(*)_ - pseudo-almost automorphic for each u € B where
B C Y is an arbitrary bounded set.
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This means, there exist two functions G, H : R x Y — X such that F'= G + H,
where G* € AA(Y, LP((0,1),X)) and H® € € (Y, L7 ®)((0,1),X), 1), that is,

1
lim ;/ inf )\>O:/ HM
r—+oo (1(Qr) Qr 0 A

uniformly in v € B where B C Y is an arbitrary bounded set.

The collection of such functions will be denoted by S,’,)Zl%(w) (Y, X, p).

q(z+t)
dx < 1} du(t) =0,

Let Lip" (Y, X) denote the collection of functions f : R x Y — X satisfying: there

exists a nonnegative function Ll} € L"(R) such that
| f(t,u) — ft,v)|| < Lg(t)||lu—v|y foral w,veV, teR. (4.1)

Now, we recall the following composition theorem for S?, functions.
Theorem 4.25 ([16]). Let p > 1 be a constant. We suppose that the following
conditions hold:
(a) f €55, (Y,X)N Lip"(Y,X) with r > max{p, 5}
(b) ¢ € SP,(X) and there exists a set £ C R such that K := {¢(¢) : t € R\ E} is

compact in X.
Then there exists m € [1,p) such that f(-,¢(-)) € ST (X).

To obtain the composition theorem for weighted SP:? functions, we need the
following lemma.

Lemma 4.26. Let p,q > 1 be constants and let u € N3, Assume that f =g+ h €
SPa (Y, X, p) with g* € AA(Y,LP((0,1),X)) and h* € € (Y,L((0,1),X), ). If

f € Lip?P(Y, X), then g satisfies

1 1/p
([ tate+ s,u(s) = gt + s, v)lPds) " < ellylseu— ol
0
for all u,v € Y and ¢t € R, where c is a nonnegative constant.
Proof. The proof is similar to that of [13, Lemma 4.19]. So we omit it. |

Theorem 4.27. Let p,q > 1 be constants such that p < ¢ and p € N>. Suppose
that the following conditions hold:
(a) f=g+heSpi(Y,X,u) with g* € AA(Y,L*((0,1),X)) and
hb e € (Y, L9((0,1),X), ). Further, f,g € Lip"(Y,X) with r > max{p, ;27 }.
(b) ¢ = a+pB € S5 (Y) with a® € AA(LP((0,1),Y)) and 8° € € (L7((0,1),Y), 1),
and there exists a set £ C R with mes (E) = 0 such that

K:={a(t):te R\ E}

is compact in Y.
Then, there exists m € [1,p) such that f(-,¢(-)) € Smm (Y, X, ).

paa

Proof. We will make use of ideas of [13, Theorem 4.20]. Indeed, decompose f as
follows:

P07 () =" Ca’()) + (5 0°() = 2 a”()) + B (-, ().
From Lemma 4.26, one has g € S?, (R x X). Now using the theorem of composition
of SP-almost automorphic functions (Theorem 4.25), it is easy to see that there
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exists m € [1,p) with L = % + % such that ¢°(-,a®(-)) € AA(Y, L™((0,1),X)). Set

1,
Q) = fo(, %) — fo(, (). Clearly, ®* € £(R x L™((0,1),X), ). Indeed,
from u(R) = oo, there exists 7o > 0 such that, for all » > r¢, one has

1 t+1 1/m
u(czf)/@ (/ ‘I’b@)l’”ds) dpu(t)
1 t+1 1/m
- M(QT)/Q (-/t ||fb(3»¢b(3)) - fb(S,ab(s))HmdS) du(t)

t+1 - 1/m
0 / ( / " (LI ds> au(t)

1/p
<1l [y ( 18"(5) |pds) dp(t)|

t+1 a
§||Ll}||5f7 ( 18°(s) ||§]{d5> d/‘(t)]

Using the fact that 8° € £ (L9((0,1),Y)), it follows that ®* € £ (R x L™((0, 1), X)).
On the other hand, since f,g € Lip"(R,X) C LipP(R, X), one has

(/01 |h(t + s,u(s)) — h(t + S’U(S))Hmd3>1/

< (/01 Ilf(t+ s u(s)) — f(t+ S7U(S))||md8)1/m
+ (/01 llg(t+ s,u(s)) —g(t + 57”(8))Hmd5>1/m

< (/01 (Lf(t—i—s)Hu(s) _U(S)HY)mds)l/m

+ (/01 (Lg(t + 8)|lu(s) — v(S)HY)md5> 1/m

< (Izs) 57 lu(s) = v(s) |

Since K := {a(t) : t € R} is compact in Y, then for each £ > 0, there exists a
finite number of open balls By = B(xy,¢), centered at xp € K with radius ¢ such
that

ST

{a(t) : t € R} C UL, Byg.
Therefore, for 1 <k < m, the set Uy, = {t € R: o € By} is open and R = U}" ,Uj.
Now, for 2 < k < m, set V}, = Uy — Uf;llUi and Vi = U;. Clearly, V; NV, = 0 for
all ¢ # j. Define the step function Z: R — Y by T(¢t) = ag,t € Vi, k=1,2,...,m
It easy to see that

la(s) —Z(s)|ly <e, forallsecR.
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which yields

1/m

u(éh) / . (/tm lh(sva@))llmds) dp(t)

= u(;r) /Qr ([H 17 (s, as)) = h(svx(S))l’”ds> Um dut)

o0 ) ( [ ||h<s,x<s>>||mczs) "

< (Mol + ool )e+ s | (i Lo Ih(s,x(s))||md3> R

m 1/q
1 _ ags
et o /Q T (Z / ey I T ) du(t).

Since ¢ is arbitrary and h® € & (R x L%((0,1),X)), it follows that the function
R®(-,a®(+)) belongs to & (R x L™((0,1),X)). This completes the proof. O

+

< (L4 llse + 12|

Remark 4.28. A general composition theorem in Sgg{é(x)(R x X) is unlikely as
compositions of elements of Sg&%(x)(R x X, 1) may not be well-defined unless ¢(-) is

the constant function.

5. Application to Abstract Evolution Equations

Fix p € N3, p,g > 1, and 9 € C(R). To study the existence of a weighted
pseudo-almost automorphic solution to Eq. (1.1) with weighted SP? coefficients
we will assume that the following assumptions hold:

(H1) The family of closed linear operators A(t) for ¢t € R on X with domain D(A(t))
(possibly not densely defined) satisfy the Acquistapace and Terreni conditions,
the evolution family of operators U = {U(t, s)}+>s generated by A(-) has an
exponential dichotomy with constants N,é > 0 and dichotomy projections
P(t) (t € R). Moreover, 0 € p(A) for each t € R and the following hold

sup HA(S)A_l(t)”B(X,Xﬁ) <c (5.1)
t,seR
(H2) There exists 0 < o < 3 < 1 such that X}, = X,, and X} = X for all t € R, with
uniform equivalent norms. Let ca(a), s, ¢4 be the bounds of the continuous
injections Xg — X, X, — X, Xz —+ X.
(H3) The function R x R — X, (t,s) = A(s)['(¢,s)y € bAA(T,X,) uniformly for
y € Xg.
(H4) The function R x R = X, (¢,8) = I'(¢, s)y € bAA(T, X, ) uniformly for y € X.
(H5) The linear operators B(t),C(t) : X, — X are bounded uniformly in ¢ € R.
Moreover, both ¢ — B(t) and t — C(t) belong to AA(B(X4,X)). We then set

¢s := max(sup|| B| 5x., x), supl|C| px. x))
teR teR
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(H6) The function f = h+ ¢ € SP1 (X, X3, 1) while g = b/ + ¢’ € SP:2(X, X, p).

paa paa

Moreover; f,h € Lip"(R,Xg) and ¢,h’ € Lip" (R, X). with

erax{p,p}.
p—1

Definition 5.1. A continuous function u : R — X,, is said to be a mild solution to
(1.1) provided that the functions s — A(s)U(t, s)P(s)f(s, B(s)u(s))
and s = A(s)U(t, s)Q(s)f(s, B(s)u(s)) are integrable on (¢, s) and

u(t) = —f(t, B(t)u(t)) + U(t, s)(u(s) + f(s, B(s)u(s)))
- / A(S)U(, 5)P(s) (s, B(s)u(s))ds + /t A(S)U(, 5)Q(5) (s, B(s)u(s))ds

+ / U(t, 5)P(s)g(s, C(s)u(s))ds — / Ut 5)Q(s)g s Cs)u(s))ds
for t > s and for all ¢,s € R.

Under previous assumptions (H1)-(H6), it can be easily shown that (1.1) has a
unique mild solution given by
t

u(t) = — f(t, B(tyu(t)) - / A()U(t, 5)P(s) (s, B(s)u(s))ds

+ /too A(s)Uq(t,5)Q(s)f(s, B(s)u(s))ds + / Ul(t,s)P(s)g(s,C(s)u(s))ds

— 00

~ [ ot )@s)ats. Clsyuts)as

for each t € R.
The proof of our main result requires the next technical lemmas:

Lemma 5.2. Under assumption (H5), if v € PAA(X,,u), then B(-)u(-) and
C(-)u(-) belong to PAA(X, ).

Proof. We will make use of ideas of [8, Lemma 3.2]. Let u = h+ ¢ € PAA(X,, 1)
where h € AA(X,) and ¢ € € (X, p), then B(-)u(-) = B(:)h(:) + B(-)¢(-). First,
it is easy to see that B(-)u(-) € BC(R,X,,). Since h € AA(X,), for every sequence
of real numbers (s),)nen, there exists a subsequence (s,)nen and a measurable
function g; such that

lim [|h(sn +5) = g1(s)]la = 0,

n—oo
and

lim [lg1(s — sn) = (s)]la =0

n— oo

for each t € R.
Since B(:) € AA(B(X,,X)), there exists a subsequence (s, )ken of ($p)nen and a
measurable function go such that
[1B(sn, +5) = 92(s) | B(xa %) = 0,
and
192(s = sn,.) = B(s)l| Bxax) = 0
as k — oo for each t € R.
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By using the triangle inequality, one has
[1B(sny + 8)h(sn, + ) — g2(s)g1(8)l] < [|B(sny + 8)h(sn, +5) = B(sny, + 5)g1(s)
+ [1B(sn, + 5)g1(s) — g2(s)g1(s)]|
< esllh(sn, +5) = 91(5)Ixa + 91 lloc | B(sny + 5) = 92(5) [ Bx %) -
Then,

Jim || B(sn,, + 5)h(sn, +5) = g2(s)g1(s)l| = 0,
Analogously, one can prove that

nan;O||gQ(5 — 80y )91(5 — 8n,) — B(s)h(s)|| = 0.
Hence, B(-)h(-) € AA(X).

To complete the proof, it suffices to notice that for r sufficiently large

1 o
(0 / 1B(s)e()l duuts) < 7o /Q lo(s)lx., du(s)

and hence,
1 -
Jim gy L 1B duts) =0
U

Lemma 5.3 ([11]). For each z € X, suppose that Assumptions (H1)-(H2) hold
and let «, 8 be real numbers such that 0 < a < 8 < 1 with 28 > a + 1, then there
are constants r(«, ), r (e, B),d(B) > 0 such that

IA@U (L, 5)P(s)alls < ' (a, B)e Tt —5) P all, t>s (5.2)
IA(S)U(t, 5)P(s)zl|s < (o, B)e T )t — 5) x|, t>s (5.3)

and
|A(s)Uq (5, )Q()[|5 < d(B)e ™ Ijz]|, t<s (5.4)

Lemma 5.4. Under assumptions (H1)—(H6), the integral operators I'y and T'y
defined by

(T1u)(t) ::L A(s)U(t, s)P(s)f(s, B(s)u(s))ds

and
(Tau)(t) := /t A(s)Uq(t, $)Q(s) f(s, B(s)u(s))ds
map PAA(X,, 1) into itself.

Proof. Let u € PAA(X,, ). By Lemma (5.2) one has B(-)u(-) € PAA(X,pu) C

Sp-a (X, ). Using the composition theorem for weighted Sh:¢ functions, we deduce

that F(t) := f(t, B(t)u(t)) € SP4(Xg,u). Now write F = ¢ + 1, where ¢* €

paa

AA(LP((0,1),Xg)) and ¢* € € (L9((0,1),X3), u). Then T'y can be decomposed as
(Tyu)(t) = @(t) + V(t)

where
t

(1) = / A(S)U(t, $)P(s)p(s)ds and  W(t) = / A($)U(t, 5)P(s)i(s)ds,

— 0o —00
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Clearly ® € AA(X,). Indeed; for each t € R and k € N; we set
t—k+1

k
D (t) ::/k A(t—s)U(t,t—s)P(t—s)p(t—s)ds :/ A(s)U(t,s)P(s)p(s)ds,

-1 t—k

Let d > 1 such that % + é = 1, where p > 1. Using Eq. (5.3) and the Holder’s
inequality, it follows that

t—kt+1
[2()la < c2()[|Pr(t)]lp < c2(a)r(a, B) /t_k e 79 (t —5) 7P| ¢(5) | pds
< c(a)r(a, B) [/tkﬂ o i (t—s) (t— S)ﬂwds] 1/d
t—k

L wetsngas]”

< csoyrio )] [

—ds . 1/d
) I T PHE
k—1

1+edTlS _g =5
< ea(a)r(a, B) {| —g— (k= 1) Pe )¢l 5o xa)
4

= Od(a7ﬁ75)||¢‘|sp(xﬁ)'

o0
Since the series Z ((k —-1)78 e%sk) is convergent, we deduce from the well-
k=1

o0
known Weierstrass test that the series Z@k(t) is uniformly convergent on R.

k=1
Furthermore

B(t) = / AU 5)P(s)d(s)ds = 3 Bi(t),
—o° k=1

® € C(R,X,) and
Ol < D I18x(E)lla < Y Caler, 8,6 llsr(x,)-
k=1 k=1

Fix k € N, let us take a sequence (s/,),, of real numbers. Since ¢* € AA(LP((0,1),Xp))
and A(s)U(t, s)P(s)y € bAA(T,X,) uniformly for y € Xg, then for every sequence
(s))n there exists a subsequence (s, ), and functions 6, h such that

1i_{n A(s+58,)U(t+58pn, s+5n)P(s+sp)x = 6(t,s)x for each ¢,s € R,z € X5. (5.5)

lim O(t — sn, s — sp)x = A(s)U(t,s)P(s)x for each t,s € R,z € Xj. (5.6)

n—oo
nh_)néo||¢(t + 85 +:) = h(t+)|lsr(xs) =0, foreach teR. (5.7)
nlgg()”h(t —8n+) =t +)|lsr(x;) =0 foreach t€R. (5.8)
We set
Gi(t) == ' O(t,t — s)h(t — s)ds.

k—1
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Using triangle inequality, we obtain that
1@t + 50) = Gr(t)lla < ap(t) + by (8),
where
k
aﬁ(t) = / HA(t—i—sn—s)U(t—l—sn, t+5,—8)P(t+s,—$) (O(t + s, — s) — h(t — 5)) ||ads,
k—1
and
k
bE(t) == / | TA(t + sp — $)U(t + ny t 4 5n — 8)P(t + 5p — 5) — O(t,t — 5)] h(t—s)||  ds
k—1

Using Eq. (5.3) and the Hélder’s inequality it follows that
ay(t) < Ca(a, B,0)[[p(t + s — ) = hlt = 5|0 (x)-

Then, by (5.7), lim a¥(#) = 0. Again, using the Lebesgue dominated convergence
n—oo

theorem and (5.5), one can get lim b¥(¢) = 0. Thus,
n— oo

k
lim @k (t + s,) = / 0(t,t — o)h(t — o)do, for each t € R.
k

n—o00 _1

Analogously, one can prove that
k
lim O(t — sp,t — 8, — $)h(t — s, — $)ds = Dy (t), for each t € R.

Therefore, &), € AA(X,). Applying Proposition (2.2), we deduce that the uniform
limit

o() = i D) € AA(X,).
k=1

Now, we prove that ¥ € £ (Xa, u). For this; for each ¢t € R and k € N; we set
k t—k+1
U (t) ::/ A(t—s)U(t,t—s)P(t—s)p(t—s)ds :/ A(s)U(t, s)P(s)y(s)ds.
k

-1 t—k

By carrying similar arguments as above, we deduce that ¥x(t) € BC(R,X,),
> ey Ui(t) is uniformly convergent on R and

() =S Uyt) =
> w=

To complete the proof, it remains to show that

A(s)U(t,s)P(s)p(s)ds € BC(R,X,).

oo

o -
i s /Q O dut) = 0.
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In fact, the estimate in Eq. (5.3) yields

t—k+1

19(0) o < cafa)r(a, B) ( |- s>-ﬂ|w<s>ﬂds>

s . t—kt1 /a
< ex(a)r(ar B) | HT?;(’C — 1) Pt (/ Iw(S)l%dS>
e t—k
t—k+1 /a
=Cyg (avﬁv 6) <~/t—k ||1/)(3)||qu3> )

where d’ > 1 such that % + % = 1. Then, one has

1/q
u(Qr)/Q 19(O)lla dult) < =75 /Qr (/t_k ll2( )||5d> du(t)

< el [ [huto+i- k)H%ds)i ault)

T

Since ¢® € £ (Lq((O7 1),X3), ,u), the above inequality leads to ¥y, € & (Xa, ). Then
by the following inequality
1 / 1 -
W(t adutgi/ W(t)— U (t)||a du(t

7' Qr k=1

1
3 /Q 194 (8) o i),

r

we deduce that the uniform limit W(-) = 377 | U(-) € € (X4, p), which ends the
proof.

Of course, the proof for (I'gu)(-) is similar to that for (I'yu)(-). However, one
makes use of Eq. (5.4) rather than Eq. (5.3). O

Lemma 5.5. Under assumptions (H1)-(H6), the integral operators I's and T'y
defined by

T = [ © Ut ) P()g(s, Ols)u(s))ds
and O:o

Ca(t) = [ Uglt.)Q(s)as, Cls)us))ds
map PAA(Xq, p) into itself.

Proof. Let u € PAA(X,, i), since C(+) € AA(B(Xq, X)); by Lemma (5.2); it fol-
lows that C(-)u(-) € PAA(X, ) C Sp% (X, n) Using the composition theorem for
weighted SP:9 functions (Theorem (4.27)), we deduce that G(t) := g(t, C(t)u(t)) €

paa
Sh:0 (X, ). Now write G = ¢+, where ¢’ € AA(LP((0,1),X)) and ¥ € € (L((0,1),X), ).
Thus I's can be rewritten as

(Cau)(t) = () + V(1),
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where
¢ ¢
O(t) = / U(t,s)P(s)p(s)ds and ¥(t) = / U(t,s)P(s)(s)ds,
Now we will show that ® € AA(X,). For each t € R and k € N we set
k t—k+1
B(t) = /k Ultt — $)P(t— 8)6(t — 5)ds — / V)P
-1 t—

Let d > 1 such that % + é = 1, where p > 1. Using Eq. (3.7) and the Holder’s
inequality, it follows that
t—k+1

15 () ]la < /t 1U(t, 5)P(s)¢(s) [l ads

—k

okl
< n(a) / R Ol

t—k+1 -~ 1/d t—k+1
< n(a)[/ e$<t*s)(t75)*dads} X [/
t t—k

—k

k
—ds

1/d
S”(@)[/k e Ss_dads} Bl s (x)

-1

l6(s)Pds] "

1—1—6%(S o =
<n(@){| —g— & =1 "= o] snx)
2

= Cala,0)[[ ¢l svx)-

oo
s
Since the series Z ((k — 1) %=k ) is convergent, we deduce from the well-known
k=1
Weierstrass test that the series Y7 | @5 (¢) is uniformly convergent on R. Further-
more

o) = [ UsPEods =Y B,
k=1

— 00

® e C(R,X,) and

12(®)lla < D IS(E)] < Y Calr, )|l sm -
k=1

k=1

Fix k € N, let us take a sequence (s, ),, of real numbers. Since ¢* € AA(L?((0,1),X))
and U(t, s)y € bAA(T,X,,) uniformly for y € X, then for every sequence (s/,),, there
exists a subsequence (s;), and functions 6, h such that

Hm U(t + sp, S+ $n)P(s + sp)z = 0(t, s)x for each t,s € R,z e X. (5.9)

n— oo
1i_>m O(t — $p,s — sp)x = U(t,s)P(s)x for each t,s € R,z € X. (5.10)
n oo
li_>m lp(t + sn+-) = h(t +-)|lspx) =0, foreach teR. (5.11)
lim [|A(t — sp 4 ) — @(t + )|lsp(x) = 0 for each ¢ € R. (5.12)

n— oo
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We set
k

Hy(t) == O(t,t — s)h(t — s)ds.
k-1

Using triangle inequality, Eq. (3.7) and the Holder’s inequality, we obtain that
1@k (t + 50) = Hi(D)la < () + dii(2),

where

k
cﬁ(t) = H - U(t+ sp,t+8p —8)P(t+ 5, —8) (p(t + 5, —s) — h(t —3)) dsHa

k
< n(a) ( /k TGl 0 8) (e - s>|ds>

< Ca(, 6)||p(t + sn — 8) = h(t — 5)|lsp(x)s

and

dr (t) == | 1:1 [U(t+ $p,t+ s — 8)P(t+ 8, —8) —0(t,t — s)| h(t — s)dsHa

k
< / WUt + sp,t+ sp — )Pt + s, — ) — 0(t,t — s)h(t — 3)||ads.
k—1

By (5.11), lim c¥(¢) = 0 and by using the Lebesgue dominated convergence theo-
n—oo

rem and (5.9), one can get lim c¥(¢) = 0. Thus,
n—oo
k
lim @k (t + s,) = 0(t,t — o)h(t — o)do, for each t € R.

Analogously, one can prove that

k
lim O(t — sn,t — sp, — 8)h(t — sy, — s)ds = Dy (t), for each ¢ € R.

Therefore, &, € AA(X,). Applying Proposition (2.2), we deduce that the uniform
limit

B() = f: Dp(-) € AA(X,).
k=1

Now, we prove that ¥ € PAPy(X,,). For this; for each ¢t € R and k € N; we set
t—k+1

k
Up(t) :== /k U(t,t —s)P(t — s)yY(t — s)ds = / U(t,s)P(s)y(s)ds.

-1 t—k

By carrying similar arguments as above, we deduce that ¥x(t) € BC(R,X,),
> ne; Ui(t) is uniformly convergent on R and

W(t) = 3 Welt) =
o]

To complete the proof, it remains to show that

o -
tim gy Ol du) =0

A(s)U(t,s)P(s)p(s)ds € BC(R,X,).

oo
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In fact, the estimate in Eq. (3.7) yields

—k

t—k+1 s
10k ()]lo < () </t e 7I(t ~ S)_allll)(S)IldS)

t—k+1 /a
||¢(5)||qu>

= Cd/(a,5)||¢|\S“(X)7

where d’ > 1 such that * + 4 = 1. Then, one has
q d

u(Qr)/@ W5 ()] du(t) < eN / (/t_k llp(s)]| d> dp(t)

< Cj((gf)/Q (/ ||w<s+t—k>||qu); au(t).

Since ¢® € £ (Lq((O, 1),X), u), the above inequality leads to Uy € £ (Xa, ). Then,
by the following inequality

1 1 oo
Q) / 19®) e du®) < 25 / 0= 3 W0l dute)

r k=1

=1
" ; M(Qr) / ”\I/k(t)Ha d,u(t)’

T

we deduce that the uniform limit ¥(-) = 372, Wi (-) € € (Xq, ), which ends the
proof.

Of course, the proof for (I'yu)(-) is similar to that for (I'su)(-). However, one
makes use of Eq. (3.8) rather than Eq. (3.7). O

Theorem 5.6. Under the assumptions (H1)-(H6), the evolution equation
(1.1) has a unique p-pseudo-almost automorphic mild solution whenever L =
max (|| Ly||sr; || Lgllsr) is small enough.

875

Proof. Consider the nonlinear operator II defined on PAA(X,, 1) by
Mu(t) =~ (6. BOu(t) ~ [ AUt 5)P(s) (5. Bls)uls))ds
+ /too A(s)Uq(t,s)Q(s) f(s, B(s)u(s))ds + /_ Ul(t,s)P(s)g(s,C(s)u(s))ds

- /t Uo(t, $)Q(s)g(s, C(s)u(s))ds

for each t € R. As we have previously seen, for every u € PAA(X,, p), f(-, Bu(+)) €
PAA(Xg, ) C PAA(X,, ). In view of Lemmas (5.4) and (5.5), it follows that IT
maps PAA(X,, p) into its self. To complete the proof one has to show that IT has
a unique fixed point.
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Let u,v € PAA(X,, ). For T'y and T's, we have the following approximations:

[(Tru)(t) = (T10) ()l S/_ [A(s)U(t, s)P(s) [f (s, B(s)u(s)) — f (s, B(s)v(s))] [lads
< 62(04)647"(%5)/_ (t =)™ U= £ (s, B(s)u(s)) — f(s, B(s)v(s))|pds
< 62(04)647"(%5)/_ (t= )" T "I Ly(s) | B(s)u(s) — B(s)v(s)|ds

e o] t—n+1 s
<cxfaeacsrla )3 [ (¢ =9 T ILy6)fu e

t—n

o0 t—n+1 s it
< ca(@)esesr(a, B) Z (/ (t—s)" "¢ 2 (t—s) ds) “IIL]lsm l|w = v]la00

n=1 t—n
o0 tentl i
< ca(a)eacsr(a, B) Y (n — 1)_“(/ e—a (179) dS) ILsllsllu = vlla,0
n=1 t—n
1 + e = =né
< ca(@)eqesr(a, ﬁ) Ewa— Z (n—1)"% "2 || Lf|lsr|lu — v]|a,00

= ca(@)eacsr (e, B)S(ro, 5 )IILflls [u = vlla,c0,

where rg is such that % + % =1and S(rg,d) = " 14erod % (0 — 1)~

700
ICa(e) ~ Cao)O < [ A Ua(t, $)Q(s) [F (s, Bls)u(s)) — F(s, B(s)o(s))] [lads
< cx(@ead(s) [ T e8| (s, B(s)u(s)) — f(s, B(s)o(s)) | sds

t

< Lea(a)ead(B) /too e 7D B(s)u(s) — B(s)v(s)|lds
< Lea(a)eqesd(B) /Oo 876(54)““(5) —v(s)[lads

t
< Lea(a)esesd(B)8 Ju = vllaoo-
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Similarly, For I's and I'y, we have the following approximations
t

I(Tsu)(t) = (T30) () la S/ 1U(t,5)P(s) [9(s, Cs)u(s)) = f(s,C(s)v(s))] lads

<n(@) [ 0= 5T gl C(s)uls) - 9o, Cls)ols))ads
<n(@) [ (0=s) T IL () — Cls)ols)ds
<nta)es [ (t= 97T I Juls) = o(s)ads

e e} t—n+1 s
< n(a)cs Z/ (t—5)"%2 Ly () ||[u — v]|acods
t

n=17t—"n
o0 t—n+1 —rgs 1
—ar —s 0
gn(a)c5z(/ (t = 5)7 70 07 ds) | Ly e u = vlla,oc
n=1 t—n
e t—n+1 —rgs %
<n(a)es Yot =07 [ eHO ) Lo
n=1 t—mn
708
ro | 2 1—|—6% > )
< n(a)es (m(s)Z(nl) e 2 || Lgllsr||u — v|la,00
n=1

0
= n(a)esS(ro, 5l Lglls v = vllaco,

and

(o)~ )0 < [ 10a(t Q) [o(s, CJuls) = gl Clo)os)] s
<) [ gl Culs) - als, (o)l
< Lm(e) [ e ICuls) ~ Clopote) s

< Lm(a)%/ 07 lu(s) — o(s)[|ads
t
< Lm(a)85571 ||U - UHO(,OO'

Consequently,
[Tu — ITv[[a,00 < LO[u — v||a,005

where
O :=c;5 <02(a)04r(a, 8)S(ro, g) + ea(@)cad(B)5 + n(a)S(ro, g) + m(a)51>.

By taking L small enough, that is, L < ©~!, the operator II becomes a contraction
on PAA(X,, 1) and hence has a unique fixed point in PAA(X,, 1), which obviously
is the unique p-pseudo-almost automorphic mild solution to (1.1). (I
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