NEW ZEALAND JOURNAL OF MATHEMATICS Volume 48 (2018), 129-155

A GENERALIZATION OF WEIGHTED STEPANOV-LIKE PSEUDO-ALMOST AUTOMORPHIC SPACE

Mohamed Zitane

(Received 07 September, 2017)

Abstract. In this paper we introduce and study a new class of functions called weighted Stepanov-like pseudo-almost automorphic functions with variable exponents, which generalizes the class of weighted Stepanov-like pseudo-almost automorphic functions. Basic properties of these new spaces are established. The existence of weighted pseudo-almost automorphic solutions to some first-order differential equations with $S^{p,q(x)}$ -pseudo-almost automorphic coefficients will also be studied.

1. Introduction

In Diagana [10] the concept of Stepanov-like pseudo-almost automorphy was introduced and studied. These spaces, which generalize pseudo-almost automorphic spaces, were then utilized to study the existence of pseudo-almost automorphic solutions to some abstract differential equations.

In Blot *et al.* [4], the concept of weighted pseudo-almost automorphy, using theoretical measure theory, is introduced and utilized to study the existence of weighted pseudo-almost automorphic solutions to some abstract differential equations.

In a recent paper by Diagana and Zitane [13], the concept of Stepanov-like pseudo-almost automorphy is introduced in the Lebesgue space with variable exponents $L^{p(x)}$. These functions were utilized to study the existence of pseudo-almost automorphic solutions to some differential equations.

In this paper we introduce and study a new class of functions called weighted Stepanov-like pseudo-almost automorphic functions with variable exponents, which generalizes the usual weighted Stepanov-like pseudo-almost automorphic functions. Basic properties of these new spaces are established. Afterwards, we study the existence of pseudo-almost automorphic solutions to the class of abstract nonautonomous differential equations given by

$$\frac{d}{dt} \left[u(t) + f(t, B(t)u(t)) \right] = A(t)u(t) + g(t, C(t)u(t)), \quad t \in \mathbb{R},$$
(1.1)

where A(t) for $t \in \mathbb{R}$ is a family of closed linear operators on D(A(t)) satisfying the well-known Acquistapace-Terreni conditions, B(t), C(t) $(t \in \mathbb{R})$ are families of (possibly unbounded) linear operators, and $f : \mathbb{R} \times \mathbb{X} \to \mathbb{X}^t_{\beta}$ $(0 < \alpha < \beta < 1)$ and $g : \mathbb{R} \times \mathbb{X} \to \mathbb{X}$ are jointly continuous satisfying some additional assumptions with \mathbb{X}^t_{β} being a real interpolation space between \mathbb{X} and D(A(t)) of order $\alpha \in (0, 1)$.

²⁰¹⁰ Mathematics Subject Classification 34C27, 35B15, 46E30.

Key words and phrases: weighted pseudo-almost automorphy, Lebesgue space with variable exponents, Stepanov-like pseudo-almost automorphy with variable exponents.

2. µ-Pseudo-Almost Automorphic Functions

Let $(\mathbb{X}, \|\cdot\|), (\mathbb{Y}, \|\cdot\|_{\mathbb{Y}})$ be two Banach spaces. Let $BC(\mathbb{R}, \mathbb{X})$ (respectively, $BC(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denote the collection of all X-valued bounded continuous functions (respectively, the class of jointly bounded continuous functions $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). The space $BC(\mathbb{R}, \mathbb{X})$ equipped with the sup norm $\|\cdot\|_{\infty}$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})$ (respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denotes the class of continuous functions from \mathbb{R} into \mathbb{Y} (respectively, the class of jointly continuous functions $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). Let $B(\mathbb{X}, \mathbb{Y})$ stand for the Banach space of bounded linear operators from \mathbb{X} into \mathbb{Y} equipped with its natural operator topology; in particular, $B(\mathbb{X}, \mathbb{X})$ is denoted by $B(\mathbb{X})$.

In this section, we recall the concept of μ -pseudo-almost automorphic functions introduced by J. Blot *et al* [5].

Definition 2.1 ([6]). A function $f \in C(\mathbb{R}, \mathbb{X})$ is said to be almost automorphic if for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$ there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ such that

$$g(t) := \lim_{n \to \infty} f(t+s_n)$$

is well defined for each $t \in \mathbb{R}$ and

$$f(t) = \lim_{n \to \infty} g(t - s_n)$$

for each $t \in \mathbb{R}$.

The collection of all such functions will be denoted by $AA(\mathbb{X})$, which turns out to be a Banach space when it is equipped with the sup-norm.

Proposition 2.2 ([21]). Assume $f, g : \mathbb{R} \to \mathbb{X}$ are almost automorphic and λ is any scalar. Then the following hold true:

(a) $f + g, \lambda f, f_{\tau}(t) := f(t + \tau)$ and $\hat{f}(t) := f(-t)$ are almost automorphic;

- (b) The range R_f of f is precompact, so f is bounded;
- (c) If $\{f_n\}$ is a sequence of almost automorphic functions and $f_n \to f$ uniformly on \mathbb{R} , then f is almost automorphic.

We denote by \mathcal{B} the Lebesgue σ -field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R}) = \infty$ and $\mu([a, b]) < \infty$, for all $a, b \in \mathbb{R}$ $(a \leq b)$.

Definition 2.3 ([4]). Let $\mu \in \mathcal{M}$. A function $f \in BC(\mathbb{R}, \mathbb{X})$ is said to be μ -ergodic if

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|f(t)\| \, d\mu(t) = 0$$

where $Q_r := [-r, r]$. We denote the space of all such functions by $\mathcal{E}(\mathbb{X}, \mu)$.

Proposition 2.4 ([4]). Let $\mu \in \mathcal{M}$. Then $(\mathcal{E}(\mathbb{X},\mu), \|\cdot\|_{\infty})$ is a Banach space.

Theorem 2.5 ([4]). Let $\mu \in \mathcal{M}$ and I be a bounded interval (eventually $I \neq \emptyset$). Assume that $f \in BC(\mathbb{R}, \mathbb{X})$. Then the following assertions are equivalent: (a) $f \in \mathcal{E}(\mathbb{X}, \mu)$:

Assume that $f \in \mathcal{E}(\mathbb{X}, \mu)$; (a) $f \in \mathcal{E}(\mathbb{X}, \mu)$; (b) $\lim_{r \to \infty} \frac{1}{\mu([-r, r] \setminus I)} \int_{[-r, r] \setminus I} \|f(t)\| d\mu(t) = 0$; (c) For any $\varepsilon > 0$, $\lim_{r \to \infty} \frac{\mu(\{t \in [-r, r] \setminus I : \|f(t)\| > \varepsilon\})}{\mu([-r, r] \setminus I)} = 0$.

Definition 2.6 ([5]). A function $f \in C(\mathbb{R}, \mathbb{X})$ is called μ -pseudo almost automorphic if it can be expressed as $f = g + \phi$, where $g \in AA(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$. The collection of such functions will be denoted by $PAA(\mathbb{X}, \mu)$.

Let \mathcal{N}_1 denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all a, b and $c \in \mathbb{R}$ such that $0 \le a < b \le c$, there exist $\tau_0 \ge 0$ and $\alpha_0 > 0$ such that

$$|\tau| \ge \tau_0 \Rightarrow \mu((a+\tau, b+\tau)) \ge \alpha_0 \mu([\tau, c+\tau]).$$

And let \mathcal{N}_2 denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all $\tau \in \mathbb{R}$, there exist $\beta > 0$ and a bounded interval I such that

$$\mu(\{a + \tau : a \in A\}) \leq \beta \mu(A) \text{ for all } A \in \mathcal{B} \text{ such that } A \cap I = \emptyset.$$

Theorem 2.7 ([5]). Let $\mu \in \mathcal{N}_1$. Then the decomposition of a μ -pseudo almost automorphic function in the form $f = g + \phi$, where $g \in AA(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$ is unique.

Theorem 2.8 ([5]). Let $\mu \in \mathcal{N}_1$. Then $(PAA(\mathbb{X}, \mu), \|\cdot\|_{\infty})$ is a Banach space.

Theorem 2.9 ([5]). Let $\mu \in \mathcal{N}_2$. Then the space $\mathcal{E}(\mathbb{X}, \mu)$ is translation invariant, therefore $PAA(\mathbb{X}, \mu)$ is also translation invariant, that is, if $f \in PAA(\mathbb{X}, \mu)$ implies $f_{\tau} = f(\cdot + \tau) \in PAA(\mathbb{X}, \mu)$ for all $\tau \in \mathbb{R}$.

Definition 2.10 ([19]). A function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is said to be almost automorphic if F(t, u) is almost automorphic in $t \in \mathbb{R}$ uniformly for all $u \in K$, where $K \subset \mathbb{Y}$ is an arbitrary bounded subset. The collection of all such functions will be denoted by $AA(\mathbb{Y}, \mathbb{X})$.

Definition 2.11 ([18]). A function $L \in C(\mathbb{R} \times \mathbb{R}, \mathbb{X})$ is called bi-almost automorphic if for every sequence of real numbers $(s'_n)_n$ we can extract a subsequence $(s_n)_n$ such that

$$H(t,s) := \lim_{n \to \infty} L(t+s_n, s+s_n)$$

is well defined for each $t, s \in \mathbb{R}$, and

$$L(t,s) = \lim_{n \to \infty} H(t - s_n, s - s_n)$$

for each $t, s \in \mathbb{R}$. The collection of all such functions will be denoted by $bAA(\mathbb{R} \times \mathbb{R}, \mathbb{X})$.

Definition 2.12 ([4]). Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is called μ -ergodic in t uniformly with respect to x in \mathbb{Y} if the following two conditions hold:

- (a) for all y in \mathbb{Y} , $f(\cdot, y) \in \mathcal{E}(\mathbb{Y}, \mu)$;
- (b) f is uniformly continuous on each compact set $K \subset \mathbb{Y}$ with respect to the second variable y.

We denote the space of all such functions by $\mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$.

Definition 2.13 ([5]). Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ -pseudo almost automorphic if it can be expressed as $f = g + \phi$, where $g \in AA(\mathbb{Y}, \mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$. The collection of such functions will be denoted by $PAA(\mathbb{Y}, \mathbb{X}, \mu)$.

3. Evolution Families

Definition 3.1 ([1, 2]). A family of closed linear operators A(t) for $t \in \mathbb{R}$ on X with domains D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions, if there exist constants $\omega \in \mathbb{R}$, $\theta \in (\frac{\pi}{2}, \pi)$, $K, L \geq 0$ and $\mu, \nu \in \mathbb{R}$ (0,1] with $\mu + \nu > 1$ such that

$$S_{\theta} \cup \{0\} \subset \rho(A(t) - \omega I), \qquad ||R(\lambda, A(t) - \omega I)|| \le \frac{K}{1 + |\lambda|}, \text{ and}$$
(3.1)

 $\|(A(t) - \omega I)R(\lambda, A(t) - \omega I)[R(\omega, A(t)) - R(\omega, A(s))]\| \le L |t - s|^{\mu} |\lambda|^{-\nu}$ (3.2)for $t, s \in \mathbb{R}, \lambda \in S_{\theta} := \{\lambda \in \mathbb{C} \setminus \{0\} : |\arg \lambda| \le \theta\}.$

Among other things, the Acquistapace-Terreni Conditions do ensure the existence of a unique evolution family

$$\mathcal{U} = \{ U(t,s) : t, s \in \mathbb{R} \text{ such that } t \ge s \}$$

on X associated with A(t) such that $U(t,s) X \subseteq D(A(t))$ for all $t, s \in \mathbb{R}$ with t > s, and

- (a) U(t,s)U(s,r) = U(t,r) for $t, s \in \mathbb{R}$ such that $t \ge r \ge s$;
- (b) U(t,t) = I for $t \in \mathbb{R}$ where I is the identity operator of X; and
- (c) for t > s, the mapping $(t, s) \mapsto U(t, s) \in B(\mathbb{X})$ is continuous and continuously differentiable in t with $\partial_t U(t,s) = A(t)U(t,s)$. Moreover, there exists a constant C' > 0 which depends on constants in Eq. (3.1) and Eq. (3.2) such that

$$\|A^{k}(t)U(t,s)\|_{B(\mathbb{X})} \le C'(t-s)^{-k}$$
(3.3)

for $0 < t - s \le 1$ and k = 0, 1.

Definition 3.2. An evolution family $\mathcal{U} = \{U(t,s) : t, s \in \mathbb{R} \text{ such that } t \geq s\}$ is said to have an *exponential dichotomy* if there are projections P(t) $(t \in \mathbb{R})$ that are uniformly bounded and strongly continuous in t and constants $\delta > 0$ and $N \ge 1$ such that

- (f) U(t,s)P(s) = P(t)U(t,s);
- (g) the restriction $U_Q(t,s): Q(s)\mathbb{X} \to Q(t)\mathbb{X}$ of U(t,s) is invertible (we then set $U_Q(s,t):=U_Q(t,s)^{-1}$) where Q(t)=I-P(t); and (h) $\|U(t,s)P(s)\| \leq Ne^{-\delta(t-s)}$ and $\|U_Q(s,t)Q(t)\| \leq Ne^{-\delta(t-s)}$ for $t \geq s$ and
- $t, s \in \mathbb{R}$.

If an evolution family $\mathcal{U} = \{U(t,s) : t, s \in \mathbb{R} \text{ such that } t \geq s\}$ has an exponential dichotomy, we then define

$$\Gamma(t,s) := \begin{cases} U(t,s)P(s), & \text{if } t \ge s, \ t,s \in \mathbb{R}, \\ \\ -U_Q(t,s)Q(s), & \text{if } s > t, \ t,s \in \mathbb{R}. \end{cases}$$

This setting requires the introduction of some interpolation spaces for A(t). We refer the reader to the following excellent books [3], [9], and [20] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on X (Definition 3.1 holds when A(t) is replaced with A) and let $\alpha \in (0, 1)$. Define the real interpolation space

$$\mathbb{X}_{\alpha}^{A} := \left\{ x \in \mathbb{X} : \left\| x \right\|_{\alpha}^{A} := \sup_{r > 0} \left\| r^{\alpha} \left(A - \omega \right) R \left(r, A - \omega \right) x \right\| < \infty \right\},\$$

which, by the way, is a Banach space when endowed with the norm $\|\cdot\|_{\alpha}^{A}$. For convenience we further write

$$\mathbb{X}_0^A := \mathbb{X}, \ \|x\|_0^A := \|x\|, \ \mathbb{X}_1^A := D(A)$$

and $||x||_1^A := ||(\omega - A)x||$. Moreover, let $\hat{\mathbb{X}}^A := \overline{D(A)}$ of \mathbb{X} . In particular, we will frequently be using the following continuous embedding

$$D(A) \hookrightarrow \mathbb{X}^{A}_{\beta} \hookrightarrow D((\omega - A)^{\alpha}) \hookrightarrow \mathbb{X}^{A}_{\alpha} \hookrightarrow \hat{\mathbb{X}}^{A} \hookrightarrow \mathbb{X},$$
(3.4)

for all $0 < \alpha < \beta < 1$, where the fractional powers are defined in the usual way.

In general, D(A) is not dense in the spaces \mathbb{X}^{A}_{α} and \mathbb{X} . However, we have the following continuous injection

$$\mathbb{X}^{A}_{\beta} \hookrightarrow \overline{D(A)}^{\|\cdot\|^{A}_{\alpha}} \tag{3.5}$$

for $0 < \alpha < \beta < 1$.

Definition 3.3. Given the family of linear operators A(t) for $t \in \mathbb{R}$, satisfying Acquistapace-Terreni conditions (Definition 3.1), we set

$$\mathbb{X}^t_{\alpha} := \mathbb{X}^{A(t)}_{\alpha}, \quad \hat{\mathbb{X}}^t := \hat{\mathbb{X}}^{A(t)}$$

for $0 \leq \alpha \leq 1$ and $t \in \mathbb{R}$, with the corresponding norms.

Then the embedding in (3.4) hold with constants independent of $t \in \mathbb{R}$.

These interpolation spaces are of class \mathcal{J}_{α} ([20, Definition 1.1.1]) and it can be shown that

$$\|y\|_{\alpha}^{t} \le K^{\alpha} L^{1-\alpha} \|y\|^{1-\alpha} \|A(t)y\|^{\alpha}, \quad y \in D(A(t))$$
(3.6)

where K, L are the constants appearing in Definition 3.1.

Proposition 3.4 ([7]). For $x \in \mathbb{X}$, $0 \le \alpha \le 1$ and t > s, the following hold:

(i) There is a constant $n(\alpha)$, such that

$$\|U(t,s)P(s)x\|_{\alpha}^{t} \le n(\alpha)e^{-\frac{\delta}{2}(t-s)}(t-s)^{-\alpha}\|x\|,$$
(3.7)

(ii) There is a constant $m(\alpha)$, such that

$$\|\widetilde{U}_Q(s,t)Q(t)x\|_{\alpha}^s \le m(\alpha)e^{-\delta(t-s)}\|x\|, \quad t \le s.$$
(3.8)

4. Weighted Stepanov-Like Pseudo Almost Automorphic Functions with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents $L^{p(x)}(\mathbb{R},\mathbb{X})$ developed in [12, 13, 14, 15, 17, 22].

Let $\Omega \subseteq \mathbb{R}$ be a subset and let $M(\Omega, \mathbb{X})$ denote the collection of all measurable functions $f : \Omega \to \mathbb{X}$. Let us recall that two functions f and g of $M(\Omega, \mathbb{X})$ are equal whether they are equal almost everywhere. Set $m(\Omega) := M(\Omega, \mathbb{R})$ and fix

 $p \in m(\Omega)$. Define

$$p^{-} := \operatorname{ess\,inf}_{x \in \Omega} p(x), \quad p^{+} := \operatorname{ess\,sup}_{x \in \Omega} p(x),$$

$$C_{+}(\Omega) := \left\{ p \in m(\Omega) : 1 < p^{-} \le p(x) \le p^{+} < \infty, \text{ for each } x \in \Omega \right\},$$

$$D_{+}(\Omega) := \left\{ p \in m(\Omega) : 1 \le p^{-} \le p(x) \le p^{+} < \infty, \text{ for each } x \in \Omega \right\},$$

$$\rho(u) = \rho_{p(x)}(u) = \int_{\Omega} \|u(x)\|^{p(x)} dx.$$

We then define the Lebesgue space with variable exponents $L^{p(x)}(\Omega, \mathbb{X})$ with $p \in C_+(\Omega)$, by

$$L^{p(x)}(\Omega, \mathbb{X}) := \Big\{ u \in M(\Omega, \mathbb{X}) : \int_{\Omega} \|u(x)\|^{p(x)} dx < \infty \Big\}.$$

Define, for each $u \in L^{p(x)}(\Omega, \mathbb{X})$,

$$\|u\|_{p(x)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left\| \frac{u(x)}{\lambda} \right\|^{p(x)} dx \le 1 \right\}.$$

It can be shown that $\|\cdot\|_{p(x)}$ is a norm upon $L^{p(x)}(\Omega, \mathbb{X})$, which is referred to as the Luxemburg norm.

Remark 4.1. Let $p \in C_+(\Omega)$. If p is constant, then the space $L^{p(\cdot)}(\Omega, \mathbb{X})$, as defined above, coincides with the usual space $L^p(\Omega, \mathbb{X})$.

Proposition 4.2 ([15, 22]). Let $p \in C_+(\Omega)$. If $u, v \in L^{p(x)}(\Omega, \mathbb{X})$, then the following properties hold,

- (a) $||u||_{p(x)} \ge 0$, with equality if and only if u = 0;
- (b) $\rho_p(u) \leq \rho_p(v)$ and $||u||_{p(x)} \leq ||v||_{p(x)}$ if $||u|| \leq ||v||$; (c) $\rho_p(u||u||_{p(x)}^{-1}) = 1$ if $u \neq 0$; (d) $\rho_p(u) \leq 1$ if and only if $||u||_{p(x)} \leq 1$;

- (e) If $||u||_{p(x)} \leq 1$, then

$$\left[\rho_p(u)\right]^{1/p^-} \le ||u||_{p(x)} \le \left[\rho_p(u)\right]^{1/p^+}.$$

(f) If $||u||_{p(x)} \ge 1$, then

$$\left[\rho_p(u)\right]^{1/p^+} \le ||u||_{p(x)} \le \left[\rho_p(u)\right]^{1/p^-}$$

Theorem 4.3 ([15, 17]). Let $p \in C_{+}(\Omega)$. The space $(L^{p(x)}(\Omega, X), \|\cdot\|_{p(x)})$ is a Banach space that is separable and uniform convex. Its topological dual is $L^{q(x)}(\Omega, \mathbb{X})$, where $p^{-1}(x) + q^{-1}(x) = 1$. Moreover, for any $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{q(x)}(\Omega, \mathbb{R})$, we have

$$\left\| \int_{\Omega} uv dx \right\| \le \left(\frac{1}{p^{-}} + \frac{1}{q^{-}} \right) \|u\|_{p(x)} \|v\|_{q(x)}.$$

Corollary 4.4 ([22]). Let $p, r \in D_+(\Omega)$. If the function q defined by the equation

$$\frac{1}{q(x)} = \frac{1}{p(x)} + \frac{1}{r(x)}$$

is in $D_{+}(\Omega)$, then there exists a constant $C = C(p, r) \in [1, 5]$ such that

$$||uv||_{q(x)} \le C ||u||_{p(x)} \cdot ||v||_{r(x)},$$

for every $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{r(x)}(\Omega, \mathbb{R})$.

Corollary 4.5 ([15]). Let $mes(\Omega) < \infty$ where $mes(\cdot)$ stands for the Lebesgue measure and $p, q \in D_+(\Omega)$. If $q(\cdot) \leq p(\cdot)$ almost everywhere in Ω , then the embedding $L^{p(x)}(\Omega, \mathbb{X}) \hookrightarrow L^{q(x)}(\Omega, \mathbb{X})$ is continuous whose norm does not exceed $2(mes(\Omega) + 1)$.

Definition 4.6 ([10]). The Bochner transform $f^b(t,s)$, $t \in \mathbb{R}$, $s \in [0,1]$ of a function $f : \mathbb{R} \to \mathbb{X}$ is defined by $f^b(t,s) := f(t+s)$.

Remark 4.7. (i) A function $\varphi(t,s), t \in \mathbb{R}, s \in [0,1]$, is the Bochner transform of a certain function $f, \varphi(t,s) = f^b(t,s)$, if and only if $\varphi(t+\tau, s-\tau) = \varphi(s,t)$ for all $t \in \mathbb{R}, s \in [0,1]$ and $\tau \in [s-1,s]$.

(ii) Note that if $f = h + \varphi$, then $f^b = h^b + \varphi^b$. Moreover, $(\lambda f)^b = \lambda f^b$ for each scalar λ .

Definition 4.8 ([10]). The Bochner transform $F^b(t, s, u), t \in \mathbb{R}, s \in [0, 1], u \in \mathbb{X}$ of a function F(t, u) on $\mathbb{R} \times \mathbb{X}$, with values in \mathbb{X} , is defined by $F^b(t, s, u) := F(t+s, u)$ for each $u \in \mathbb{X}$.

Definition 4.9 ([10]). Let $p \in [1, \infty)$. The space $BS^p(\mathbb{X})$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{X} such that $f^b \in L^{\infty}(\mathbb{R}, L^p((0, 1), \mathbb{X}))$. This is a Banach space with the norm

$$||f||_{S^p} = ||f^b||_{L^{\infty}(\mathbb{R},L^p)} = \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} ||f(\tau)||^p \, d\tau \right)^{1/p}.$$

Note that for each $p \ge 1$, we have the following continuous inclusion:

 $(BC(\mathbb{X}), \|\cdot\|_{\infty}) \hookrightarrow (BS^p(\mathbb{X}), \|\cdot\|_{S^p}).$

Definition 4.10 ([12]). Let $p \in C_+(\mathbb{R})$. The space $BS^{p(x)}(\mathbb{X})$ consists of all functions $f \in M(\mathbb{R}, \mathbb{X})$ such that $\|f\|_{S^{p(x)}} < \infty$, where

$$\|f\|_{S^{p(x)}} = \sup_{t \in \mathbb{R}} \left[\inf \left\{ \lambda > 0 : \int_0^1 \left\| \frac{f(x+t)}{\lambda} \right\|^{p(x+t)} dx \le 1 \right\} \right]$$
$$= \sup_{t \in \mathbb{R}} \left[\inf \left\{ \lambda > 0 : \int_t^{t+1} \left\| \frac{f(x)}{\lambda} \right\|^{p(x)} dx \le 1 \right\} \right].$$

Note that the space $\left(BS^{p(x)}(\mathbb{X}), \|\cdot\|_{S^{p(x)}}\right)$ is a Banach space, which, depending on $p(\cdot)$, may or may not be translation-invariant.

Definition 4.11 ([12]). If $p, q \in C_+(\mathbb{R})$, we then define the space $BS^{p(x),q(x)}(\mathbb{X})$ as follows:

$$BS^{p(x),q(x)}(\mathbb{X}) := BS^{p(x)}(\mathbb{X}) + BS^{q(x)}(\mathbb{X})$$
$$= \left\{ f = h + \varphi \in M(\mathbb{R},\mathbb{X}) : h \in BS^{p(x)}(\mathbb{X}) \text{ and } \varphi \in BS^{q(x)}(\mathbb{X}) \right\}.$$

We equip $BS^{p(x),q(x)}(\mathbb{X})$ with the norm $\|\cdot\|_{S^{p(x),q(x)}}$ defined by

$$\|f\|_{S^{p(x),q(x)}} := \inf \left\{ \|h\|_{S^{p(x)}} + \|\varphi\|_{S^{q(x)}} : f = h + \varphi \right\}.$$

Clearly, $\left(BS^{p(x),q(x)}(\mathbb{X}), \|\cdot\|_{S^{p(x),q(x)}}\right)$ is a Banach space, which, depending on both $p(\cdot)$ and $q(\cdot)$, may or may not be translation-invariant.

Lemma 4.12 ([12]). Let $p, q \in C_+(\mathbb{R})$. Then the following continuous inclusion holds,

$$\left(BC(\mathbb{R},\mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow \left(BS^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow \left(BS^{p(x),q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x),q(x)}}\right).$$

Definition 4.13. Let $p \geq 1$ be a constant. A function $f \in BS^p(\mathbb{X})$ is said to be S^p -almost automorphic (or Stepanov-like almost automorphic function) if $f^b \in$ $AA(L^p((0,1),\mathbb{X}))$. That is, a function $f \in L^p_{loc}(\mathbb{R},\mathbb{X})$ is said to be Stepanovlike almost automorphic if its Bochner transform $f^b : \mathbb{R} \to L^p(0,1;\mathbb{X})$ is almost automorphic in the sense that for every sequence of real numbers $(s'_n)_n$, there exists a subsequence $(s_n)_n$ and a function $g \in L^p_{loc}(\mathbb{R},\mathbb{X})$ such that

$$\left(\int_{0}^{1} \|f(t+s+s_{n})-g(t+s)\|^{p} ds\right)^{1/p} \to 0, \quad \left(\int_{0}^{1} \|g(t+s-s_{n})-f(t+s)\|^{p} ds\right)^{1/p} \to 0$$

as $n \to \infty$ pointwise on \mathbb{R} . The collection of such functions will be denoted by $S^p_{aa}(\mathbb{X})$.

Remark 4.14. It is clear that if $1 \leq p < q < \infty$ and $f \in L^q_{loc}(\mathbb{R}, \mathbb{X})$ is S^q -almost automorphic, then f is S^p -almost automorphic. Also if $f \in AA(\mathbb{X})$, then f is S^p -almost automorphic for any $1 \leq p < \infty$.

Remark 4.15. There are some difficulties in defining $S_{aa}^{p(x)}(\mathbb{X})$ for a function $p \in C_+(\mathbb{R})$ that is not necessarily constant. This is mainly due to the fact that the space $BS^{p(x)}(\mathbb{X})$ is not always translation-invariant.

Taking into account Remark 4.15, we introduce the concept of weighted $S^{p,q(x)}$ -pseudo-almost automorphy as follows, which obviously generalizes the notion of weighted S^{p} -pseudo-almost automorphy.

Definition 4.16. Let $\mu \in \mathcal{M}, p \geq 1$ be a constant and let $q \in C_+(\mathbb{R})$. A function $f \in BS^{p,q(x)}(\mathbb{X})$ is said to be weighted $S^{p,q(x)}$ -pseudo-almost automorphic (or weighted Stepanov-like pseudo-almost automorphic with variable exponents p, q(x)) if it can be decomposed as $f = h + \varphi$, where $h \in S^p_{aa}(\mathbb{X})$ and $\varphi^b \in \mathcal{E}(L^{q^{b}(x)}((0,1),\mathbb{X}),\mu)$, i.e.,

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0 : \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} dx \le 1\right\} d\mu(t) = 0.$$

The collection of such functions will be denoted by $S_{paa}^{p,q(x)}(\mathbb{X},\mu)$.

Proposition 4.17. Let $r, s \ge 1, p, q \in D_+(\mathbb{R})$, $\mu \in \mathcal{M}$. If $s \le r, q(\cdot) \le p(\cdot)$ and $f \in BS^{r,p(x)}(\mathbb{X})$ is weighted $S^{r,p(x)}$ -pseudo-almost automorphic, then f is weighted $S^{s,q(x)}$ -pseudo-almost automorphic.

Proof. Suppose that $f \in BS^{r,p(x)}(\mathbb{X})$ is $S^{r,p(x)}$ -pseudo-almost automorphic. Thus there exist two functions $h, \varphi : \mathbb{R} \to \mathbb{X}$ such that $f = h + \varphi$, where $h \in S^r_{aa}(\mathbb{X})$ and $\varphi^b \in \mathcal{E}(L^{p^b(x)}((0,1),\mathbb{X}),\mu)$. From remark 4.14, h is S^s -almost automorphic.

From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu(Q_r) > 0$ for all $r \ge r_0$. By using Corollary 4.5 and the fact that $q(\cdot) \le q^+ \le p^- \le p(\cdot)$ and $\varphi^b \in \mathcal{E}(L^{p^b(x)}((0,1),\mathbb{X}),\mu)$, one has

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t)$$
$$\le \frac{4}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} dx \le 1\right\} d\mu(t).$$

that is $\varphi^b \in \mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu)$ and hence f is weighted $S^{s,q(x)}$ -pseudo-almost automorphic. \Box

Proposition 4.18. Let $p \geq 1$ be a constant, $q \in C_+(\mathbb{R})$ and let $\mu \in \mathcal{N}_2$. Then $PAA(\mathbb{X}, \mu) \subset S_{paa}^{p,q(x)}(\mathbb{X}, \mu)$.

Proof. Let $f \in PAA(\mathbb{X}, \mu)$. Thus there exist two functions $h, \varphi : \mathbb{R} \to \mathbb{X}$ such that $f = h + \varphi$, where $h \in AA(\mathbb{X})$ and $\varphi \in \mathcal{E}(\mathbb{X}, \mu)$. Now from remark 4.14, $h \in AA(\mathbb{X}) \subset S^p_{aa}(\mathbb{X})$. The proof of $\varphi^b \in \mathcal{E}(L^{q^b(x)}((0, 1), \mathbb{X}), \mu)$. was given in [14]. However for the sake of clarity, we reproduce it here. From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \geq 0$ such that $\mu(Q_r) > 0$ for all $r \geq r_0$.

Using (e)-(f) of Proposition 4.2, the usual Hölder inequality and Fubini's theorem it follows that

$$\begin{split} &\int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t) \\ &\leq \int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\|^{q(t+x)} dx\right)^{\gamma} d\mu(t) \\ &\leq (\mu(Q_r))^{1-\gamma} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\|^{q(t+x)} dx\right) d\mu(t)\right]^{\gamma} \\ &\leq (\mu(Q_r))^{1-\gamma} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\| \cdot \|\varphi\|_{\infty}^{q(t+x)-1} dx\right) d\mu(t)\right]^{\gamma} \\ &\leq (\mu(Q_r))^{1-\gamma} \left(\|\varphi\|_{\infty} + 1\right)^{\gamma(q^{+}-1)} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\| dx\right) d\mu(t)\right]^{\gamma} \\ &= (\mu(Q_r))^{1-\gamma} \left(\|\varphi\|_{\infty} + 1\right)^{\gamma(q^{+}-1)} \left[\int_0^1 \left(\int_{Q_r} \|\varphi(t+x)\| d\mu(t)\right) dx\right]^{\gamma} \\ &= (\mu(Q_r)) \left(\|\varphi\|_{\infty} + 1\right)^{\gamma(q^{+}-1)} \left[\int_0^1 \left(\frac{1}{\mu(Q_r)} \int_{Q_r} \|\varphi(t+x)\| d\mu(t)\right) dx\right]^{\gamma}, \end{split}$$

where

$$\gamma = \begin{cases} \frac{1}{q^+} & \text{if } \|\varphi\| < 1, \\\\ \\ \frac{1}{q^-} & \text{if } \|\varphi\| \ge 1. \end{cases}$$

Using the fact that $\mathcal{E}(\mathbb{X},\mu)$ is translation invariant and the (usual) Dominated Convergence Theorem, it follows that

$$\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf \left\{ \lambda > 0 : \int_0^1 \left\| \frac{\varphi(x+t)}{\lambda} \right\|^{q(x+t)} dx \le 1 \right\} d\mu(t)$$
$$\le \left(\|\varphi\|_{\infty} + 1 \right)^{\gamma(q^+ - 1)} \left[\int_0^1 \left(\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\varphi(t+x)\| d\mu(t) \right) dx \right]^{\gamma} = 0.$$

Theorem 4.19. Let $p, q \geq 1$ be constants, $\mu \in \mathcal{N}_2$ and $f \in S^{p,q}_{paa}(\mathbb{X},\mu)$ be such that

 $f = h + \varphi$

where $h^b \in AA(L^p((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$. Then

$$\left\{h(t+.): t \in \mathbb{R}\right\} \subset \overline{\left\{f(t+.): t \in \mathbb{R}\right\}}, \quad \text{in} \quad BS^{p,q}(\mathbb{X}).$$

Proof. We prove it by contradiction. Indeed, if this is not true, then there exists $t_0 \in \mathbb{R}$ and an $\varepsilon > 0$ such that

$$\|h(t_0+\cdot) - f(t+\cdot)\|_{S^{p,q}} \ge 2\varepsilon, \quad t \in \mathbb{R}.$$

Since $h^b \in AA(L^p((0,1),\mathbb{X}))$ and $(BS^p(\mathbb{X}), \|\cdot\|_{S^p}) \hookrightarrow (BS^{p,q}(\mathbb{X}), \|\cdot\|_{S^{p,q}})$, fix $t_0 \in \mathbb{R}, \varepsilon > 0$ and write, $B_{\varepsilon} := \{\tau \in \mathbb{R}; \|h(t_0 + \tau + \cdot) - g(t_0 + \cdot)\|_{S^{p,q}} < \varepsilon\}$. By [23, Lemma 2.1], there exist $s_1, \ldots, s_m \in \mathbb{R}$ such that

$$\bigcup_{i=1}^{m} (s_i + B_{\varepsilon}) = \mathbb{R}.$$

Write

$$\hat{s}_i = s_i - t_0$$
 $(1 \le i \le m), \quad \eta = \max_{1 \le i \le m} |\hat{s}_i|.$

For $r \in \mathbb{R}$ with $|r| > \eta$; we put

$$B_{\varepsilon,r}^{(i)} = [-r + \eta - \hat{s}_i, r - \eta - \hat{s}_i] \cap (t_0 + B_\varepsilon), \quad 1 \le i \le m,$$

one has $\bigcup_{i=1}^{m} (\hat{s}_i + B_{\varepsilon,r}^{(i)}) = [-r + \eta, r - \eta].$ Letting $\mu_{\tau}(\{a + \tau : a \in A\})$ for $A \in \mathcal{B}$, from $\mu \in \mathcal{N}_2$ it follows that μ and μ_{τ} are equivalent (see Definitions 4.22). Using the fact that $B_{\varepsilon,r}^{(i)} \subset [-r,r] \cap (t_0 + B_{\varepsilon})$,

 $i = 1, \ldots, m$, we obtain

ŀ

$$\begin{split} \mu(Q_{r-\eta}) &= \mu([-r+\eta, r-\eta]) \\ &\leq \sum_{i=1}^{m} \mu(\hat{s}_i + B_{\varepsilon,r}^{(i)}) \\ &\leq \beta \sum_{i=1}^{m} \mu(B_{\varepsilon,r}^{(i)}) \\ &\leq m\beta \max_{1 \leq i \leq m} \left\{ \mu(B_{\varepsilon,r}^{(i)}) \right\} \\ &\leq m\beta \, \mu([-r,r] \cap (t_0 + B_{\varepsilon})), \end{split}$$

On the other hand, by using the Minkowski inequality, for any $t \in t_0 + B_{\varepsilon}$, one has

$$\begin{split} \|\varphi(t+\cdot)\|_{S^{q}} &= \|\varphi(t+\cdot)\|_{S^{p,q}} \\ &= \|f(t+\cdot) - h(t+\cdot)\|_{S^{p,q}} \\ &\geq \|h(t_{0}+\cdot) - f(t+\cdot)\|_{S^{p,q}} - \|h(t+\cdot) - h(t_{0}+\cdot)\|_{S^{p,q}} > \varepsilon. \end{split}$$

Then

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \|\varphi(t+\cdot)\|_{S^q} d\mu(t) \ge \frac{1}{\mu(Q_r)} \int_{Q_r \cap (t_0+B_{\varepsilon})} \|\varphi(t+\cdot)\|_{S^q} d\mu(t)$$

$$\ge \frac{\varepsilon}{\mu(Q_r)} \int_{Q_r \cap (t_0+B_{\varepsilon})} d\mu(t)$$

$$= \frac{\varepsilon}{\mu(Q_r)} \mu \big(Q_r \cap (t_0+B_{\varepsilon})\big)$$

$$\ge \varepsilon \frac{\mu(Q_{r-\eta})}{\mu(Q_r)} (m\beta)^{-1} \to \varepsilon (m\beta)^{-1}, \quad \text{as } r \to \infty.$$
is is a contradiction, since $\varphi^b \in \mathcal{E} \left(L^q((0,1),\mathbb{X}), \mu\right).$

This is a contradiction, since $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$.

Corollary 4.20. Let $p, q \ge 1$ be constants and $\mu \in \mathcal{N}_1$. Then the decomposition of a $S^{p,q}$ - μ -pseudo-almost automorphic function in the form $f = h + \varphi$ where $h^b \in AA(L^p((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, is unique.

Proof. Suppose that $f = h_1 + \varphi_1 = h_2 + \varphi_2$ where $h_1^b, h_2^b \in AA(L^p((0,1),\mathbb{X}))$ and $\varphi_1^b, \varphi_1^b \in \mathcal{E}(L^q((0,1), \mathbb{X}), \mu).$ Then $0 = (h_1 - h_2) + (\varphi_1 - \varphi_2) \in S^{p,q}_{paa}(\mathbb{X}, \mu)$ where $h_1^b - h_2^b \in AA(L^p((0,1),\mathbb{X}))$ and $\varphi_1^b - \varphi_1^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$. From Theorem 4.19 we obtain $(h_1 - h_2)(\mathbb{R}) \subset \{0\}$, therefore one has $h_1 = h_2$ and $\varphi_1 = \varphi_2$.

Theorem 4.21. Let $p, q \geq 1$ be constants and $\mu \in \mathcal{N}_1$. The space $S_{paa}^{p,q}(\mathbb{X},\mu)$ equipped with the norm $\|\cdot\|_{S^{p,q}}$ is a Banach space.

Proof. It suffices to prove that $S^{p,q}_{paa}(\mathbb{X},\mu)$ is a closed subspace of $BS^{p,q}(\mathbb{X})$. Let $f_n = h_n + \varphi_n$ be a sequence in $S_{paa}^{p,q}(\mathbb{X},\mu)$ with $(h_n^b)_{n\in\mathbb{N}} \subset AA(L^p((0,1),\mathbb{X}))$ and $(\varphi_n^b)_{n\in\mathbb{N}} \subset \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$ such that $\|f_n - f\|_{S^{p,q}} \to 0$ as $n \to \infty$. By Theorem 4.19, one has

$$\{h_n(t+.): t \in \mathbb{R}\} \subset \overline{\{f_n(t+.): t \in \mathbb{R}\}},\$$

and hence

$$||h_n||_{S^p} = ||h_n||_{S^{p,q}} \le ||f_n||_{S^{p,q}}$$
 for all $n \in \mathbb{N}$.

Consequently, there exists a function $h \in S_{aa}^p(\mathbb{X})$ such that $||h_n - h||_{S^p} \to 0$ as $n \to \infty$. Using the previous fact, it easily follows that the function $\varphi := f - h \in BS^q(\mathbb{X})$ and that $||\varphi_n - \varphi||_{S^q} = ||(f_n - h_n) - (f - h)||_{S^q} \to 0$ as $n \to \infty$. From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu(Q_r) > 0$ for all $r \ge r_0$. Using the fact that $\varphi = (\varphi - \varphi_n) + \varphi_n$ and the triangle inequality, it follows that

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t)$$

$$\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi(\tau+t) - \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t)$$

$$+ \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t)$$

$$\leq \|\varphi_n - \varphi\|_{S^q} + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t).$$

Letting $r \to +\infty$ and then $n \to \infty$ in the previous inequality yields

$$\varphi^b \in \mathcal{E}\left(L^q((0,1),\mathbb{X}),\mu\right),$$

that is, $f = h + \varphi \in S^{p,q}_{paa}(\mathbb{X},\mu).$

Definition 4.22 ([4]). Let
$$\mu_1, \mu_2 \in \mathcal{M}$$
. μ_1 is said to be equivalent to μ_2 ($\mu_1 \sim \mu_2$) if there exist constants $\alpha, \beta > 0$ and a bounded interval I (eventually $I \neq \emptyset$) such that

$$\alpha \mu_1(A) \le \mu_2(A) \le \beta \mu_1(A)$$
, for all $A \in \mathcal{B}$ such that $A \cap I = \emptyset$.

Theorem 4.23. Let $p \ge 1$ be a constant, $q \in C_+(\mathbb{R})$ and $\mu_1, \mu_2 \in \mathcal{M}$. If μ_1 and μ_2 are equivalent, then $S_{paa}^{p,q(x)}(\mathbb{X}, \mu_1) = S_{paa}^{p,q(x)}(\mathbb{X}, \mu_2)$.

Proof. The proof is similar to that of [4, Theorem 2.21]. Since $\mu_1 \sim \mu_2$, and \mathcal{B} is the Lebesgue σ -field of \mathbb{R} , we obtain for r sufficiently large

$$\frac{\alpha}{\beta} \frac{\mu_1\left(\left\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\right\}\right)}{\mu(Q_r \setminus I)} \le \frac{\mu_2\left(\left\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\right\}\right)}{\mu(Q_r \setminus I)} \le \frac{\beta}{\alpha} \frac{\mu_1\left(\left\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\right\}\right)}{\mu(Q_r \setminus I)}.$$

By using Theorem 2.5, we deduce that

$$\mathcal{E}(L^{q^{b}(x)}((0,1),\mathbb{X}),\mu_{1}) = \mathcal{E}(L^{q^{b}(x)}((0,1),\mathbb{X}),\mu_{1}).$$

From the definition of a weighted $S^{p,q(x)}$ -pseudo-almost automorphic function, we deduce that $S^{p,q(x)}_{paa}(\mathbb{X},\mu_1) = S^{p,q(x)}_{paa}(\mathbb{X},\mu_2)$.

Definition 4.24. A function $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ with $F(., u) \in BS^{p,q(x)}(\mathbb{X})$ for each $u \in \mathbb{Y}$, is said to be $S^{p,q(x)}-\mu$ -pseudo-almost automorphic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{Y}$ if $t \mapsto F(t, u)$ is $S^{p,q(x)}-\mu$ -pseudo-almost automorphic for each $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

This means, there exist two functions $G, H : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ such that F = G + H, where $G^b \in AA(\mathbb{Y}, L^p((0, 1), \mathbb{X}))$ and $H^b \in \mathcal{E}(\mathbb{Y}, L^{q^b(x)}((0, 1), \mathbb{X}), \mu)$, that is,

$$\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0 : \int_0^1 \left\|\frac{H(x+t,u)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t) = 0,$$

uniformly in $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

The collection of such functions will be denoted by $S_{paa}^{p,q(x)}(\mathbb{Y}, \mathbb{X}, \mu)$.

Let $Lip^r(\mathbb{Y}, \mathbb{X})$ denote the collection of functions $f : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ satisfying: there exists a nonnegative function $L_f^b \in L^r(\mathbb{R})$ such that

$$\|f(t,u) - f(t,v)\| \le L_f(t) \|u - v\|_{\mathbb{Y}} \text{ for all } u, v \in \mathbb{Y}, \quad t \in \mathbb{R}.$$
(4.1)

Now, we recall the following composition theorem for S^p_{aa} functions.

Theorem 4.25 ([16]). Let p > 1 be a constant. We suppose that the following conditions hold:

- (a) $f \in S^p_{aa}(\mathbb{Y}, \mathbb{X}) \cap Lip^r(\mathbb{Y}, \mathbb{X})$ with $r \ge \max\{p, \frac{p}{p-1}\}$.
- (b) $\phi \in S_{aa}^p(\mathbb{X})$ and there exists a set $E \subset \mathbb{R}$ such that $K := \overline{\{\phi(t) : t \in \mathbb{R} \setminus E\}}$ is compact in \mathbb{X} .

Then there exists $m \in [1, p)$ such that $f(\cdot, \phi(\cdot)) \in S^m_{aa}(\mathbb{X})$.

To obtain the composition theorem for weighted $S^{p,q}$ functions, we need the following lemma.

Lemma 4.26. Let p, q > 1 be constants and let $\mu \in \mathcal{N}_2$. Assume that $f = g + h \in S_{paa}^{p,q}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^b \in AA(\mathbb{Y}, L^p((0, 1), \mathbb{X}))$ and $h^b \in \mathcal{E}(\mathbb{Y}, L^q((0, 1), \mathbb{X}), \mu)$. If $f \in Lip^p(\mathbb{Y}, \mathbb{X})$, then g satisfies

$$\left(\int_0^1 \|g(t+s,u(s)) - g(t+s,v(s))\|^p \, ds\right)^{1/p} \le c \|L_f\|_{S^p} \|u-v\|_{\mathbb{Y}}.$$

for all $u, v \in \mathbb{Y}$ and $t \in \mathbb{R}$, where c is a nonnegative constant.

Proof. The proof is similar to that of [13, Lemma 4.19]. So we omit it.

Theorem 4.27. Let p, q > 1 be constants such that $p \leq q$ and $\mu \in \mathcal{N}_2$. Suppose that the following conditions hold:

(a) $f = g + h \in S^{p,q}_{paa}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^b \in AA(\mathbb{Y}, L^p((0,1), \mathbb{X}))$ and

$$h^b \in \mathcal{E}\left(\mathbb{Y}, L^q((0,1),\mathbb{X}), \mu\right)$$
. Further, $f, g \in Lip^r(\mathbb{Y}, \mathbb{X})$ with $r \ge \max\{p, \frac{p}{p-1}\}$.
(b) $\phi = \alpha + \beta \in S^{p,q}(\mathbb{Y})$ with $\alpha^b \in AA(L^p((0,1),\mathbb{Y}))$ and $\beta^b \in \mathcal{E}\left(L^q((0,1),\mathbb{Y}), \mu\right)$.

(b) $\phi = \alpha + \beta \in S_{paa}^{p,q}(\mathbb{Y})$ with $\alpha^{o} \in AA(L^{p}((0,1),\mathbb{Y}))$ and $\beta^{o} \in \mathcal{E}(L^{q}((0,1),\mathbb{Y}),\mu)$, and there exists a set $E \subset \mathbb{R}$ with mes(E) = 0 such that

$$K := \overline{\{\alpha(t) : t \in \mathbb{R} \setminus E\}}$$

is compact in $\mathbb Y.$

Then, there exists $m \in [1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{paa}^{m,m}(\mathbb{Y}, \mathbb{X}, \mu)$.

Proof. We will make use of ideas of [13, Theorem 4.20]. Indeed, decompose f^b as follows:

$$f^b(\cdot,\phi^b(\cdot)) = g^b(\cdot,\alpha^b(\cdot)) + f^b(\cdot,\phi^b(\cdot)) - f^b(\cdot,\alpha^b(\cdot)) + h^b(\cdot,\alpha^b(\cdot))$$

From Lemma 4.26, one has $g \in S^p_{aa}(\mathbb{R} \times \mathbb{X})$. Now using the theorem of composition of S^p -almost automorphic functions (Theorem 4.25), it is easy to see that there

exists $m \in [1, p)$ with $\frac{1}{m} = \frac{1}{p} + \frac{1}{r}$ such that $g^b(\cdot, \alpha^b(\cdot)) \in AA(\mathbb{Y}, L^m((0, 1), \mathbb{X}))$. Set $\Phi^b(\cdot) = f^b(\cdot, \phi^b(\cdot)) - f^b(\cdot, \alpha^b(\cdot))$. Clearly, $\Phi^b \in \mathcal{E}(\mathbb{R} \times L^m((0, 1), \mathbb{X}), \mu)$. Indeed, from $\mu(\mathbb{R}) = \infty$, there exists $r_0 > 0$ such that, for all $r > r_0$, one has

$$\begin{split} &\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|\Phi^b(s)\|^m ds \right)^{1/m} d\mu(t) \\ &= \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|f^b(s,\phi^b(s)) - f^b(s,\alpha^b(s))\|^m ds \right)^{1/m} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \left(L_f^b(s)\|\beta^b(s)\|_{\mathbb{Y}} \right)^m ds \right)^{1/m} d\mu(t) \\ &\leq \|L_f^b\|_{S^r} \Big[\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|\beta^b(s)\|_{\mathbb{Y}}^p ds \right)^{1/p} d\mu(t) \Big] \\ &\leq \|L_f^b\|_{S^r} \Big[\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|\beta^b(s)\|_{\mathbb{Y}}^q ds \right)^{1/q} d\mu(t) \Big]. \end{split}$$

Using the fact that $\beta^b \in \mathcal{E}(L^q((0,1),\mathbb{Y}))$, it follows that $\Phi^b \in \mathcal{E}(\mathbb{R} \times L^m((0,1),\mathbb{X}))$. On the other hand, since $f, g \in Lip^r(\mathbb{R},\mathbb{X}) \subset Lip^p(\mathbb{R},\mathbb{X})$, one has

$$\begin{split} \left(\int_{0}^{1} \|h(t+s,u(s)) - h(t+s,v(s))\|^{m} ds\right)^{1/m} \\ &\leq \left(\int_{0}^{1} \|f(t+s,u(s)) - f(t+s,v(s))\|^{m} ds\right)^{1/m} \\ &+ \left(\int_{0}^{1} \|g(t+s,u(s)) - g(t+s,v(s))\|^{m} ds\right)^{1/m} \\ &\leq \left(\int_{0}^{1} \left(L_{f}(t+s)\|u(s) - v(s)\|_{\mathbb{Y}}\right)^{m} ds\right)^{1/m} \\ &+ \left(\int_{0}^{1} \left(L_{g}(t+s)\|u(s) - v(s)\|_{\mathbb{Y}}\right)^{m} ds\right)^{1/m} \\ &\leq \left(\|L_{f}\|_{S^{r}} + \|L_{g}\|_{S^{r}}\right)\|u(s) - v(s)\|_{p}. \end{split}$$

Since $K := \overline{\{\alpha(t) : t \in \mathbb{R}\}}$ is compact in \mathbb{Y} , then for each $\varepsilon > 0$, there exists a finite number of open balls $B_k = B(x_k, \varepsilon)$, centered at $x_k \in K$ with radius ε such that

$$\{\alpha(t): t \in \mathbb{R}\} \subset \bigcup_{k=1}^{m} B_k.$$

Therefore, for $1 \leq k \leq m$, the set $U_k = \{t \in \mathbb{R} : \alpha \in B_k\}$ is open and $\mathbb{R} = \bigcup_{k=1}^m U_k$. Now, for $2 \leq k \leq m$, set $V_k = U_k - \bigcup_{i=1}^{k-1} U_i$ and $V_1 = U_1$. Clearly, $V_i \cap V_j = \emptyset$ for all $i \neq j$. Define the step function $\overline{x} : \mathbb{R} \to \mathbb{Y}$ by $\overline{x}(t) = x_k, t \in V_k, k = 1, 2, \ldots, m$. It easy to see that

$$\|\alpha(s) - \overline{x}(s)\|_{\mathbb{Y}} \le \varepsilon, \quad \text{for all } s \in \mathbb{R}.$$

which yields

$$\begin{split} &\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|h(s,\alpha(s))\|^m ds \right)^{1/m} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|h(s,\alpha(s)) - h(s,\overline{x}(s))\|^m ds \right)^{1/m} d\mu(t) \\ &\quad + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_t^{t+1} \|h(s,\overline{x}(s))\|^m ds \right)^{1/m} d\mu(t) \\ &\leq \left(\|L_f\|_{S^r} + \|L_g\|_{S^r} \right) \varepsilon + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\sum_{k=1}^m \int_{V_k \cap [t,t+1]} \|h(s,\overline{x}(s))\|^m ds \right)^{1/m} d\mu(t) \\ &\leq \left(\|L_f\|_{S^r} + \|L_g\|_{S^r} \right) \varepsilon + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\sum_{k=1}^m \int_{V_k \cap [t,t+1]} \|h(s,\overline{x}(s))\|^q ds \right)^{1/q} d\mu(t). \end{split}$$

Since ε is arbitrary and $h^b \in \mathcal{E}(\mathbb{R} \times L^q((0,1),\mathbb{X}))$, it follows that the function $h^b(\cdot, \alpha^b(\cdot))$ belongs to $\mathcal{E}(\mathbb{R} \times L^m((0,1),\mathbb{X}))$. This completes the proof. \Box

Remark 4.28. A general composition theorem in $S_{paa}^{p,q(x)}(\mathbb{R} \times \mathbb{X})$ is unlikely as compositions of elements of $S_{paa}^{p,q(x)}(\mathbb{R} \times \mathbb{X}, \mu)$ may not be well-defined unless $q(\cdot)$ is the constant function.

5. Application to Abstract Evolution Equations

Fix $\mu \in \mathcal{N}_2$, p, q > 1, and $\vartheta \in C_+(\mathbb{R})$. To study the existence of a weighted pseudo-almost automorphic solution to Eq. (1.1) with weighted $S_{paa}^{p,q}$ coefficients we will assume that the following assumptions hold:

(H1) The family of closed linear operators A(t) for $t \in \mathbb{R}$ on \mathbb{X} with domain D(A(t))(possibly not densely defined) satisfy the Acquistapace and Terreni conditions, the evolution family of operators $\mathcal{U} = \{U(t,s)\}_{t\geq s}$ generated by $A(\cdot)$ has an exponential dichotomy with constants $N, \delta > 0$ and dichotomy projections P(t) ($t \in \mathbb{R}$). Moreover, $0 \in \rho(A)$ for each $t \in \mathbb{R}$ and the following hold

$$\sup_{t,s\in\mathbb{R}} \|A(s)A^{-1}(t)\|_{B(\mathbb{X},\mathbb{X}_{\beta})} < c_1$$
(5.1)

- (H2) There exists $0 \leq \alpha < \beta < 1$ such that $\mathbb{X}_{\alpha}^{t} = \mathbb{X}_{\alpha}$ and $\mathbb{X}_{\beta}^{t} = \mathbb{X}_{\beta}$ for all $t \in \mathbb{R}$, with uniform equivalent norms. Let $c_{2}(\alpha), c_{3}, c_{4}$ be the bounds of the continuous injections $\mathbb{X}_{\beta} \hookrightarrow \mathbb{X}_{\alpha}, \mathbb{X}_{\alpha} \hookrightarrow \mathbb{X}, \mathbb{X}_{\beta} \hookrightarrow \mathbb{X}$.
- (H3) The function $\mathbb{R} \times \mathbb{R} \to \mathbb{X}$, $(t,s) \to A(s)\Gamma(t,s)y \in bAA(\mathbb{T},\mathbb{X}_{\alpha})$ uniformly for $y \in \mathbb{X}_{\beta}$.
- (H4) The function $\mathbb{R} \times \mathbb{R} \to \mathbb{X}$, $(t, s) \to \Gamma(t, s)y \in bAA(\mathbb{T}, \mathbb{X}_{\alpha})$ uniformly for $y \in \mathbb{X}$.
- (H5) The linear operators $B(t), C(t) : \mathbb{X}_{\alpha} \to \mathbb{X}$ are bounded uniformly in $t \in \mathbb{R}$. Moreover, both $t \mapsto B(t)$ and $t \mapsto C(t)$ belong to $AA(B(\mathbb{X}_{\alpha}, \mathbb{X}))$. We then set

$$c_{5} := \max\left(\sup_{t \in \mathbb{R}} \|B\|_{B(\mathbb{X}_{\alpha},\mathbb{X})}, \sup_{t \in \mathbb{R}} \|C\|_{B(\mathbb{X}_{\alpha},\mathbb{X})}\right)$$

(H6) The function $f = h + \varphi \in S^{p,q}_{paa}(\mathbb{X}, \mathbb{X}_{\beta}, \mu)$ while $g = h' + \varphi' \in S^{p,q}_{paa}(\mathbb{X}, \mathbb{X}, \mu)$. Moreover; $f, h \in Lip^{r}(\mathbb{R}, \mathbb{X}_{\beta})$ and $g, h' \in Lip^{r}(\mathbb{R}, \mathbb{X})$. with

$$r \ge \max\left\{p, \frac{p}{p-1}\right\}.$$

Definition 5.1. A continuous function $u : \mathbb{R} \to \mathbb{X}_{\alpha}$ is said to be a mild solution to (1.1) provided that the functions $s \to A(s)U(t,s)P(s)f(s,B(s)u(s))$ and $s \to A(s)U(t,s)Q(s)f(s,B(s)u(s))$ are integrable on (t,s) and

$$\begin{split} u(t) &= -f(t, B(t)u(t)) + U(t, s)(u(s) + f(s, B(s)u(s))) \\ &- \int_{s}^{t} A(s)U(t, s)P(s)f(s, B(s)u(s))ds + \int_{t}^{s} A(s)U(t, s)Q(s)f(s, B(s)u(s))ds \\ &+ \int_{s}^{t} U(t, s)P(s)g(s, C(s)u(s))ds - \int_{t}^{s} U(t, s)Q(s)g(s, C(s)u(s))ds \end{split}$$

for $t \geq s$ and for all $t, s \in \mathbb{R}$.

Under previous assumptions (H1)-(H6), it can be easily shown that (1.1) has a unique mild solution given by

$$u(t) = -f(t, B(t)u(t)) - \int_{-\infty}^{t} A(s)U(t, s)P(s)f(s, B(s)u(s))ds + \int_{t}^{\infty} A(s)U_{Q}(t, s)Q(s)f(s, B(s)u(s))ds + \int_{-\infty}^{t} U(t, s)P(s)g(s, C(s)u(s))ds - \int_{t}^{\infty} U_{Q}(t, s)Q(s)g(s, C(s)u(s))ds$$

for each $t \in \mathbb{R}$.

The proof of our main result requires the next technical lemmas:

Lemma 5.2. Under assumption (H5), if $u \in PAA(\mathbb{X}_{\alpha}, \mu)$, then $B(\cdot)u(\cdot)$ and $C(\cdot)u(\cdot)$ belong to $PAA(\mathbb{X}, \mu)$.

Proof. We will make use of ideas of [8, Lemma 3.2]. Let $u = h + \varphi \in PAA(\mathbb{X}_{\alpha}, \mu)$ where $h \in AA(\mathbb{X}_{\alpha})$ and $\varphi \in \mathcal{E}(\mathbb{X}_{\alpha}, \mu)$, then $B(\cdot)u(\cdot) = B(\cdot)h(\cdot) + B(\cdot)\varphi(\cdot)$. First, it is easy to see that $B(\cdot)u(\cdot) \in BC(\mathbb{R}, \mathbb{X}_{\alpha})$. Since $h \in AA(\mathbb{X}_{\alpha})$, for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$, there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ and a measurable function g_1 such that

$$\lim_{n \to \infty} \|h(s_n + s) - g_1(s)\|_{\alpha} = 0,$$

and

$$\lim_{n \to \infty} \|g_1(s - s_n) - h(s)\|_{\alpha} = 0$$

for each $t \in \mathbb{R}$.

Since $B(\cdot) \in AA(B(\mathbb{X}_{\alpha},\mathbb{X}))$, there exists a subsequence $(s_{n_k})_{k\in\mathbb{N}}$ of $(s_n)_{n\in\mathbb{N}}$ and a measurable function g_2 such that

$$||B(s_{n_k}+s) - g_2(s)||_{B(\mathbb{X}_\alpha,\mathbb{X})} \to 0,$$

and

$$||g_2(s-s_{n_k}) - B(s)||_{B(\mathbb{X}_{\alpha},\mathbb{X})} \to 0$$

as $k \to \infty$ for each $t \in \mathbb{R}$.

By using the triangle inequality, one has

$$\begin{split} \|B(s_{n_k}+s)h(s_{n_k}+s) - g_2(s)g_1(s)\| &\leq \|B(s_{n_k}+s)h(s_{n_k}+s) - B(s_{n_k}+s)g_1(s)\| \\ &+ \|B(s_{n_k}+s)g_1(s) - g_2(s)g_1(s)\| \\ &\leq c_5 \|h(s_{n_k}+s) - g_1(s)\|_{X_{\alpha}} + \|g_1\|_{\infty} \|B(s_{n_k}+s) - g_2(s)\|_{B(\mathbb{X}_{\alpha},\mathbb{X})}. \end{split}$$

Then,

$$\lim_{n \to \infty} \|B(s_{n_k} + s)h(s_{n_k} + s) - g_2(s)g_1(s)\| = 0,$$

Analogously, one can prove that

$$\lim_{n \to \infty} \|g_2(s - s_{n_k})g_1(s - s_{n_k}) - B(s)h(s)\| = 0.$$

Hence, $B(\cdot)h(\cdot) \in AA(\mathbb{X})$.

To complete the proof, it suffices to notice that for r sufficiently large

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \|B(s)\varphi(s)\| \, d\mu(s) \le \frac{c_5}{\mu(Q_r)} \int_{Q_r} \|\varphi(s)\|_{X_{\alpha}} \, d\mu(s)$$

and hence,

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|B(s)\varphi(s)\| \, d\mu(s) = 0.$$

Lemma 5.3 ([11]). For each $x \in \mathbb{X}$, suppose that Assumptions (H1)–(H2) hold and let α, β be real numbers such that $0 < \alpha < \beta < 1$ with $2\beta > \alpha + 1$, then there are constants $r(\alpha, \beta), r'(\alpha, \beta), d(\beta) > 0$ such that

$$||A(t)U(t,s)P(s)x||_{\beta} \le r'(\alpha,\beta)e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta}||x||, \quad t > s$$
(5.2)

$$||A(s)U(t,s)P(s)x||_{\beta} \le r(\alpha,\beta)e^{\frac{-s}{4}(t-s)}(t-s)^{-\beta}||x||, \quad t > s$$
(5.3)

and

$$|A(s)\widetilde{U}_Q(s,t)Q(t)x||_{\beta} \le d(\beta)e^{-\delta(s-t)}||x||, \quad t \le s$$
(5.4)

Lemma 5.4. Under assumptions (H1)–(H6), the integral operators Γ_1 and Γ_2 defined by

$$(\Gamma_1 u)(t) := \int_{-\infty}^t A(s)U(t,s)P(s)f(s,B(s)u(s))ds$$

and

$$(\Gamma_2 u)(t) := \int_t^\infty A(s) U_Q(t,s) Q(s) f(s, B(s)u(s)) ds$$

map $PAA(\mathbb{X}_{\alpha}, \mu)$ into itself.

Proof. Let $u \in PAA(\mathbb{X}_{\alpha}, \mu)$. By Lemma (5.2) one has $B(\cdot)u(\cdot) \in PAA(\mathbb{X}, \mu) \subset S_{paa}^{p,q}(\mathbb{X}, \mu)$. Using the composition theorem for weighted $S_{paa}^{p,q}$ functions, we deduce that $F(t) := f(t, B(t)u(t)) \in S_{paa}^{p,q}(\mathbb{X}_{\beta}, \mu)$. Now write $F = \phi + \psi$, where $\phi^b \in AA(L^p((0,1),\mathbb{X}_{\beta}))$ and $\psi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}_{\beta}), \mu)$. Then Γ_1 can be decomposed as

$$(\Gamma_1 u)(t) = \Phi(t) + \Psi(t)$$

where

$$\Phi(t) = \int_{-\infty}^{t} A(s)U(t,s)P(s)\phi(s)ds \text{ and } \Psi(t) = \int_{-\infty}^{t} A(s)U(t,s)P(s)\psi(s)ds,$$

Clearly $\Phi \in AA(\mathbb{X}_{\alpha})$. Indeed; for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set

$$\Phi_k(t) := \int_{k-1}^k A(t-s)U(t,t-s)P(t-s)\phi(t-s)ds = \int_{t-k}^{t-k+1} A(s)U(t,s)P(s)\phi(s)ds,$$

Let d > 1 such that $\frac{1}{p} + \frac{1}{d} = 1$, where p > 1. Using Eq. (5.3) and the Hölder's inequality, it follows that

$$\begin{split} \|\Phi_{k}(t)\|_{\alpha} &\leq c_{2}(\alpha) \|\Phi_{k}(t)\|_{\beta} \leq c_{2}(\alpha) r(\alpha,\beta) \int_{t-k}^{t-k+1} e^{\frac{-\delta}{4}(t-s)} (t-s)^{-\beta} \|\phi(s)\|_{\beta} ds \\ &\leq c_{2}(\alpha) r(\alpha,\beta) \Big[\int_{t-k}^{t-k+1} e^{\frac{-d\delta}{4}(t-s)} (t-s)^{-d\beta} ds \Big]^{1/d} \\ &\times \Big[\int_{t-k}^{t-k+1} \|\phi(s)\|_{\beta}^{p} ds \Big]^{1/p} \\ &\leq c_{2}(\alpha) r(\alpha,\beta) \Big[\int_{k-1}^{k} e^{\frac{-d\delta}{4}s} s^{-d\beta} ds \Big]^{1/d} \|\phi\|_{S^{p}(\mathbb{X}_{\beta})} \\ &\leq c_{2}(\alpha) r(\alpha,\beta) \sqrt[d]{\frac{1+e^{\frac{d\delta}{4}}}{\frac{d\delta}{4}}} (k-1)^{-\beta} e^{\frac{-\delta}{4}k} \|\phi\|_{S^{p}(\mathbb{X}_{\beta})} \\ &:= C_{d}(\alpha,\beta,\delta) \|\phi\|_{S^{p}(\mathbb{X}_{\beta})}. \end{split}$$

Since the series $\sum_{k=1}^{\infty} \left((k-1)^{-\beta} e^{\frac{-\delta}{4}k} \right)$ is convergent, we deduce from the well-known Weierstrass test that the series $\sum_{k=1}^{\infty} \Phi_k(t)$ is uniformly convergent on \mathbb{R} .

Furthermore

$$\Phi(t) = \int_{-\infty}^{t} A(s)U(t,s)P(s)\phi(s)ds = \sum_{k=1}^{\infty} \Phi_k(t),$$

 $\Phi \in C(\mathbb{R}, \mathbb{X}_{\alpha})$ and

$$\|\Phi(t)\|_{\alpha} \leq \sum_{k=1}^{\infty} \|\Phi_k(t)\|_{\alpha} \leq \sum_{k=1}^{\infty} C_d(\alpha,\beta,\delta) \|\phi\|_{S^p(\mathbb{X}_\beta)}.$$

Fix $k \in \mathbb{N}$, let us take a sequence $(s'_n)_n$ of real numbers. Since $\phi^b \in AA(L^p((0,1),\mathbb{X}_\beta))$ and $A(s)U(t,s)P(s)y \in bAA(\mathbb{T},\mathbb{X}_\alpha)$ uniformly for $y \in X_\beta$, then for every sequence $(s'_n)_n$ there exists a subsequence $(s_n)_n$ and functions θ , h such that

$$\lim_{n \to \infty} A(s+s_n) U(t+s_n, s+s_n) P(s+s_n) x = \theta(t, s) x \text{ for each } t, s \in \mathbb{R}, x \in \mathbb{X}_{\beta}.$$
(5.5)

$$\lim_{n \to \infty} \theta(t - s_n, s - s_n) x = A(s) U(t, s) P(s) x \text{ for each } t, s \in \mathbb{R}, x \in \mathbb{X}_{\beta}.$$
 (5.6)

$$\lim_{n \to \infty} \|\phi(t + s_n + \cdot) - h(t + \cdot)\|_{S^p(\mathbb{X}_\beta)} = 0, \text{ for each } t \in \mathbb{R}.$$
 (5.7)

$$\lim_{n \to \infty} \|h(t - s_n + \cdot) - \phi(t + \cdot)\|_{S^p(\mathbb{X}_\beta)} = 0 \quad \text{for each} \quad t \in \mathbb{R}.$$
(5.8)

We set

$$G_k(t) := \int_{k-1}^k \theta(t, t-s)h(t-s)ds.$$

Using triangle inequality, we obtain that

$$\|\Phi_k(t+s_n) - G_k(t)\|_{\alpha} \le a_n^k(t) + b_n^k(t),$$

where

$$a_n^k(t) := \int_{k-1}^k \left\| A(t+s_n-s)U(t+s_n,t+s_n-s)P(t+s_n-s)\left(\phi(t+s_n-s)-h(t-s)\right) \right\|_{\alpha} ds,$$

and

$$b_n^k(t) := \int_{k-1}^k \left\| \left[A(t+s_n-s)U(t+s_n,t+s_n-s)P(t+s_n-s) - \theta(t,t-s) \right] h(t-s) \right\|_{\alpha} ds$$

Using Eq. (5.3) and the Hölder's inequality it follows that

$$a_n^k(t) \le C_d(\alpha, \beta, \delta) \|\phi(t + s_n - s) - h(t - s)\|_{S^p(\mathbb{X}_\beta)}.$$

Then, by (5.7), $\lim_{n\to\infty} a_n^k(t) = 0$. Again, using the Lebesgue dominated convergence theorem and (5.5), one can get $\lim_{n\to\infty} b_n^k(t) = 0$. Thus,

$$\lim_{n \to \infty} \Phi_k(t+s_n) = \int_{k-1}^k \theta(t,t-\sigma)h(t-\sigma)d\sigma, \text{ for each } t \in \mathbb{R}$$

Analogously, one can prove that

$$\lim_{n \to \infty} \int_{k-1}^{k} \theta(t - s_n, t - s_n - s) h(t - s_n - s) ds = \Phi_k(t), \text{ for each } t \in \mathbb{R}.$$

Therefore, $\Phi_k \in AA(\mathbb{X}_{\alpha})$. Applying Proposition (2.2), we deduce that the uniform limit

$$\Phi(\cdot) = \sum_{k=1}^{\infty} \Phi_k(\cdot) \in AA(\mathbb{X}_{\alpha}).$$

Now, we prove that $\Psi \in \mathcal{E}(\mathbb{X}_{\alpha}, \mu)$. For this, for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set

$$\Psi_k(t) := \int_{k-1}^k A(t-s)U(t,t-s)P(t-s)\psi(t-s)ds = \int_{t-k}^{t-k+1} A(s)U(t,s)P(s)\psi(s)ds.$$

By carrying similar arguments as above, we deduce that $\Psi_k(t) \in BC(\mathbb{R}, \mathbb{X}_{\alpha})$, $\sum_{k=1}^{\infty} \Psi_k(t)$ is uniformly convergent on \mathbb{R} and

$$\Psi(t) = \sum_{k=1}^{\infty} \Psi_k(t) = \int_{-\infty}^t A(s) U(t,s) P(s) \psi(s) ds \in BC(\mathbb{R}, \mathbb{X}_{\alpha}).$$

To complete the proof, it remains to show that

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t)\|_{\alpha} \, d\mu(t) = 0.$$

In fact, the estimate in Eq. (5.3) yields

$$\begin{split} \|\Psi_{k}(t)\|_{\alpha} &\leq c_{2}(\alpha)r(\alpha,\beta) \left(\int_{t-k}^{t-k+1} e^{\frac{-\delta}{4}(t-s)}(t-s)^{-\beta} \|\psi(s)\|_{\beta} ds \right) \\ &\leq c_{2}(\alpha)r(\alpha,\beta) \sqrt[d']{\frac{1+e^{\frac{d'\delta}{4}}}{\frac{d'\delta}{4}}} (k-1)^{-\beta} e^{\frac{-\delta}{4}k} \left(\int_{t-k}^{t-k+1} \|\psi(s)\|_{\beta}^{q} ds \right)^{1/q} \\ &= C_{d'}(\alpha,\beta,\delta) \left(\int_{t-k}^{t-k+1} \|\psi(s)\|_{\beta}^{q} ds \right)^{1/q}, \end{split}$$

where d' > 1 such that $\frac{1}{q} + \frac{1}{d'} = 1$. Then, one has

$$\begin{aligned} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi_k(t)\|_{\alpha} \, d\mu(t) &\leq \frac{C_{d'}(\alpha,\beta,\delta)}{\mu(Q_r)} \int_{Q_r} \left(\int_{t-k}^{t-k+1} \|\psi(s)\|_{\beta}^q ds \right)^{1/q} \, d\mu(t) \\ &\leq \frac{C_{d'}(\alpha,\beta,\delta)}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|\psi(s+t-k)\|_{\beta}^q ds \right)^{\frac{1}{q}} \, d\mu(t). \end{aligned}$$

Since $\psi^b \in \mathcal{E}(L^q((0,1), \mathbb{X}_\beta), \mu)$, the above inequality leads to $\Psi_k \in \mathcal{E}(\mathbb{X}_\alpha, \mu)$. Then by the following inequality

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t)\|_{\alpha} \, d\mu(t) \le \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t) - \sum_{k=1}^{\infty} \Psi_k(t)\|_{\alpha} \, d\mu(t) + \sum_{k=1}^{\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi_k(t)\|_{\alpha} \, d\mu(t).$$

we deduce that the uniform limit $\Psi(\cdot) = \sum_{k=1}^{\infty} \Psi_k(\cdot) \in \mathcal{E}(\mathbb{X}_{\alpha}, \mu)$, which ends the proof.

Of course, the proof for $(\Gamma_2 u)(\cdot)$ is similar to that for $(\Gamma_1 u)(\cdot)$. However, one makes use of Eq. (5.4) rather than Eq. (5.3).

Lemma 5.5. Under assumptions (H1)–(H6), the integral operators Γ_3 and Γ_4 defined by

$$(\Gamma_3 u)(t) := \int_{-\infty}^t U(t,s) P(s) g(s, C(s)u(s)) ds$$

and

$$(\Gamma_4 u)(t) := \int_t^\infty U_Q(t,s)Q(s)g(s,C(s)u(s))ds$$

map $PAA(\mathbb{X}_{\alpha}, \mu)$ into itself.

Proof. Let $u \in PAA(\mathbb{X}_{\alpha}, \mu)$, since $C(\cdot) \in AA(B(\mathbb{X}_{\alpha}, \mathbb{X}))$; by Lemma (5.2); it follows that $C(\cdot)u(\cdot) \in PAA(\mathbb{X}, \mu) \subset S^{p,q}_{paa}(\mathbb{X}, \mu)$ Using the composition theorem for weighted $S^{p,q}_{paa}$ functions (Theorem (4.27)), we deduce that $G(t) := g(t, C(t)u(t)) \in S^{p,q}_{paa}(\mathbb{X}, \mu)$. Now write $G = \phi + \psi$, where $\phi^b \in AA(L^p((0, 1), \mathbb{X}))$ and $\psi^b \in \mathcal{E}(L^q((0, 1), \mathbb{X}), \mu)$. Thus Γ_3 can be rewritten as

$$(\Gamma_3 u)(t) = \Phi(t) + \Psi(t),$$

where

$$\Phi(t) = \int_{-\infty}^{t} U(t,s)P(s)\phi(s)ds \text{ and } \Psi(t) = \int_{-\infty}^{t} U(t,s)P(s)\psi(s)ds$$

Now we will show that $\Phi \in AA(\mathbb{X}_{\alpha})$. For each $t \in \mathbb{R}$ and $k \in \mathbb{N}$ we set

$$\Phi_k(t) := \int_{k-1}^k U(t, t-s) P(t-s) \phi(t-s) ds = \int_{t-k}^{t-k+1} U(t,s) P(s) \phi(s) ds.$$

Let d > 1 such that $\frac{1}{p} + \frac{1}{d} = 1$, where p > 1. Using Eq. (3.7) and the Hölder's inequality, it follows that

$$\begin{split} \|\Phi_{k}(t)\|_{\alpha} &\leq \int_{t-k}^{t-k+1} \|U(t,s)P(s)\phi(s)\|_{\alpha} ds \\ &\leq n(\alpha) \int_{t-k}^{t-k+1} e^{\frac{-\delta}{2}(t-s)}(t-s)^{-\alpha} \|\phi(s)\| ds \\ &\leq n(\alpha) \Big[\int_{t-k}^{t-k+1} e^{\frac{-d\delta}{2}(t-s)}(t-s)^{-d\alpha} ds \Big]^{1/d} \times \Big[\int_{t-k}^{t-k+1} \|\phi(s)\|^{p} ds \Big]^{1/p} \\ &\leq n(\alpha) \Big[\int_{k-1}^{k} e^{\frac{-d\delta}{2}s} s^{-d\alpha} ds \Big]^{1/d} \|\phi\|_{S^{p}(\mathbb{X})} \\ &\leq n(\alpha) \sqrt[d]{\frac{1+e^{\frac{d\delta}{2}}}{\frac{d\delta}{2}}} (k-1)^{-\alpha} e^{\frac{-\delta}{2}k} \|\phi\|_{S^{p}(\mathbb{X})} \\ &:= C_{d}(\alpha,\delta) \|\phi\|_{S^{p}(\mathbb{X})}. \end{split}$$

Since the series $\sum_{k=1}^{\infty} \left((k-1)^{-\alpha} e^{\frac{-\delta}{2}k} \right)$ is convergent, we deduce from the well-known Weierstrass test that the series $\sum_{k=1}^{\infty} \Phi_k(t)$ is uniformly convergent on \mathbb{R} . Furthermore

$$\Phi(t) = \int_{-\infty}^{t} U(t,s)P(s)\phi(s)ds = \sum_{k=1}^{\infty} \Phi_k(t),$$

 $\Phi \in C(\mathbb{R}, \mathbb{X}_{\alpha})$ and

$$\|\Phi(t)\|_{\alpha} \leq \sum_{k=1}^{\infty} \|\Phi_k(t)\| \leq \sum_{k=1}^{\infty} C_d(\alpha, \delta) \|\phi\|_{S^p(\mathbb{X})}.$$

Fix $k \in \mathbb{N}$, let us take a sequence $(s'_n)_n$ of real numbers. Since $\phi^b \in AA(L^p((0,1),\mathbb{X}))$ and $U(t,s)y \in bAA(\mathbb{T},\mathbb{X}_{\alpha})$ uniformly for $y \in \mathbb{X}$, then for every sequence $(s'_n)_n$ there exists a subsequence $(s_n)_n$ and functions θ, h such that

$$\lim_{n \to \infty} U(t + s_n, s + s_n) P(s + s_n) x = \theta(t, s) x \text{ for each } t, s \in \mathbb{R}, x \in \mathbb{X}.$$
 (5.9)

$$\lim_{n \to \infty} \theta(t - s_n, s - s_n) x = U(t, s) P(s) x \text{ for each } t, s \in \mathbb{R}, x \in \mathbb{X}.$$
(5.10)

$$\lim_{n \to \infty} \|\phi(t+s_n+\cdot) - h(t+\cdot)\|_{S^p(\mathbb{X})} = 0, \text{ for each } t \in \mathbb{R}.$$
 (5.11)

$$\lim_{n \to \infty} \|h(t - s_n + \cdot) - \phi(t + \cdot)\|_{S^p(\mathbb{X})} = 0 \quad \text{for each} \quad t \in \mathbb{R}.$$
(5.12)

We set

$$H_k(t) := \int_{k-1}^k \theta(t, t-s)h(t-s)ds.$$

Using triangle inequality, Eq. (3.7) and the Hölder's inequality, we obtain that

$$|\Phi_k(t+s_n) - H_k(t)||_{\alpha} \le c_n^k(t) + d_n^k(t),$$

where

$$\begin{aligned} c_n^k(t) &:= \left\| \int_{k-1}^k U(t+s_n,t+s_n-s)P(t+s_n-s)\left(\phi(t+s_n-s)-h(t-s)\right)ds \right\|_{\alpha} \\ &\leq n(\alpha) \left(\int_{k-1}^k e^{\frac{-\delta}{2}s} s^{-\alpha} \|\phi(t+s_n-s)-h(t-s)\| ds \right) \\ &\leq C_d(\alpha,\delta) \|\phi(t+s_n-s)-h(t-s)\|_{S^p(\mathbb{X})}, \end{aligned}$$

and

$$d_n^k(t) := \left\| \int_{k-1}^k \left[U(t+s_n, t+s_n-s)P(t+s_n-s) - \theta(t, t-s) \right] h(t-s)ds \right\|_{\alpha}$$

$$\leq \int_{k-1}^k \left\| U(t+s_n, t+s_n-s)P(t+s_n-s) - \theta(t, t-s)h(t-s) \right\|_{\alpha} ds.$$

By (5.11), $\lim_{n\to\infty} c_n^k(t) = 0$ and by using the Lebesgue dominated convergence theorem and (5.9), one can get $\lim_{n\to\infty} c_n^k(t) = 0$. Thus,

$$\lim_{n \to \infty} \Phi_k(t+s_n) = \int_{k-1}^k \theta(t,t-\sigma)h(t-\sigma)d\sigma, \text{ for each } t \in \mathbb{R}$$

Analogously, one can prove that

,

$$\lim_{n \to \infty} \int_{k-1}^{\kappa} \theta(t - s_n, t - s_n - s) h(t - s_n - s) ds = \Phi_k(t), \text{ for each } t \in \mathbb{R}.$$

Therefore, $\Phi_k \in AA(\mathbb{X}_{\alpha})$. Applying Proposition (2.2), we deduce that the uniform limit

$$\Phi(\cdot) = \sum_{k=1}^{\infty} \Phi_k(\cdot) \in AA(\mathbb{X}_{\alpha}).$$

Now, we prove that $\Psi \in PAP_0(\mathbb{X}_{\alpha})$. For this; for each $t \in \mathbb{R}$ and $k \in \mathbb{N}$; we set

$$\Psi_k(t) := \int_{k-1}^k U(t, t-s) P(t-s) \psi(t-s) ds = \int_{t-k}^{t-k+1} U(t,s) P(s) \psi(s) ds.$$

By carrying similar arguments as above, we deduce that $\Psi_k(t) \in BC(\mathbb{R}, \mathbb{X}_{\alpha})$, $\sum_{k=1}^{\infty} \Psi_k(t)$ is uniformly convergent on \mathbb{R} and

$$\Psi(t) = \sum_{k=1}^{\infty} \Psi_k(t) = \int_{-\infty}^t A(s) U(t,s) P(s) \psi(s) ds \in BC(\mathbb{R}, \mathbb{X}_{\alpha}).$$

To complete the proof, it remains to show that

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t)\|_{\alpha} \, d\mu(t) = 0.$$

In fact, the estimate in Eq. (3.7) yields

$$\begin{split} \|\Psi_{k}(t)\|_{\alpha} &\leq n(\alpha) \left(\int_{t-k}^{t-k+1} e^{\frac{-\delta}{2}(t-s)} (t-s)^{-\alpha} \|\psi(s)\| ds \right) \\ &\leq n(\alpha) \sqrt[d']{\frac{1+e^{\frac{d'\delta}{2}}}{\frac{d'\delta}{2}}} (k-1)^{-\alpha} e^{\frac{-\delta}{2}k} \left(\int_{t-k}^{t-k+1} \|\psi(s)\|^{q} ds \right)^{1/q} \\ &= C_{d'}(\alpha,\delta) \|\psi\|_{S^{q}(\mathbb{X})}, \end{split}$$

where d' > 1 such that $\frac{1}{q} + \frac{1}{d'} = 1$. Then, one has

$$\begin{aligned} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi_k(t)\|_{\alpha} \, d\mu(t) &\leq \frac{C_{d'}(\alpha, \delta)}{\mu(Q_r)} \int_{Q_r} \left(\int_{t-k}^{t-k+1} \|\psi(s)\|^q ds \right)^{\frac{1}{q}} \, d\mu(t) \\ &\leq \frac{C_{d'}(\alpha, \delta)}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|\psi(s+t-k)\|^q ds \right)^{\frac{1}{q}} \, d\mu(t) \end{aligned}$$

Since $\psi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, the above inequality leads to $\Psi_k \in \mathcal{E}(\mathbb{X}_{\alpha},\mu)$. Then, by the following inequality

$$\begin{split} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t)\|_{\alpha} \, d\mu(t) &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi(t) - \sum_{k=1}^{\infty} \Psi_k(t)\|_{\alpha} \, d\mu(t) \\ &+ \sum_{k=1}^{\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\Psi_k(t)\|_{\alpha} \, d\mu(t), \end{split}$$

we deduce that the uniform limit $\Psi(\cdot) = \sum_{k=1}^{\infty} \Psi_k(\cdot) \in \mathcal{E}(\mathbb{X}_{\alpha}, \mu)$, which ends the proof.

Of course, the proof for $(\Gamma_4 u)(\cdot)$ is similar to that for $(\Gamma_3 u)(\cdot)$. However, one makes use of Eq. (3.8) rather than Eq. (3.7).

Theorem 5.6. Under the assumptions (H1)–(H6), the evolution equation (1.1) has a unique μ -pseudo-almost automorphic mild solution whenever $L = \max(\|L_f\|_{S^r}; \|L_g\|_{S^r})$ is small enough.

Proof. Consider the nonlinear operator Π defined on $PAA(\mathbb{X}_{\alpha}, \mu)$ by

$$\Pi u(t) = -f(t, B(t)u(t)) - \int_{-\infty}^{t} A(s)U(t, s)P(s)f(s, B(s)u(s))ds$$
$$+ \int_{t}^{\infty} A(s)U_Q(t, s)Q(s)f(s, B(s)u(s))ds + \int_{-\infty}^{t} U(t, s)P(s)g(s, C(s)u(s))ds$$
$$- \int_{t}^{\infty} U_Q(t, s)Q(s)g(s, C(s)u(s))ds$$

for each $t \in \mathbb{R}$. As we have previously seen, for every $u \in PAA(\mathbb{X}_{\alpha}, \mu)$, $f(\cdot, Bu(\cdot)) \in PAA(\mathbb{X}_{\beta}, \mu) \subset PAA(\mathbb{X}_{\alpha}, \mu)$. In view of Lemmas (5.4) and (5.5), it follows that Π maps $PAA(\mathbb{X}_{\alpha}, \mu)$ into its self. To complete the proof one has to show that Π has a unique fixed point.

Let
$$u, v \in PAA(\mathbb{X}_{\alpha}, \mu)$$
. For Γ_1 and Γ_2 , we have the following approximations:

$$\|(\Gamma_1 u)(t) - (\Gamma_1 v)(t)\|_{\alpha} \leq \int_{-\infty}^{t} \|A(s)U(t,s)P(s)[f(s,B(s)u(s)) - f(s,B(s)v(s))]\|_{\alpha}ds$$

$$\leq c_2(\alpha)c_4r(\alpha,\beta)\int_{-\infty}^{t} (t-s)^{-\alpha}e^{-\frac{\delta}{4}(t-s)}\|f(s,B(s)u(s)) - f(s,B(s)v(s))\|_{\beta}ds$$

$$\leq c_2(\alpha)c_4r(\alpha,\beta)\int_{-\infty}^{t} (t-s)^{-\alpha}e^{-\frac{\delta}{4}(t-s)}L_f(s)\|B(s)u(s) - B(s)v(s)\|ds$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\int_{n=1}^{t} (t-s)^{-\alpha}e^{-\frac{\delta}{4}(t-s)}L_f(s)\|u(s) - v(s)\|_{\alpha}ds$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\sum_{n=1}^{\infty}\int_{t-n}^{t-n+1} (t-s)^{-\alpha}e^{-\frac{\delta}{4}(t-s)}L_f(s)\|u-v\|_{\alpha,\infty}ds$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\sum_{n=1}^{\infty} \left(\int_{t-n}^{t-n+1} (t-s)^{-\alpha}e^{-\frac{s}{4}(t-s)}ds\right)^{\frac{1}{r_0}}\|L_f\|_{S^r}\|u-v\|_{\alpha,\infty}$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\sum_{n=1}^{\infty} (n-1)^{-\alpha}\left(\int_{t-n}^{t-n+1} e^{-\frac{r_0\delta}{4}(t-s)}ds\right)^{\frac{1}{r_0}}\|L_f\|_{S^r}\|u-v\|_{\alpha,\infty}$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\sum_{n=1}^{\infty} (n-1)^{-\alpha}\left(\int_{t-n}^{t-n+1} e^{-\frac{r_0\delta}{4}(t-s)}ds\right)^{\frac{1}{r_0}}\|L_f\|_{S^r}\|u-v\|_{\alpha,\infty}$$

$$\leq c_2(\alpha)c_4c_5r(\alpha,\beta)\sum_{n=1}^{\infty} (n-1)^{-\alpha}\left(\int_{t-n}^{t-n+1} e^{-\frac{r_0\delta}{4}(t-s)}ds\right)^{\frac{1}{r_0}}\|L_f\|_{S^r}\|u-v\|_{\alpha,\infty}$$

$$= c_2(\alpha)c_4c_5r(\alpha,\beta)S(r_0,\frac{\delta}{4})\|L_f\|_{S^r}\|u-v\|_{\alpha,\infty},$$
where r_0 is such that $\frac{1}{r} + \frac{1}{r_0} = 1$ and $S(r_0,\delta) = r_0\sqrt{\frac{1+e^{r_0\delta}}{r_0\delta}}\sum_{n=1}^{\infty} (n-1)^{-\alpha}e^{-n\delta}.$

$$\|(\Gamma_2 u)(t) - (\Gamma_2 v)(t)\|_{\alpha} \leq \int_t^{\infty} \|A(s)U_Q(t,s)Q(s)[f(s,B(s)u(s)) - f(s,B(s)v(s))]\|_{\beta}ds$$

$$\leq c_2(\alpha)c_4d(\beta)\int_t^{\infty} e^{-\delta(s-t)}\|f(s,B(s)u(s)) - f(s,B(s)v(s))\|_{\beta}ds$$

$$\leq Lc_2(\alpha)c_4d(\beta)\int_t^{\infty} e^{-\delta(s-t)}\|B(s)u(s) - B(s)v(s)\|ds$$

$$\leq Lc_2(\alpha)c_4c_5d(\beta)\int_t^\infty e^{-\delta(s-t)}\|u(s)-v(s)\|_\alpha ds$$

$$\leq Lc_2(\alpha)c_4c_5d(\beta)\delta^{-1}\|u-v\|_{\alpha,\infty}.$$

Similarly, For Γ_3 and Γ_4 , we have the following approximations

$$\begin{split} \|(\Gamma_{3}u)(t) - (\Gamma_{3}v)(t)\|_{\alpha} &\leq \int_{-\infty}^{t} \|U(t,s)P(s)\left[g(s,C(s)u(s)) - f(s,C(s)v(s))\right]\|_{\alpha} ds \\ &\leq n(\alpha) \int_{-\infty}^{t} (t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} \|g(s,C(s)u(s)) - g(s,C(s)v(s))\|_{\beta} ds \\ &\leq n(\alpha) \int_{-\infty}^{t} (t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g} \|C(s)u(s) - C(s)v(s)\| ds \\ &\leq n(\alpha)c_{5} \int_{-\infty}^{t} (t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g} \|u(s) - v(s)\|_{\alpha} ds \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{\infty} \int_{t-n}^{t-n+1} (t-s)^{-\alpha} e^{\frac{-\delta}{2}(t-s)} L_{g}(s)\|u-v\|_{\alpha,\infty} ds \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{\infty} \left(\int_{t-n}^{t-n+1} (t-s)^{-\alpha r_{0}} e^{\frac{-r_{0}\delta}{2}(t-s)} ds\right)^{\frac{1}{r_{0}}} \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty} \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{\infty} (n-1)^{-\alpha} \left(\int_{t-n}^{t-n+1} e^{\frac{-r_{0}\delta}{2}(t-s)} ds\right)^{\frac{1}{r_{0}}} \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty} \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{\infty} (n-1)^{-\alpha} \left(\int_{t-n}^{t-n+1} e^{\frac{-r_{0}\delta}{2}(t-s)} ds\right)^{\frac{1}{r_{0}}} \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty} \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{\infty} (n-1)^{-\alpha} \left(\int_{t-n}^{t-n+1} e^{\frac{-r_{0}\delta}{2}(t-s)} ds\right)^{\frac{1}{r_{0}}} \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty} \\ &\leq n(\alpha)c_{5} \sum_{n=1}^{r_{0}} \int_{r_{0}\delta}^{2} \sum_{n=1}^{\infty} (n-1)^{-\alpha} e^{\frac{-n\delta}{2}} \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty} \\ &\leq n(\alpha)c_{5} S(r_{0}, \frac{\delta}{2}) \|L_{g}\|_{S^{r}} \|u-v\|_{\alpha,\infty}, \end{split}$$

and

$$\begin{split} \|(\Gamma_4 u)(t) - (\Gamma_4 v)(t)\|_{\alpha} &\leq \int_t^\infty \|U_Q(t,s)Q(s)\left[g(s,C(s)u(s)) - g(s,C(s)v(s))\right]\|_{\alpha} ds \\ &\leq m(\alpha) \int_t^\infty e^{-\delta(s-t)} \|g(s,C(s)u(s)) - g(s,C(s)v(s))\| ds \\ &\leq Lm(\alpha) \int_t^\infty e^{-\delta(s-t)} \|C(s)u(s) - C(s)v(s)\| ds \\ &\leq Lm(\alpha) c_5 \int_t^\infty e^{-\delta(s-t)} \|u(s) - v(s)\|_{\alpha} ds \\ &\leq Lm(\alpha) c_5 \delta^{-1} \|u - v\|_{\alpha,\infty}. \end{split}$$

Consequently,

$$\|\Pi u - \Pi v\|_{\alpha,\infty} \le L\Theta \|u - v\|_{\alpha,\infty},$$

where

$$\Theta := c_5 \bigg(c_2(\alpha) c_4 r(\alpha, \beta) S\big(r_0, \frac{\delta}{4}\big) + c_2(\alpha) c_4 d(\beta) \delta^{-1} + n(\alpha) S\big(r_0, \frac{\delta}{2}\big) + m(\alpha) \delta^{-1} \bigg).$$

By taking L small enough, that is, $L < \Theta^{-1}$, the operator Π becomes a contraction on $PAA(\mathbb{X}_{\alpha}, \mu)$ and hence has a unique fixed point in $PAA(\mathbb{X}_{\alpha}, \mu)$, which obviously is the unique μ -pseudo-almost automorphic mild solution to (1.1).

References

- P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (4) (1988), 433-457.
- [2] P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.
- [3] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin 1995.
- [4] J. Blot, P. Cieutat, and K. Ezzinbi, New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis: An International Journal, 92 (3) (2013), 493-526.
- [5] J. Blot, P. Cieutat, and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Anal. (TMA), 75 (2012), 2426-2447.
- [6] S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.
- [7] M. Baroun, S. Boulite, T. Diagana, and L. Maniar, Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations, J. Math. Anal. Appl., 349 (1) (2009), 74-84.
- [8] C. Bensouda, and M. Zitane, Generalized Stepanov-like pseudo almost automorphic solutions to some classes of nonautonomous partial evolution equations, J. Math. Comput. Sci., 3 (1) (2013), 278-303.
- [9] K. J. Engel and R. Nagel; One Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer Verlag, 1999.
- [10] T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2013.
- [11] T. Diagana, Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations, J. of The Franklin Institute, 348 (2011), 2082-2098.
- [12] T. Diagana and M. Zitane, Stepanov-like pseudo-almost periodic functions in Lebesgue space with variable exponents $L^{p(x)}$, New Frontiers of Multidisciplinary Research in STEAM-H, **90** (2014), 295-314. In Springer Proceedings in Mathematics and Statistics, editor B. Toni.
- T. Diagana and M. Zitane, Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents L^{p(x)}, Electron. J. Diff. Equ., 2013 (188) (2013), 1-20.
- [14] T. Diagana and M. Zitane, Weighted Stepanov-like pseudo-almost periodic functions in Lebesgue spaces with variable exponents $L^{p(x)}$, Afr. Diaspora J. Math. **15** (2) (2013), 56–75.
- [15] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, *Lebesgue and Sobolev Spaces with Variable Exponents*, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
- [16] W. Long, and H. S. Ding, Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo-almost periodic functions, Advance in Difference Equations, Article ID 654695 (2011), 12 pages.

- [17] X.L. Fan and D. Zhao, On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$, J. Math. Anal. Appl., **263** (2001), 424-446.
- [18] Z. Hu and Z. Jin, Stepanov-like pseudo-almost automorphic mild solutions to nonautonomous evolution equations, Nonlinear Anal., 71 (2009), 2349-2360.
- [19] J. Liang, J. Zhang, and T.J. Xiao, Composition of pseudo-almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340 (2008), 1493-1499.
- [20] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
- [21] G.M. N'Guérékata, Topics in Almost Automorphy. Springer-Verlag, New York, 2005.
- [22] P.Q.H. Nguyen, On Variable Lebesgue Spaces. Ph.D. Thesis, Kansas State University. ProQuest LLC, Ann Arbor, MI, 2011.
- [23] T. J. Xiao, J. Liang, and J. Zhang, Pseudo-almost automorphic solutions to semilinear differential equations in Banach space, Semigroup Forum, 76 (2008), 518-524.

Mohamed ZITANE Moulay Ismaïl University, Faculty of Sciences, Department of Mathematics, Research team: Algebra, Operator Theory and Applications (AOTA), Meknès, Morocco. zitanem@gmail.com