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Abstract. We introduce the concept of a crossed product of a product system

by a locally compact group. We prove that the crossed product of a row-finite
and faithful product system by an amenable group is also a row-finite and

faithful product system. We generalize a theorem of Hao and Ng about the

crossed product of the Cuntz-Pimsner algebra of a C∗-correspondence by a
group action to the context of product systems. We present examples related

to group actions on k-graphs and to higher rank Doplicher-Roberts algebras.

1. Introduction

Product systems over various discrete semigroups P were introduced by N.
Fowler in [7], inspired by work of W. Arveson and studied by several authors (see
[1, 3, 16], for example). Several interesting examples of product systems already
occur over the semigroup

(
Nk,+

)
, where k ≥ 2, for example product systems as-

sociated to k-graphs. A lot of interest was shown for the particular case when the
semigroup P embeds in a group Q and the pair (Q,P ) is a quasi-lattice ordered
group in the sense of Nica.

We first recall the definition of the Toeplitz algebra and of the Cuntz–Pimsner
algebra of a product system. We use the covariance condition in Fowler’s sense.
Next, we introduce the concept of an action of a (locally compact and Hausdorff)
group on a product system and then define the associated crossed product product
system. We prove that the crossed product of a row-finite and faithful product
system by an amenable group is also row-finite and faithful, and, furthermore, we
establish a version of the Hao–Ng Theorem (see Theorem 2.10 in [9]) for product
systems over Nk.

Motivations for introducing group actions on product systems come from at
least two sources: (i) group actions on higher rank graphs; (ii) the higher rank
Doplicher–Roberts algebra defined from k representations of a compact group. We
feel that the concept of crossed product of a product system could be used for other
purposes, for example to study group actions on topological k-graphs.

2. C∗-Algebras of Product Systems

Let us first recall the definition of a product system. Let (P, ·) be a discrete
monoid with identity e, and let A be a C∗-algebra. A P -indexed product system of
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C∗-correspondences over A is a semigroup Y =
⊔

p∈P Yp (which can be viewed as

a surjective map Y → P ) with the following properties:
• For each p ∈ P , the object Yp is a C∗-correspondence over A, which we call
the fiber of Y at p. Its inner product is denoted by ⟨·|·⟩Yp

.

• The fiber Ye of Y at e is AAA, which is A viewed as an A-correspondence over
itself.

• For each p, q ∈ P , the semigroup multiplication on Y maps Yp ×Yq to Ypq, so
we have an A-balanced (compatible with the A-module structure) C-bilinear
map

Mp,q
df
=

{
Yp × Yq → Ypq

(x, y) 7→ x · y

}
.

• For each p, q ∈ P \{e}, the map Mp,q : Yp×Yq → Ypq induces an isomorphism

Mp,q : Yp ⊗A Yq → Ypq.
• For each p ∈ P , the maps Me,p and Mp,e implement, respectively, the left

and right actions of A on Yp. Consequently, Mp,e : Yp ⊗A (AAA) → Yp is an
isomorphism for all p ∈ P .

For each p ∈ P , let ϕp : A → L(Yp) denote the left action of A on Yp by
adjointable operators. We say that Y is essential if and only if Yp is an essential
A-correspondence, i.e., Span(ϕp[A][Yp]) is dense in Yp, for each p ∈ P . The map

Me,p : (AAA) ⊗A Yp → Yp is an isomorphism if and only if Yp is an essential
A-correspondence, see Remark 2.2 in [7].

If ϕp takes values in the C∗-algebra K(Yp) of compact operators on Yp for each
p ∈ P , then Y is said to be row-finite or proper, and if ϕp is furthermore injective
for each p ∈ P , then Y is said to be faithful.

There are various C∗-algebras associated to a product system under certain
assumptions. For our future reference, let us recall some standard facts.

Let Y be a P -indexed product system over A, and let B be a C∗-algebra. A map
ψ : Y → B is then called a Toeplitz representation of Y if and only if, writing ψp

for ψ|Yp , the following properties hold:
• ψp : Yp → B is C-linear for all p ∈ P .

• ψe : A → B is a C∗-homomorphism, and ψe

(
⟨ζ|η⟩Yp

)
= ψp(ζ)

∗
ψp(η) for all

p ∈ P and ζ, η ∈ Yp.
• ψp(ζ)ψq(η) = ψpq(ζη) for all p, q ∈ P , ζ ∈ Yp, and η ∈ Yq.

One can construct a C∗-algebra T (Y) — known as the Toeplitz algebra of Y —
and a Toeplitz representation iY : Y → T (Y) of Y such that the pair (T (Y), iY) is
universal in the following sense: T (Y) is generated by iY[Y], and for any Toeplitz
representation ψ : Y → B, there is a C∗-homomorphism ψ∗ : T (Y) → B such that
ψ∗ ◦ iY = ψ.

Let us denote by Θζ,η the rank-one operator ξ 7→ ζ⟨η|ξ⟩Yp
. For each p ∈ P , there

exists a C∗-homomorphism ψ(p) : K(Yp) → B obtained as the continuous extension
of the map

∀ζ1, . . . , ζn, η1, . . . , ηn ∈ Yp :

n∑
i=1

Θζi,ηi
7→

n∑
i=1

ψp(ζi)ψp(ηi)
∗
.

Note that as K(A) ∼= A (via the identification of Θa,b with ab
∗), we have ψ(e) = ψe.
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A Toeplitz representation ψ : Y → B is then called Cuntz–Pimsner covariant
(in Fowler’s sense) if and only if

∀p ∈ P, ∀a ∈ ϕ−1
p [K(Yp)] : ψ(p)(ϕp(a)) = ψe(a).

One can construct a C∗-algebra O(Y) — known as the Cuntz–Pimsner algebra of
Y — and a Cuntz–Pimsner covariant Toeplitz representation jY : Y → O(Y) of Y
such that the pair (O(Y), jY) is universal in the following sense: O(Y) is generated
by jY[Y], and for any Cuntz–Pimsner covariant Toeplitz representation ψ : Y → B,
there is a C∗-homomorphism ψ∗ : O(Y) → B such that ψ∗ ◦ jY = ψ.

Example 2.1. A C∗-correspondence X over A gives rise to a product system Y over
N with fibers Yn = X⊗n for n ≥ 1 and Y0 = A. In this case, T (Y) = T (X) and
O(Y) = O(X).

Example 2.2. For a product system Y → P whose fibers Yp are nonzero finite-
dimensional Hilbert spaces, in particular A = Ye = C, let us fix an orthonormal
basis Bp in Yp. Then a Toeplitz representation ψ : Y → B gives rise to a P -indexed
family (ψ(ξ) : ξ ∈ Bp)p∈P of isometries with mutually orthogonal range projections.

In this case, T (Y) is generated by a collection of Cuntz–Toeplitz algebras that
interact according to the multiplication maps Mp,q in Y.

A representation ψ : Y → B is Cuntz-Pimsner covariant if

∀p ∈ P :
∑
ξ∈Bp

ψ(ξ)ψ(ξ)
∗
= ψ(1).

The Cuntz–Pimsner algebra O(Y) is generated by a collection of Cuntz algebras,
so it could be thought of as a multidimensional Cuntz algebra. N. Fowler proved
in [6] that if the function p 7→ dim(Yp) is injective, then the algebra O(Y) is simple
and purely infinite. For other examples of multidimensional Cuntz algebras, see
[2].

Example 2.3. A row-finite k-graph with no sources Λ (see [12]) determines a product

system Y → Nk, with Y0 = A = C0

(
Λ0
)
and Yn = Cc(Λn) for n ̸= 0, that yields

an isomorphism O(Y) ∼= C∗(Λ).

3. Group Actions on Product Systems and Crossed Products

Given a locally compact group G and a C∗-correspondence X over A, an action
of G on X (see [9]) is a pair (α, β) with the following properties:

• α is a strongly continuous action of G on A by C∗-automorphisms.
• β is a strongly continuous action of G on X by surjective C-linear isometries.
• For all s ∈ G, a ∈ A, and x, y ∈ X,

⟨βs(x)|βs(y)⟩X = αs(⟨x|y⟩X), βs(xa) = βs(x)αs(a), βs(ax) = αs(a)βs(x).

The crossed product X ⋊β G of X by G is defined in [9] as the completion
of the Cc(G,A)-bimodule Cc(G,X), and its (A⋊α G)-correspondence structure is
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uniquely determined by the following operations:

∀f ∈ Cc(G,A), ∀ζ, η ∈ Cc(G,X), ∀s ∈ G :

(fζ)(s) =

∫
G

f(t)βt
(
ζ
(
t−1s

))
dt, (ζf)(s) =

∫
G

ζ(t)αt

(
f
(
t−1s

))
dt,

⟨ζ|η⟩X⋊βG
(s) =

∫
G

αt−1(⟨ζ(t)|η(ts)⟩X) dt.

By the universal property of Cuntz–Pimsner algebras (see [11]), there is an action
γ of G on O(X) satisfying γs(jA(a)) = jA(αs(a)) and γs(jX(x)) = jX(βs(x)), where
(jA, jX) is the universal Cuntz–Pimsner representation of (A,X). For G amenable,
it is proven in [9] that

O(X)⋊γ G ∼= O(X⋊β G).

Definition 3.1. An action β of a locally compact group G on a product system
Y → P over A is a P -indexed family (βp)p∈P such that (βe, βp) is an action of G
on Yp for each p ∈ P , and furthermore,

∀s ∈ G, ∀ζ ∈ Yp, ∀η ∈ Yq : βpq
s (ζη) = βp

s (ζ)β
q
s (η).

We will usually denote βe by α.

Example 3.2. For an essential product system Y indexed by P =
(
Nk,+

)
such that

ϕp is an injection into K(Yp) for all p = (p1, . . . , pk) ∈ Nk, universality allows us to
define a strongly continuous gauge action σ : Tk → Aut(O(Y)) such that

∀z ∈ Tk, ∀p ∈ Nk, ∀a ∈ A, ∀ζ ∈ Yp : σz(a) = a and σz(jY(ζ)) = zpjY(ζ).

Here, zp
df
=
∏k

i=1 z
pi

i . Then the fixed-point algebra O(Y)σ is C∗-isomorphic to the
inductive limit

lim−→
p∈Nk

K(Yp),

where the order relation on Nk is the coordinate-wise order, and for p ≤ q, the map
K(Yp) → K(Yq) is given by T 7→ T ⊗ Iq−p.

Example 3.3. For a compact group G and k finite-dimensional unitary representa-
tions ρi of G on Hilbert spaces Hi for i ∈ {1, . . . , k}, we can construct a product
system Y with fibers

Yn = H⊗n1
1 ⊗ · · · ⊗ H⊗nk

k ,

for n = (n1, . . . , nk) ∈ Nk; see [4]. Then the group G acts on each fiber Yn via
the representation ρn = ρ⊗n1

1 ⊗ · · · ⊗ ρ⊗nk

k . This action is compatible with the

multiplication maps and commutes with the gauge action of Tk.

Proposition 3.4. Let β be an action of G on a P -indexed product system Y.
Define a multiplication on the disjoint union

⊔
p∈P (Yp ⋊βp G) of fibers Yp ⋊βp G

(which are C∗-correspondences over A ⋊α G) as follows: For ζ ∈ Cc(G,Yp) and
η ∈ Cc(G,Yq), the product ζη ∈ Cc(G,Ypq) is

∀s ∈ G : (ζη)(s) =

∫
G

ζ(t)βq
t

(
η
(
t−1s

))
dt.

Then the semigroup Y ⋊β G =
⊔

p∈P (Yp ⋊βp G) with this multiplication law is a
product system over A⋊α G, called the crossed product Y ⋊β G. If Y is essential,
then Y ⋊β G is also essential.
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Proof. Let us first prove that the multiplication law for Y ⋊β G is associative on
the function-algebra level. Let p, q, r ∈ P , and let ζ ∈ Cc(G,Yp), η ∈ Cc(G,Yq),
and ξ ∈ Cc(G,Yr). Then for all s ∈ G,

[(ζη)ξ](s) =

∫
G

(ζη)(t)βr
t

(
ξ
(
t−1s

))
dt

=

∫
G

[∫
G

ζ(u)βq
u

(
η
(
u−1t

))
du

]
βr
t

(
ξ
(
t−1s

))
dt

=

∫
G×G

[
ζ(u)βq

u

(
η
(
u−1t

))]
βr
t

(
ξ
(
t−1s

))
d(u× t)

=

∫
G×G

ζ(u)
[
βq
u

(
η
(
u−1t

))
βr
t

(
ξ
(
t−1s

))]
d(u× t)

and

[ζ(ηξ)](s) =

∫
G

ζ(u)βqs
u

(
(ηξ)

(
u−1s

))
du

=

∫
G

ζ(u)βqs
u

(∫
G

η(t)βs
t

(
ξ
(
t−1u−1s

))
dt

)
du

=

∫
G×G

ζ(u)βqs
u

(
η(t)βs

t

(
ξ
(
t−1u−1s

)))
d(t× u)

=

∫
G×G

ζ(u)βq
u(η(t))β

s
ut

(
ξ
(
t−1u−1s

))
d(t× u)

(By the axioms of a group action.)

=

∫
G×G

ζ(u)βq
u

(
η
(
u−1t

))
βs
t

(
ξ
(
t−1s

))
d(t× u).(

By the change of variables t 7→ u−1t.
)

It follows that for all p, q ∈ P ,{
Cc(G,Yp)× Cc(G,Yq) → Cc(G,Ypq)

(ζ, η) 7→ ζη

}
is a Cc(G,A)-balanced C-bilinear map (take q = e in the associativity calculation),
which then induces a C-linear map

Ωp,q =


Cc(G,Yp)⊗Cc(G,A) Cc(G,Yq) → Cc(G,Ypq)

n∑
i=1

ζi ⊙ ηi 7→
n∑

i=1

ζiηi

.
Let us show that Ωp,q extends uniquely to a C-linear isometry

Ωp,q : (Yp ⋊βp G)⊗A⋊αG (Yq ⋊βq G) → Ypq ⋊βpq G.
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Observe that for all ζ1, . . . , ζn ∈ Cc(G,Yp) and η1, . . . , ηn ∈ Cc(G,Yq) we have

∥∥∥∥∥
n∑

i=1

ζi ⊗ ηi

∥∥∥∥∥
(Yp⋊βpG)⊗A⋊αG(Yq⋊βqG)

=

∥∥∥∥∥∥∥
〈

n∑
i=1

ζi ⊗ ηi

∣∣∣∣∣∣
n∑

j=1

ζj ⊗ ηj

〉
(Yp⋊βpG)⊗A⋊αG(Yq⋊βqG)

∥∥∥∥∥∥∥
1
2

A⋊αG

=

∥∥∥∥∥∥
n∑

i,j=1

⟨ζi ⊗ ηi|ζj ⊗ ηj⟩(Yp⋊βpG)⊗A⋊αG(Yq⋊βqG)

∥∥∥∥∥∥
1
2

A⋊αG

=

∥∥∥∥∥∥
n∑

i,j=1

〈
ηi

∣∣∣⟨ζi|ζj⟩Yp⋊βpGηj

〉
Yq⋊βqG

∥∥∥∥∥∥
1
2

A⋊αG

and

∥∥∥∥∥
n∑

i=1

ζiηi

∥∥∥∥∥
Ypq⋊βpqG

=

∥∥∥∥∥∥∥
〈

n∑
i=1

ζiηi

∣∣∣∣∣∣
n∑

j=1

ζjηj

〉
Ypq⋊βpqG

∥∥∥∥∥∥∥
1
2

A⋊αG

=

∥∥∥∥∥∥
n∑

i,j=1

⟨ζiηi|ζjηj⟩Ypq⋊βpqG

∥∥∥∥∥∥
1
2

A⋊αG

.

To see that

∥∥∥∥∥
n∑

i=1

ζi ⊗ ηi

∥∥∥∥∥
(Yp⋊βpG)⊗A⋊αG(Yq⋊βqG)

=

∥∥∥∥∥
n∑

i=1

ζiηi

∥∥∥∥∥
Ypq⋊βpqG

,

it thus suffices to show that for all i, j ∈ {1, . . . , n},

〈
ηi

∣∣∣⟨ζi|ζj⟩Yp⋊βpGηj

〉
Yq⋊βqG

and ⟨ζiηi|ζjηj⟩Ypq⋊βpqG
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are identical elements of Cc(G,A). Indeed, for all r ∈ G,〈
ηi

∣∣∣⟨ζi|ζj⟩Yp⋊βpGηj

〉
Yq⋊βqG

(r)

=

∫
G

αu−1

(〈
ηi(u)

∣∣∣(⟨ζi|ζj⟩Yp⋊βpGηj

)
(ur)

〉
Yq

)
du

=

∫
G

αu−1

(〈
ηi(u)

∣∣∣∣∫
G

⟨ζi|ζj⟩Yp⋊βpG(t)β
q
t

(
ηj
(
t−1ur

))
dt

〉
Yq

)
du

=

∫
G×G

αu−1

(〈
ηi(u)

∣∣∣⟨ζi|ζj⟩Yp⋊βpG(t)β
q
t

(
ηj
(
t−1ur

))〉
Yq

)
d(t× u)

=

∫
G×G

αu−1

(〈
ηi(u)

∣∣∣∣[∫
G

αs−1

(
⟨ζi(s)|ζj(st)⟩Yp

)
ds

]
βq
t

(
ηj
(
t−1ur

))〉
Yq

)
d(t× u)

=

∫
G×G×G

αu−1

(〈
ηi(u)

∣∣∣αs−1

(
⟨ζi(s)|ζj(st)⟩Yp

)
βq
t

(
ηj
(
t−1ur

))〉
Yq

)
d(s× t× u)

and

⟨ζiηi|ζjηj⟩Ypq⋊βpqG(r)

=

∫
G

αu−1

(
⟨(ζiηi)(u)|(ζjηj)(ur)⟩Ypq

)
du

=

∫
G

αu−1

(〈∫
G

ζi(s)β
q
s

(
ηi
(
s−1u

))
ds

∣∣∣∣∫
G

ζj(t)β
q
t

(
ηj
(
t−1ur

))
dt

〉
Ypq

)
du

=

∫
G×G×G

αu−1

(〈
ζi(s)β

q
s

(
ηi
(
s−1u

))∣∣ζj(t)βq
t

(
ηj
(
t−1ur

))〉
Ypq

)
d(s× t× u)

=

∫
G×G×G

αu−1

(〈
ζi(s)⊗ βq

s

(
ηi
(
s−1u

))∣∣ζj(t)⊗ βq
t

(
ηj
(
t−1ur

))〉
Yp⊗AYq

)
d(s× t× u)

=

∫
G×G×G

αu−1

(〈
βq
s

(
ηi
(
s−1u

))∣∣∣⟨ζi(s)|ζj(t)⟩Yp
βq
t

(
ηj
(
t−1ur

))〉
Yq

)
d(s× t× u)

=

∫
G×G×G

αu−1s

(〈
ηi
(
s−1u

)∣∣∣αs−1

(
⟨ζi(s)|ζj(t)⟩Yp

)
βq
s−1t

(
ηj
(
t−1ur

))〉
Yq

)
d(s× t× u)

(By the axioms of a group action on a C∗-correspondence.)

=

∫
G×G×G

αu−1s

(〈
ηi
(
s−1u

)∣∣∣αs−1

(
⟨ζi(s)|ζj(st)⟩Yp

)
βq
t

(
ηj
(
t−1s−1ur

))〉
Yq

)
d(s× t× u)

(By the change of variables t 7→ st.)

=

∫
G×G×G

αu−1

(〈
ηi(u)

∣∣∣αs−1

(
⟨ζi(s)|ζj(st)⟩Yp

)
βq
t

(
ηj
(
t−1ur

))〉
Yq

)
d(s× t× u).

(By the change of variables u 7→ su.)

Hence,

∀r ∈ G :
〈
ηi

∣∣∣⟨ζi|ζj⟩Yp⋊βpGηj

〉
Yq⋊βqG

(r) = ⟨ζiηi|ζjηj⟩Ypq⋊βpqG(r)
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as claimed, so

∥∥∥∥∥
n∑

i=1

ζi ⊗ ηi

∥∥∥∥∥
(Yp⋊βpG)⊗A⋊αG(Yq⋊βqG)

=

∥∥∥∥∥Ωp,q

(
n∑

i=1

ζi ⊗ ηi

)∥∥∥∥∥
Ypq⋊βpqG

.

As Cc(G,Yp) ⊗Cc(G,A) Cc(G,Yq) is dense in (Yp ⋊βp G) ⊗A⋊αG (Yq ⋊βq G), we
conclude that Ωp,q extends uniquely to a C-linear isometry

Ωp,q : (Yp ⋊βp G)⊗A⋊αG (Yq ⋊βq G) → Ypq ⋊βpq G.

We wish to show that Ωp,q is (A⋊α G)-linear for all p, q ∈ P , but this will turn
out to be a consequence of the following two facts about these maps:

• For p ∈ P , f ∈ A⋊α G, and ζ ∈ Yp ⋊βp G,

fζ = Ωe,p(f ⊗ ζ) and ζf = Ωp,e(ζ ⊗ f),

which are true by both the definitions of Ωe,p and Ωp,e.
• For p, q, r ∈ P , ζ ∈ Yp ⋊βp G, η ∈ Yq ⋊βq G, and ξ ∈ Yr ⋊βr G,

Ωpq,r

(
Ωp,q(ζ ⊗ η)⊗ ξ

)
= Ωp,qr

(
ζ ⊗ Ωq,r(η ⊗ ξ)

)
,

which holds because the multiplication law of the product system is associative.
Now, to see the (A⋊α G)-linearity of Ωp,q for all p, q ∈ P , simply observe for all

f ∈ A⋊α G, ζ ∈ Yp ⋊βp G, and η ∈ Yq ⋊βq G that

Ωp,q((ζ ⊗ η)f) = Ωp,q(ζ ⊗ ηf)

= Ωp,q

(
ζ ⊗ Ωq,e(η ⊗ f)

)
= Ωpq,e

(
Ωp,q(ζ ⊗ η)⊗ f

)
= Ωp,q(ζ ⊗ η)f.

A similar computation gives Ωp,q(f(ζ ⊗ η)) = fΩp,q(ζ ⊗ η). By linearity and con-

tinuity, Ωp,q is therefore (A⋊α G)-linear.
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Finally, we will prove that Ωp,q is surjective for all p, q ∈ P such that p ̸= e.
Firstly, note that for all p ∈ P and ζ ∈ Cc(G,Yp),

∥ζ∥Yp⋊βpG =
∥∥∥⟨ζ|ζ⟩Yp⋊βpG

∥∥∥ 1
2

A⋊αG

≤
∥∥∥⟨ζ|ζ⟩Yp⋊βpG

∥∥∥ 1
2

L1(G,A)
(By Lemma 2.27 of [17].)

=

[∫
G

∥∥∥⟨ζ|ζ⟩Yp⋊βpG(t)
∥∥∥
A
dt

] 1
2

=

[∫
G

∥∥∥∥∫
G

αs−1

(
⟨ζ(s)|ζ(st)⟩Yp

)
ds

∥∥∥∥
A

dt

] 1
2

≤
[∫

G×G

∥∥∥αs−1

(
⟨ζ(s)|ζ(st)⟩Yp

)∥∥∥
A
d(s× t)

] 1
2

=

[∫
G×G

∥∥∥⟨ζ(s)|ζ(st)⟩Yp

∥∥∥
A
d(s× t)

] 1
2

≤
[∫

G×G

∥ζ(s)∥Yp
∥ζ(st)∥Yp

d(s× t)

] 1
2

(By the Cauchy–Schwarz Inequality.)

=

[∫
G

(
∥ζ(s)∥Yp

∫
G

∥ζ(st)∥Yp
dt

)
ds

] 1
2

=

[∫
G

∥ζ(s)∥Yp
∥ζ∥L1(G,Yp)

ds

] 1
2

=
[
∥ζ∥2L1(G,Yp)

] 1
2

= ∥ζ∥L1(G,Yp)
.

Fix p, q ∈ P with p ̸= e. By a routine partition-of-unity argument, we can ap-
proximate a function ζ ∈ Cc(G,Ypq) with respect to ∥·∥L1(G,Ypq)

— and hence with

respect to ∥·∥Ypq⋊βpqG — by a linear combination of functions of the form f ⊙ z,

where f ∈ Cc(G) and z ∈ Ypq. As Mp,q : Yp ⊗A Yq → Ypq is an isomorphism, we
can approximate z itself by a linear combination of elements of Ypq of the form

Mp,q(x⊗ y), where x ∈ Yp and y ∈ Yq. Now, for any ϵ > 0, we can find an open
neighborhood U of the identity eG ∈ G and a non-negative function h ∈ Cc(G,R)
with Supp(h) ⊆ U and integral 1 such that∥∥f ⊙Mp,q(x⊗ y)− Ωp,q((h⊙ x)⊗ (f ⊙ y))

∥∥
L1(G,Ypq)

< ϵ.

This yields, according to the foregoing discussion,∥∥f ⊙Mp,q(x⊗ y)− Ωp,q((h⊙ x)⊗ (f ⊙ y))
∥∥
Ypq⋊βpqG

< ϵ.

Therefore, Range
(
Ωp,q

)
is dense in Ypq⋊βpqG, and as Ωp,q is an isometry between

Banach spaces, it follows that Ωp,q is surjective.
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As Ωp,q is a surjective (A⋊α G)-linear isometry for all p, q ∈ P with p ̸= e, we
can apply the main result of [13] by Lance to conclude that it is a unitary operator.

If Y is essential, then Me,q is an isomorphism, so Ωe,q is also an isomorphism and
Y ⋊β G is essential. □

Theorem 3.5. Suppose that a group G acts on a row-finite and faithful P -indexed
product system Y over A via automorphisms βp

g . Then G acts on O(Y) via auto-
morphisms denoted by γg. Moreover, if G is amenable, then Y ⋊β G is row-finite
and faithful, and for P = Nk and Y essential, we even have

O(Y)⋊γ G ∼= O(Y ⋊β G).

Proof. Let p ∈ P . Recall that there is a strongly continuous action τp of G on
K(Yp) given by

∀x, y ∈ Yp : τpg (Θx,y) = Θβp
g (x),β

p
g (y).

The left-action ϕp : A → K(Yp) is injective by assumption. To see that it is
equivariant for α and τp, first observe that for all g ∈ G, a ∈ A, and x ∈ Yp

βp
g ([ϕp(a)](x)) = βp

g (ax) = αg(a)β
p
g (x) = [ϕp(αg(a))]

(
βp
g (x)

)
,

so βp
g ◦ ϕp(a) = ϕp(αg(a)) ◦ βp

g ; equivalently, β
p
g ◦ ϕp(a) ◦ βp

g−1 = ϕp(αg(a)). Next,

observe for all g ∈ G and x, y, z ∈ Yp that(
βp
g ◦Θx,y ◦ βp

g−1

)
(z) = βp

g

(
x
〈
y
∣∣∣βp

g−1(z)
〉
Yp

)
= βp

g (x)αg

(〈
y
∣∣∣βp

g−1(z)
〉
Yp

)
= βp

g (x)
〈
βp
g (y)

∣∣z〉
Yp

= Θβp
g (x),β

p
g (y)(z),

so τpg (Θx,y) = βp
g ◦Θx,y ◦ βp

g−1 . In particular, as Range(ϕp) ⊆ K(Yp), we have

∀a ∈ A : τpg (ϕp(a)) = βp
g ◦ ϕp(a) ◦ βp

g−1 = ϕp(αg(a)),

which proves the equivariance of ϕp for α and τp. According to the theory of
reduced C∗-crossed products, ϕp induces the injective ∗-homomorphism

ϕp : A⋊α,red G→ K(Yp)⋊τp,red G,

where ϕp(f) = ϕp ◦ f for all f ∈ Cc(G,A). However, G is amenable, so ϕp :

A ⋊α G → K(Yp) ⋊τp G and K(Yp) ⋊τp G
∼=−→ K(Yp ⋊βp G), where the inverse Λ

of this ∗-isomorphism is defined in [9] by

∀ζ, η ∈ Cc(G,Yp), ∀s ∈ G : [Λ(Θζ,η)](s) =

∫
G

∆
(
s−1r

)
Θζ(r),βp

s (η(s−1r)) dr,

where ∆ is the modular function of G. Therefore, Y ⋊β G is also a row-finite and
faithful product system, as claimed.

Next, we show that there exists a strongly continuous action γ of G on O(Y)
that satisfies

∀g ∈ G, ∀p ∈ P, ∀y ∈ Yp : γg(jY(y)) = jY
(
βp
g (y)

)
, (1)
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where jY : Y → O(Y) denotes the universal Cuntz–Pimsner representation. Let

g ∈ G. Then the map Ψg : Y → O(Y) defined by Ψg(y)
df
= jY

(
βp
g (y)

)
for all p ∈ P

and y ∈ Yp is a Cuntz-Pimsner representation of Y on O(Y):
• For all p, q ∈ P , x ∈ Yp, and y ∈ Yq, we have

Ψg(xy) = jY
(
βpq
g (xy)

)
= jY

(
βp
g (x)β

q
g(y)

)
= jY

(
βp
g (x)

)
jY
(
βq
g(y)

)
= Ψg(x)Ψg(y).

• For all p ∈ P and x, y ∈ Yp, we have

Ψg

(
⟨x|y⟩Yp

)
= jY

(
αg

(
⟨x|y⟩Yp

))
= jY

(〈
βp
g (x)

∣∣βp
g (y)

〉
Yp

)
= jY

(
βp
g (x)

)∗
jY
(
βp
g (y)

)
= Ψg(x)

∗
Ψg(y).

• Let p ∈ P . The foregoing argument tells us that Ψg is a Toeplitz representation

of Y on O(Y), so there exists an extension Ψ
(p)
g : K(Yp) → O(Y) such that

∀x, y ∈ YP : Ψ(p)
g (Θx,y) = Ψg(x)Ψg(y)

∗

= jY
(
βp
g (x)

)
jY
(
βp
g (y)

)∗
= j

(p)
Y

(
Θβp

g (x),β
p
g (y)

)
= j

(p)
Y

(
τpg (Θx,y)

)
,

which implies by linearity and continuity that Ψ
(p)
g = j

(p)
Y ◦ τpg . As we have

shown that ϕp is equivariant for α and τp and since jY is Cuntz–Pimsner-
covariant, we have

∀a ∈ A : Ψ(p)
g (ϕp(a)) = j

(p)
Y

(
τpg (ϕp(a))

)
= j

(p)
Y (ϕp(αg(a))) = jY(αg(a)) = Ψg(a),

proving that Ψg is a Cuntz–Pimsner representation of Y.
By universality, there is thus a C∗-endomorphism S on O(Y) such that

∀p ∈ P, ∀y ∈ Yp : S(jY(y)) = jY
(
βp
g (y)

)
.

Similarly, there is a C∗-endomorphism T on O(Y) such that

∀p ∈ P, ∀y ∈ Yp : T (jY(y)) = jY

(
βp
g−1(y)

)
.

As ST = IdO(Y) = TS, we see that S is a C∗-isomorphism, and as g is arbitrary
and β is an action of G on Y, there is an action γ of G on O(Y) that satisfies (1).
The strong continuity of γ immediately follows from the continuity of jY and the
strong continuity of each βp.

We now show that a Cuntz–Pimsner representation ψ : Y ⋊β G → O(Y) ⋊γ G
exists and that it satisfies

∀p ∈ P, ∀ζ ∈ Cc(G,Yp) : ψp(ζ) = jY ◦ ζ.
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As jY|A : A → O(Y) is a ∗-homomorphism, and as γg(jY(a)) = jY(αg(a)) for
all a ∈ A, we find that jY|A is equivariant for α and γ. Hence, jY|A induces a
∗-homomorphism

ψe : A⋊α G→ O(Y)⋊γ G

such that ψe(f) = jY ◦ f for all f ∈ Cc(G,A). Let p ∈ P and ζ, η ∈ Cc(G,Yp).
Then for all s ∈ G,

[
(jY ◦ ζ)∗(jY ◦ ζ)

]
(s) =

∫
G

(jY ◦ ζ)∗(r)γr
(
(jY ◦ ζ)

(
r−1s

))
dr

=

∫
G

∆
(
r−1
)
· γr
(
jY
(
ζ
(
r−1
))∗)

γr
(
jY
(
ζ
(
r−1s

)))
dr

=

∫
G

γr−1

(
jY(ζ(r))

∗)
γr−1(jY(ζ(rs))) dr

=

∫
G

γr−1

(
jY(ζ(r))

∗
jY(ζ(rs))

)
dr

=

∫
G

γr−1

(
jY

(
⟨ζ(r)|ζ(rs)⟩Yp

))
dr

=

∫
G

jY

(
αr−1

(
⟨ζ(r)|ζ(rs)⟩Yp

))
dr

= jY

(∫
G

αr−1

(
⟨ζ(r)|ζ(rs)⟩Yp

)
dr

)
(By the continuity of jY.)

= jY

(
⟨ζ|ζ⟩Yp⋊βpG(s)

)
=
[
ψ
(
⟨ζ|ζ⟩Yp⋊βpG

)]
(s),

so

∥jY ◦ ζ∥O(Y)⋊γG
=
∥∥(jY ◦ ζ)∗(jY ◦ ζ)

∥∥ 1
2

O(Y)⋊γG

=
∥∥∥ψ(⟨ζ|ζ⟩Yp⋊βpG

)∥∥∥ 1
2

O(Y)⋊γG

≤
∥∥∥⟨ζ|ζ⟩Yp⋊βpG

∥∥∥ 1
2

A⋊αG

= ∥ζ∥Yp⋊βpG.

In light of this norm-inequality, there exists a continuous linear map

ψp : Yp ⋊βp G→ O(Y)⋊γ G

such that ψp(ζ) = jY ◦ ζ for all ζ ∈ Cc(G,Yp). By combining the various ψp’s,
we get a map ψ : Y ⋊β G → O(Y) ⋊γ G. The following show that ψ is a Toeplitz
representation:

• As seen above, ψe

(
⟨ζ|ζ⟩Yp⋊βpG

)
= ψp(ζ)

∗
ψp(ζ) for all p ∈ P and ζ ∈ Cc(G,Yp).
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• For all p, q ∈ P , ζ ∈ Yp ⋊βp G, η ∈ Yq ⋊βq G, and s ∈ G,

[ψp(ζ)ψq(η)](s) =

∫
G

[ψp(ζ)](r)γr
(
[ψq(η)]

(
r−1s

))
dr

=

∫
G

jY(ζ(r))γr
(
jY
(
η
(
r−1s

)))
dr

=

∫
G

jY(ζ(r))jY
(
βq
r

(
η
(
r−1s

)))
dr

= jY

(∫
G

ζ(r)βq
r

(
η
(
r−1s

))
dr

)
= jY((ζη)(s))

= [ψpq(ζη)](s),

so ψp(ζ)ψq(η) = ψpq(ζη).
It thus remains to check Cuntz–Pimsner covariance. If

ψ(p) : K(Yp ⋊βp G) → O(Y)⋊γ G

denotes the extension of ψp, then letting p ∈ P , ζ, η ∈ Cc(G,Yp), and s ∈ G, we
obtain that[

ψ(p)(Θζ,η)
]
(s) =

[
ψp(ζ)ψp(η)

∗]
(s)

=

∫
G

[ψp(ζ)](r)γr
([
ψp(η)

∗](
r−1s

))
dr

=

∫
G

jY(ζ(r))γr

(
∆
(
s−1r

)
· γr−1s

(
jY
(
η
(
s−1r

))∗))
dr

=

∫
G

∆
(
s−1r

)
· jY(ζ(r))γs

(
jY
(
η
(
s−1r

))∗)
dr

=

∫
G

∆
(
s−1r

)
· jY(ζ(r))jY

(
βp
s

(
η
(
s−1r

)))∗
dr

=

∫
G

∆
(
s−1r

)
· j(p)Y

(
Θζ(r),βp

s (η(s−1r))

)
dr

= j
(p)
Y

(∫
G

∆
(
s−1r

)
·Θζ(r),βp

s (η(s−1r)) dr

)
=
[
j
(p)
Y ◦ Λ(Θζ,η)

]
(s).

Hence, ψ(p)(Θζ,η) = j
(p)
Y ◦ Λ(Θζ,η), which means that ψ(p)(T ) = j

(p)
Y ◦ Λ(T ) for all

T ∈ K(Y ⋊βp G). In particular, we have for all f ∈ Cc(G,A) that

ψ(p)
(
Λ−1

(
ϕp(f)

))
= j

(p)
Y ◦ Λ

(
Λ−1(ϕp ◦ f)

)
= j

(p)
Y ◦ ϕp ◦ f

= jY ◦ f
= ψe(f).

Therefore, ψ(p) ◦
(
Λ−1 ◦ ϕp

)
= ψe for all p ∈ P , which proves that ψ is Cuntz–

Pimsner covariant. By universality, the representation ψ : Y ⋊β G → O(Y) ⋊γ G
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determines a unique ∗-homomorphism

ψ∗ : O(Y ⋊β G) → O(Y)⋊γ G

such that ψ∗
(
jY⋊βG(f)

)
= ψp(f) for f ∈ Cc(G,Yp). The image of ψ∗ generates

O(Y)⋊γ G, so ψ∗ is surjective.
For P = Nk and Y essential, recall that there is a gauge action σ of Tk on O(Y)

such that σz(a) = a and σz(jY(ζ)) = zpjY(ζ). As the action γ of G on O(Y) is
equivariant, we get a gauge action of Tk on O(Y)⋊γ G. The injectivity of ψ∗ now
follows from the injectivity of ψe (note that jY is injective); see Lemma 3.3.2 in [5]
or Corollary 4.14 in [3]. □

Remark 3.6. Katsoulis obtained similar results for the so-called generalized gauge
action on a product system over a semigroup P that is the positive cone of an abelian
group, see Theorem 3.8 in [10]. Moreover, using a Fourier transform, he proved a
Takai-duality result and generalized some results of Schafhauser from [15].

Remark 3.7. Suppose Y is a row-finite, faithful, and essential product system
indexed by P = Nk. If A is AF and each C∗-correspondence Yn is full and separable,
then there is a gauge action σ of Tk on O(Y) and O(Y)⋊σ Tk is AF.

Proof. Like in Example 3.2, there is a gauge action of Tk on O(Y). In this case,
O(Y) ⋊σ Tk is Morita–Rieffel equivalent to the core O(Y )

σ ∼= lim−→n∈Nk
K(Yn), and

each K(Yn) is Morita–Rieffel equivalent to A as Yn is full. It follows thatO(Y)⋊σTk

is AF. □

Example 3.8. In the setting of Example 3.3, the compact group G acts on each fiber
Yn of the product system Y via the representation ρn = ρ⊗n1

1 ⊗ · · · ⊗ ρ⊗nk

k . This
action is compatible with the multiplication maps and commutes with the gauge
action of Tk. The crossed product Y⋊G is a row-finite and faithful product system
indexed by Nk over the group C∗-algebra C∗(G). Moreover,

O(Y)⋊G ∼= O(Y ⋊G).

The Doplicher–Roberts algebra Oρ1,...,ρk
constructed in [4] from intertwiners

Hom(ρn, ρm) is isomorphic to the fixed point algebra O(Y)G and is Morita–Rieffel
equivalent to O(Y)⋊G.

Example 3.9. If a locally compact group G acts on a k-graph Λ by automorphisms,
then G acts on the product system Y constructed from Λ as in Example 2.3 and
the C∗-algebra of the product system Y ⋊ G is isomorphic to C∗(Λ) ⋊ G. In
[8], the authors consider the particular case when G = Zℓ and they construct a
(k + ℓ)-graph Λ× Zℓ such that C∗(Λ× Zℓ

) ∼= C∗(Λ)⋊ Zℓ. Our result gives a new
perspective on this situation.
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