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GROUP ACTIONS ON PRODUCT SYSTEMS
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Abstract. We introduce the concept of a crossed product of a product system
by a locally compact group. We prove that the crossed product of a row-finite
and faithful product system by an amenable group is also a row-finite and
faithful product system. We generalize a theorem of Hao and Ng about the
crossed product of the Cuntz-Pimsner algebra of a C*-correspondence by a
group action to the context of product systems. We present examples related
to group actions on k-graphs and to higher rank Doplicher-Roberts algebras.

1. Introduction

Product systems over various discrete semigroups P were introduced by N.
Fowler in [7], inspired by work of W. Arveson and studied by several authors (see
[1, 3, 16], for example). Several interesting examples of product systems already
occur over the semigroup (N*,+), where k > 2, for example product systems as-
sociated to k-graphs. A lot of interest was shown for the particular case when the
semigroup P embeds in a group @ and the pair (Q, P) is a quasi-lattice ordered
group in the sense of Nica.

We first recall the definition of the Toeplitz algebra and of the Cuntz—Pimsner
algebra of a product system. We use the covariance condition in Fowler’s sense.
Next, we introduce the concept of an action of a (locally compact and Hausdorff)
group on a product system and then define the associated crossed product product
system. We prove that the crossed product of a row-finite and faithful product
system by an amenable group is also row-finite and faithful, and, furthermore, we
establish a version of the Hao—Ng Theorem (see Theorem 2.10 in [9]) for product
systems over N¥,

Motivations for introducing group actions on product systems come from at
least two sources: (i) group actions on higher rank graphs; (i) the higher rank
Doplicher—Roberts algebra defined from k representations of a compact group. We
feel that the concept of crossed product of a product system could be used for other
purposes, for example to study group actions on topological k-graphs.

2. C*-Algebras of Product Systems

Let us first recall the definition of a product system. Let (P,-) be a discrete
monoid with identity e, and let A be a C*-algebra. A P-indexed product system of
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C*-correspondences over A is a semigroup Y = UpE p Yp (which can be viewed as
a surjective map Y — P) with the following properties:

e For each p € P, the object Y, is a C*-correspondence over A, which we call
the fiber of Y at p. Its inner product is denoted by (\)Yp

e The fiber Y. of Y at e is 4 A4, which is A viewed as an A-correspondence over
itself.

e TFor each p, g € P, the semigroup multiplication on Y maps Y, x Y, to Y, so
we have an A-balanced (compatible with the A-module structure) C-bilinear
map

M d:f{YpXYq — qu}.
Pi= (ayy) - aey

e For each p,q € P\ {e}, the map M, , : Y, XY, = Y, induces an isomorphism
Mpg:Yp®aYq— Yy

e For each p € P, the maps M., and M, . implement, respectively, the left
and right actions of A on Y,. Consequently, M, . :Y, ®4 (444) — Y, is an
isomorphism for all p € P.

For each p € P, let ¢, : A — L(Y,) denote the left action of A on Y, by
adjointable operators. We say that Y is essential if and only if Y, is an essential
A-correspondence, i.e., Span(¢,[A][Yp]) is dense in Y, for each p € P. The map
Me,p : (4A4) ®aYp — Y, is an isomorphism if and only if Y}, is an essential
A-correspondence, see Remark 2.2 in [7].

If ¢, takes values in the C*-algebra K(Y,) of compact operators on Y, for each
p € P, then Y is said to be row-finite or proper, and if ¢, is furthermore injective
for each p € P, then Y is said to be faithful.

There are various C*-algebras associated to a product system under certain
assumptions. For our future reference, let us recall some standard facts.

Let Y be a P-indexed product system over A, and let B be a C*-algebra. A map
¥ Y — B is then called a Toeplitz representation of Y if and only if, writing v,
for 4|y, , the following properties hold:

e ), : Y, = B is C-linear for all p € P.

e . : A — B is a C*-homomorphism, and 1/’e(<<|77>yp) = 9, (¢)"p(n) for all

p€ Pand (,n €Y,

o Yp(Q)Yg(n) = ¥pq(¢n) for all p,g € P, ( € Yy, and n € Y.
Omne can construct a C*-algebra T(Y) — known as the Toeplitz algebra of Y —

and a Toeplitz representation iy : Y — T(Y) of Y such that the pair (7(Y),iy) is
universal in the following sense: T (Y) is generated by iy[Y], and for any Toeplitz
representation ¢ : Y — B, there is a C*-homomorphism %, : T(Y) — B such that

oty = 1.
Let us denote by O, the rank-one operator £ — §(77|§>Yp. For each p € P, there

exists a C*-homomorphism (") : K(Y,) — B obtained as the continuous extension
of the map

VCly s Cos My o3 € Yy D 0w = Y U(G)p(mi)
=1 i=1

Note that as K(A) = A (via the identification of @, with ab*), we have (¢) = 1,.
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A Toeplitz representation ¢ : Y — B is then called Cuntz—Pimsner covariant
(in Fowler’s sense) if and only if

Vpe P, Vae g, IK(Y,) 9P (gy(a)) = e(a).

One can construct a C*-algebra O(Y) — known as the Cuntz—Pimsner algebra of
Y — and a Cuntz—Pimsner covariant Toeplitz representation jy : Y — O(Y) of Y
such that the pair (O(Y), jy) is universal in the following sense: O(Y) is generated
by jy[Y], and for any Cuntz—Pimsner covariant Toeplitz representation ¥ : Y — B,
there is a C*-homomorphism ¢, : O(Y) — B such that 1, o jy = .

Example 2.1. A C*-correspondence X over A gives rise to a product system Y over
N with fibers Y,, = X®" for n > 1 and Yo = A. In this case, T(Y) = T(X) and
oY) = O(X).

Ezxample 2.2. For a product system Y — P whose fibers Y, are nonzero finite-
dimensional Hilbert spaces, in particular A = Y, = C, let us fix an orthonormal
basis By, in Y,. Then a Toeplitz representation ¢ : Y — B gives rise to a P-indexed
family (¢(§) : € € Bp)p ¢ p of isometries with mutually orthogonal range projections.
In this case, T(Y) is generated by a collection of Cuntz—Toeplitz algebras that
interact according to the multiplication maps Mpyq in.

A representation ¥ : Y — B is Cuntz-Pimsner covariant if

VpeP: Y (v = (1)

ceB,

The Cuntz—Pimsner algebra O(Y) is generated by a collection of Cuntz algebras,
so it could be thought of as a multidimensional Cuntz algebra. N. Fowler proved
in [6] that if the function p — dim(Y,,) is injective, then the algebra O(Y) is simple
and purely infinite. For other examples of multidimensional Cuntz algebras, see
[2].

Ezample 2.3. A row-finite k-graph with no sources A (see [12]) determines a product

system Y — N¥ with Yo = A = Cy(A%) and Y,, = C.(A") for n # 0, that yields
an isomorphism O(Y) = C*(A).

3. Group Actions on Product Systems and Crossed Products

Given a locally compact group G and a C*-correspondence X over A, an action
of G on X (see [9]) is a pair («, 3) with the following properties:

e (v is a strongly continuous action of G on A by C*-automorphisms.

e [ is a strongly continuous action of G on X by surjective C-linear isometries.

e Forall s€ G,a€ A, and z,y € X,

(Bs(2)18s ()% = as({z]y)x), Bs(za) = Bs(x)as(a), Bs(ax) = as(a)Bs(x).

The crossed product X xg G of X by G is defined in [9] as the completion
of the C.(G, A)-bimodule C.(G,X), and its (A x, G)-correspondence structure is
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uniquely determined by the following operations:
VfeC.G,A), V(,n € C.(G,X), Vs € G :

9= [ 108 at € = [ canlss) ar

By the universal property of Cuntz—Pimsner algebras (see [11]), there is an action
¥ of G on O(X) satisfying 74(ja(a)) = ja(as(a)) and 5 (x (z)) = jx (s z)), where
(ja,jx) is the universal Cuntz—Pimsner representation of (A4, X). For G amenable,
it is proven in [9] that
OX) ¥y G=O(XxgG).

Definition 3.1. An action 8 of a locally compact group G on a product system
Y — P over A is a P-indexed family (57),cp such that (8¢, 57) is an action of G
on Y, for each p € P, and furthermore,

Vse G, VCeYy, VneYy:  BY(¢n) = BL(C)BI(n).
We will usually denote 3¢ by «.

Ezxample 3.2. For an essential product system Y indexed by P = (Nk, +) such that
¢, is an injection into K(Y,) for all p = (p1,...,px) € N¥ universality allows us to
define a strongly continuous gauge action o : T* — Aut(O(Y)) such that

Vz € T*, VpGNk, Vae A, V(eY,: o.(a) =a and a.(Gv(€)) = 2P4v(Q).
Here, 2P e Hk . Then the fixed-point algebra O(Y)? is C*-isomorphic to the

=1 z
inductive limit

lim K(Y,),
pENFK

where the order relation on N¥ is the coordinate-wise order, and for p < ¢, the map
K(Yp) = K(Yq) is given by T —= T ® I;_p.
Ezample 3.3. For a compact group G and k finite-dimensional unitary representa-
tions p; of G on Hilbert spaces H; for ¢ € {1,...,k}, we can construct a product
system Y with fibers

Y, =HY" @ @ HE™,
for n = (n1,...,n;) € N¥; see [4] Then the group G acts on each fiber Y,, via
the representation p"* = pP™ ® --- ® pfm’“. This action is compatible with the
multiplication maps and commutes with the gauge action of T*.

Proposition 3.4. Let B be an action of G on a P-indexed product system Y.
Define a multiplication on the disjoint union | |, p(Yp Xge G) of fibers Y, xgn G
(which are C*-correspondences over A x G) as follows: For ¢ € C.(G,Y)p) and
n € C(G,Yy), the product (n € C.(G,Ypq) is

VseG: /g 0B (n(t™'s)) dt.

Then the semigroup Y x5 G = Upep(Yp Xgr G) with this multiplication law is a
product system over A xo G, called the crossed product Y xg G. IfY is essential,
then Y x5 G is also essential.
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Proof. Let us first prove that the multiplication law for Y xg G is associative on
the function-algebra level. Let p,¢,r € P, and let { € C.(G,Y)), n € C.(G,Y,),
and £ € C.(G,Y,). Then for all s € G,

(CmEN(s) = /G (C))BE (E(1s)) dt
_ /G { /G C()BL(n(u="0)) dul gy (e(t1s)) at
= [ lcwstin )] 5 (e s)) dwx

= [ cwBrint0)s 6 s)] dwx
and

Ce))(s) = /G C() L ((nE) (u™"s)) du
_ /G C(u)3 < /G O ) dt> du
:/ C(w)BE (n)B; (£t u™"s))) d(t x u)
GxG

- / C(u)BY(n(1) B (E(t u"s)) d(t x u)
GxG

(By the axioms of a group action.)

=/ C(w)BL(n(u™t))B; (€(t71s)) d(t x u).
GxG

(By the change of variables ¢ uflt.)
It follows that for all p,q € P,

{CC(G,Yp)XCc(Gqu) — Cc(G,qu)}
(¢;m) > (n

is a C.(G, A)-balanced C-bilinear map (take ¢ = e in the associativity calculation),
which then induces a C-linear map

CC(Gva) ®C'C(G,A) CC(Gqu) - CC(G,qu)

n

Q =
D Gon =) G
i=1 i=1
Let us show that 2, , extends uniquely to a C-linear isometry

ﬁlhq 2 (Yp xpr G) @ax,a (YqXpa G) = Ypq Xgra G.
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Observe that for all ¢1,...,(, € Co(G,Y,) and 11, ...,1, € C(G,Y,) we have

Y Gen
i=1

(YpXﬁPG)@AN(,G(Yq)“BqG)

= <ZQ Q1 ZCJ' ®77j>
i=1 =1

N

(YpxprG)®angc(Ygx5aG) AxoG
n %

= Z (G @G DN1) (Y, 050 0) @ 4w s (Yo 2050 C)
i,j=1 AXNaG

n

= Z<Th

i,j=1

(GlGy, pran>

Yq><lﬁqG
Axo G

and
1
2
n n n
Son| = (Sl om)
i=1 YpgXpra G i=1 =1 YoaXpraGll g, G
1
" 2
= Z (GmilSinidy, s ppac
2,j=1 AxoG
To see that

b

Z G ®@mn;
i=1

Z Gini
i—1

(Y:UNBPG)@ANQG(YqX‘BqG) Ypg X pra G
it thus suffices to show that for all 4,5 € {1,...,n},
<77i <Ci|§j>ypxﬁpg77j>YMBqG and <Ci77i|Cj77j>qu>45qu
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are identical elements of C.(G, A). Indeed, for all r € G,

(ma[{G 1), Gm> )

3a G

o ( ({616 ) (ur)),, )

616052 a7 ), )
(6160, 03 (7)), ) e 0
(8)]¢;(st))y ) ds} B (n; (tlur))>Y ) d(t x u)

77
Cx G < (8)1G5(st))y )53(%’ (tlur))>Yq> d(s x t x u)

(CmilCinidy,, xppac(T)

G
/GO‘ <<( )(Gimi) (ur))y, )du
/G ( /c )4 (s (s~ ) ds/C] B2 (y (¢~ Vur)) dt>Y )du

(582 (5 ) ) |G (O87 (g (£ ur)))y, ) (s x £ x w)

Q

oo™
J

and
- (<< )© 81 (s~ ) |G @ B (s (¢ ur)) )y, oy, ) s x £ w)
- [ e <<5q ‘ DG D)y ﬁf(nj(t_lur))>yq> d(s x ¢ x )

:/ ( ()16 (0)y )Bglt(nj(tlur))>Yq> d(s x t x u)

(By the axioms of a group action on a C*-correspondence.)

/GXGXG Qy—1g (<m (s—lu) ‘as_l (<C¢(8)|Cj(st)>yp>ﬁg (nj (t—ls—lur))>yq> d(s xt xu)

(By the change of variables ¢ — st.)
— [ e <<m(u)’04s1 (GG sty ) 52 (ny (¢ ur) ) ) d(s x t x u).
GxGxG Yq
(By the change of variables u — su.)

Hence,

e (GG, i), ()= (GG, ()

Nqu
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as claimed, so

Qp.q (Z G® 77i>
i=1

Y Gen
i=1

(YpxspG)®angc(YaxpaG) Ypg ¥ pa G

As Co(G,Yp) ®c.(a,a) Ce(G,Yy) is dense in (Y, xgr G) @ax,a (Yq xpa G), we
conclude that Q,, , extends uniquely to a C-linear isometry

Qp7q : (Yp X gp G) RAx,G (Yq X ga G) — qu X gpa G.

We wish to show that Q, , is (4 %, G)-linear for all p,q € P, but this will turn
out to be a consequence of the following two facts about these maps:
esForpe P, fe Axy G, and ¢ € Y, xgr G,

fC :ﬁe,p(f@)C) and Cf :ﬁp,e(<®f)7

which are true by both the definitions of 2., and €, .
o Forp,g,re P, (€Y, xgr G,nEY,xga G,and £ €Y, xpr G,

Dpgr (g (CON) @) = Qg (COQr(n @ 8)),

which holds because the multiplication law of the product system is associative.
Now, to see the (A x4 G)-linearity of Q, , for all p,¢q € P, simply observe for all
fE€EAXLG, (€Y, g G,and n € Y, Xga G that

Qpq(CRNS)

ﬁnq(c ® ﬁq@(n ® f))
Dpg.e (ﬁp,q(c ®n)® f)
Qq(Con)f.

Dpq((C@N)S)

A similar computation gives Q, ,(f(C®n)) = fQ,4(C ®n). By linearity and con-

tinuity, €2, , is therefore (A x4 G)-linear.
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Finally, we will prove that €2, , is surjective for all p,q € P such that p # e.
Firstly, note that for all p € P and ¢ € C.(G,Y,),

1
2

nmmmm=HmovmmeG

IN

H (ClS)y w1576 | 11 ) (By Lemma 2.27 of [17].)

[, o]
= [ [ o (tctolctsnny, )
I»

[ JJcoiceon, |, asxo

)
<[ mwwwysm]
)

(By the Cauchy—Schwarz Inequality.

= [ (1, [1ctoi, o) as]
JACI
L/ G

: }
= [I¢13 v,

= ||C||L1(G,Yp)~

]

A

1
2

IN

%quwmdmawﬂ

Fix p,q € P with p # e. By a routine partition-of-unity argument, we can ap-
proximate a function ¢ € Cc(G, Ypq) with respect to ||| 11 y,,) — and hence with
respect to ||'||ypq><,ﬁqu — by a linear combination of functions of the form f ® z,
where f € C.(G) and z € Yp,. As M, 1Y, ®4 Y, — Y, is an isomorphism, we
can approximate z itself by a linear combination of elements of Y, of the form
M, ,(z ®y), where z € Y, and y € Y,. Now, for any € > 0, we can find an open
neighborhood U of the identity e € G and a non-negative function h € C.(G,R)
with Supp(h) C U and integral 1 such that

||f QMP#I(:E ®y) — Qp,q((h Or)R(fO y))||L1(G7ypq) <e€
This yields, according to the foregoing discussion,

[fOMpg(@@y) = Qo((hO2) @ (fFOUy, 0 e <€

Therefore, Range(£2,,q) is dense in YpqXgrac, and as ), is an isometry between
Banach spaces, it follows that ﬁp,q is surjective.
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As Q, 4 is a surjective (A x4 G)-linear isometry for all p,q € P with p # e, we
can apply the main result of [I3] by Lance to conclude that it is a unitary operator.
If Y is essential, then Me,q is an isomorphism, so ﬁe,q is also an isomorphism and
Y xg G is essential. O

Theorem 3.5. Suppose that a group G acts on a row-finite and faithful P-indexed
product system Y over A via automorphisms . Then G acts on O(Y) wvia auto-
morphisms denoted by 4. Moreover, if G is amenable, then Y xg G is row-finite
and faithful, and for P = N* and Y essential, we even have
OY) xy G=ZO(Y x5 G).

Proof. Let p € P. Recall that there is a strongly continuous action 77 of G' on
K(Y,) given by

Ve,y €Yy 77(Oay) = Opra) pr(y)-
The left-action ¢, : A — K(Y)) is injective by assumption. To see that it is
equivariant for o and 77, first observe that forallge G,a € A,and z €Y,

By ([¢p(a)](2)) = By (az) = ag(a)By(z) = [dp(ag(a))](By(2)),

s0 B o ¢p(a) = dp(ay(a)) o B2; equivalently, 57 o ¢p(a) o ’85‘1 = ¢p(agy(a)). Next,
observe for all g € G and z,y,z € Y, that

(Br0@uyo 1) (2) =5 <x<y]ﬁ§1<z>>Yp>

= B0 (x)ay (<y\ﬁ§1<2’>>yp)
= 55($><5§(y)|z>vp

= O87(2),85) (2);
80 TP(Ozy) = 10Oy y 0 65,1. In particular, as Range(¢,) C K(Y,), we have

Vae A:  17(¢p(a)) = By o dp(a) o By = dp(ag(a)),

which proves the equivariance of ¢, for o and 7P. According to the theory of
reduced C*-crossed products, ¢, induces the injective *-homomorphism

gZSip A N a,red G — K(Yp) X rp red G,
where ¢,(f) = ¢, o f for all f € C.(G,A). However, G is amenable, so ¢, :

o

AXo G = K(Yp) ¥ G and K(Yp) xmp G — K(Y), xgr G), where the inverse A
of this x-isomorphism is defined in [9] by

V¢, n e Cu(G,Yyp), Vs € G : [A(O¢,)](s) = /GA(S_lr)@qr),ﬁ;’(n(rlr)) dr,

where A is the modular function of G. Therefore, Y xg G is also a row-finite and
faithful product system, as claimed.

Next, we show that there exists a strongly continuous action v of G on O(Y)
that satisfies

Vge G, Vpe P, YyeY,:  v(vy) =iv(8 (), (1)
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where jy : Y — O(Y) denotes the universal Cuntz—Pimsner representation. Let

g € G. Then the map ¥, : Y — O(Y) defined by ¥,(y) d:ij (Bg(y)) for all p € P
and y € Y, is a Cuntz-Pimsner representation of Y on O(Y):
e For all p,g € P,z €Y, and y € Y, we have

Wy (zy) = jv (B (xy))
= jv(BE(x)B(y))
(

= jv (B8 (x)) v (BL(v))
= Uy(2)Vy(y).

e For all pe P and z,y € Y, we have

¥, (el )w( (@, )
s ((Br@I3w), )
= Jv (B2(x)) "dv (B2 (v))

= Uy(2)"Wy(y).

e Let p € P. The foregoing argument tells us that ¥, is a Toeplitz representation
of Y on O(Y), so there exists an extension \Ilgp) 1 K(Yp) — O(Y) such that

Yo,y eYp:  UP(O,,) = Uy(x)T,(y)"
= v (B2 (@) v (B4 ()"
=iy (Gﬂgm &(y))
= P (12(Ou ).
(p)

which implies by linearity and continuity that \Ilgp ) = Jy o7h. As we have
shown that ¢, is equivariant for o and 77 and since jy is Cuntz—Pimsner-
covariant, we have

VaeA: WP (g,(a) = 5P (12(dp(a))) = 1 (dp(ag(a))) = jv(ay(a) = Ty(a),

proving that ¥, is a Cuntz—Pimsner representation of Y.
By universality, there is thus a C*-endomorphism S on O(Y) such that

Vpe P, VYyeY,: Sy () = v (BE(y)).
Similarly, there is a C*-endomorphism T on O(Y) such that
eP WyeY,:  Tlv(w) = iv(B. ).

As ST = Idpyy = T'S, we see that S is a C*-isomorphism, and as g is arbitrary
and S is an action of G on Y, there is an action v of G on O(Y) that satisfies ().
The strong continuity of « immediately follows from the continuity of jy and the
strong continuity of each SP.

We now show that a Cuntz-Pimsner representation ¢ : Y xg G — O(Y) x, G
exists and that it satisfies

Vpe P, V¢ € C.(G,Yy) : Yp(€) =gy o (.
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As jyla : A — O(Y) is a s-homomorphism, and as v4(jv(a)) = jv(ay(a)) for
all a € A, we find that jy|a is equivariant for « and ~. Hence, jy|a induces a
*-homomorphism

Yot Axg G = OY) %, G

such that 1.(f) = jy o f for all f € C.(G,A). Let p € P and (,n € C.(G,Y,).
Then for all s € G,

[(jYOC)*(jvoC)](S)=/G(jvoC)*(r)%((jvoC)(r‘IS)) dr
= [ AGT) (i (€)Y (v 1)) ar

= [ (i (€crany, ) ar

= [ v (i, ) ar

e[ (1Icay, ) ar) By the contmit of v
= v (€I, w0 (5))

= [#(€, ) ),

SO
1
v © Cllogvyw, e =[Gy €) (v © O”é(Y)mG

= ¢ (€I, )

1
2

1
2

O(Y)x,G

< [[€l€, e

= ¢lly, o

AxqG

In light of this norm-inequality, there exists a continuous linear map
Yp : Yp X G— OY) %y G

such that ¢,(¢) = jy o ¢ for all ¢ € C.(G,Y,). By combining the various ,’s,
we get amap ¢ : Y xg G = O(Y) x4 G. The following show that 9 is a Toeplitz
representation:

e Asseen above, 1. (<<|<>YMMG> = 1,()*Yp(¢) forallp € Pand ¢ € C.(G,Y),).
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e Forall pge P, (€Y, xgr G,n €Yy xga G, and s € G,

OB = [ WO () 15))
::LK;jY(C(r))v%(jv(n(r_ls))) dr
- / N CENdv (B (n(rs))) dr

—iv( [ <t ar)

= jv((¢n)(s))
= [wpq(cn)}( s),

80 Y (Q)Yq(n) = Ppq(Cn).

It thus remains to check Cuntz—Pimsner covariance. If
PP (Y, 3 G) = O(Y) %, G

denotes the extension of ¢, then letting p € P, (,n € C.(G,Y,), and s € G, we
obtain that

[P (O] (5) = [8p(Qn(m)](5)
= L1 ()¢ ar

= [ (A6 s (v a(sn))) ar
= [ 867 - avictr (v als 1)) ar

Z/GA(S_““) (O prnis—1ryy) dr

) -
=Jv < /G A(s7r) - Oty prin(s—1r) d?")
= [ o A©c)] 5).

Hence, %) (0, ,) = ]\((p) o A(6¢ ), which means that ¢®)(T) = j\((p) o A(T) for all
T € K(Y xge G). In particular, we have for all f € C.(G, A) that

VP (AT (6,(1))) = 34 0 (A (dp 0 f))
_ ‘7&0) o ¢p o f
=jyof
= ¢e(f)

Therefore, ¢(?) o (A=* 0 ¢,) = ¢ for all p € P, which proves that 1 is Cuntz—
Pimsner covariant. By universality, the representation ¢ : Y x5 G — O(Y) x, G
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determines a unique *-homomorphism
e O xgG) = O(Y) x, G

such that ¥ (jyx,c(f)) = ¥p(f) for f € Co(G,Y,). The image of v, generates
O(Y) x4 G, so 1, is surjective.

For P = N* and Y essential, recall that there is a gauge action o of T* on O(Y)
such that o,(a) = a and 0.(jv(¢)) = 2Pjv(¢). As the action v of G on O(Y) is
equivariant, we get a gauge action of T* on O(Y) X G. The injectivity of 1, now
follows from the injectivity of ¢, (note that jy is injective); see Lemma 3.3.2 in [5]
or Corollary 4.14 in [3]. O

Remark 3.6. Katsoulis obtained similar results for the so-called generalized gauge
action on a product system over a semigroup P that is the positive cone of an abelian
group, see Theorem 3.8 in [10]. Moreover, using a Fourier transform, he proved a
Takai-duality result and generalized some results of Schafhauser from [15].

Remark 3.7. Suppose Y is a row-finite, faithful, and essential product system
indexed by P = NF. If A is AF and each C*-correspondence Y, is full and separable,
then there is a gauge action o of TF on O(Y) and O(Y) x, TF is AF.

Proof. Like in Example there is a gauge action of T* on O(Y). In this case,
O(Y) x4 T* is Morita-Rieffel equivalent to the core O(Y)? = lim K(Yrn), and
each KC(Y,,) is Morita—Rieffel equivalent to A as'Y,, is full. It follows that O(Y)x, T*
is AF. O

Ezample 3.8. In the setting of Example[3.3] the compact group G acts on each fiber
Y, of the product system Y via the representation p" = p?"l Q- ® p%”’“. This
action is compatible with the multiplication maps and commutes with the gauge
action of T*. The crossed product Y x G is a row-finite and faithful product system
indexed by N* over the group C*-algebra C*(G). Moreover,

OY)x GO x Q).

The Doplicher-Roberts algebra O,, ., constructed in [4] from intertwiners
Hom(p", p™) is isomorphic to the fixed point algebra (’)(Y)G and is Morita—Rieffel
equivalent to O(Y) x G.

Example 3.9. If a locally compact group G acts on a k-graph A by automorphisms,
then G acts on the product system Y constructed from A as in Example 2:3] and
the C*-algebra of the product system Y x G is isomorphic to C*(A) x G. In
[8], the authors consider the particular case when G' = Z‘ and they construct a
(k + ¢)-graph A x Z* such that C* (A x Z*) = C*(A) x Z. Our result gives a new
perspective on this situation.
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