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Abstract. This paper gives a further investigation on the regularity criteria for
three-dimensional micropolar equations in Besov spaces. More precisely, it is
proved that the weak solution (u,w) is regular if the velocity u satisfies
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0 oo

B3

1. Introduction

Micropolar fluids are proposed to characterise a class of complicated fluids that
cannot be described by the classical Navier-Stokes equations, such as blood flows,
bubbly liquids, liquid crystals and so on, for more details see [18]. In this paper, the
regularity problem for the following three-dimensional incompressible micropolar
fluid equations will be investigated

Ou+u-Vu— (u+ k)Au+ Vp = 2kV X w,

Oyw +u-Vw —vAw —vVV - w + 4dkw = 2KV X u,
V-u=0,

u(z,0) = uo(x),w(z,0) = wo(x),

(1.1)

here u = (u1,u2,u3) € R? is the velocity field, w = (wy,ws,ws3) € R3 is the micro-
rotational velocity, and p € R is the scalar pressure. And the parameters u , k, v and
v are positive constants. For simplicity, we shall assume that p =k = %, v=~v=1
on account of their values playing no parts in our discussions.

The classical micropolar fluid equatons were first studied by Eringen [10] in
1966, and then Galdi and Rionero [11] and Lukaszewicz [16],[17] studied the well-
posedness of solutions to the micropolar fluid equatons. Because the system (1.1)
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contains the Navier-Stokes equations as a subsystem, the well-posedness theory
for micropolar fluid equations can’t be better than Navier-Stokes equations. Like
Navier-Stokes equations, it is returned to study the regularity criterion for the weak
solution of micropolar fluid equations and until now different criteria of solutions
have arisen, for instance, the interesting and famous Prodi-Serrin type regularity
criterion in terms of the velocity, micro-rotational velocity and pressure. For reg-
ularity criteria for Navier-Stokes equations and micropolar fluid equations, readers
may refer to [2, 3, 4, 6, 7, 8,9, 14, 15, 19, 21, 22, 12, 20, 23, 24| and references
therein.

In [22], Yuan and Li showed two Prodi-Serrin type regularity criteria in inho-
mogeneous Besov space. That is if the partial derivatives of velocity and micro-
rotational velocity satisfy

T
[ (Ul + 191l )at < oo, (1.2)
or
T 5 s
/ (IVhulll .+ [IVawl? . )dt < oo, (1.3)
i - -

then the solution can be extended smoothly beyond T. Here Vju = (01u, dau),
Vh(.d = (81w, 82&}).

Motivated by the above references and therein, we try to reduce the condition
on w in (1.2) and (1.3). Our result is stated as follows.

Theorem 1.1. Suppose T > 0, the initial data (ug,wp) € H*(R?) x H*(R?), and
let (u,w) be a weak solution of (1.1). If one of the following conditions holds:
(7) the weak solution u satisfies

g 3 2 3
/ thuthB()2 dt < oo, with ‘5—&—;:2, 5 <p < o0, (1.4)
0 2P
(ii) u satisfies
T 8
/ [Vaull % dt < oo, (1.5)
O oo, 00
(#91) u satisfies
T 2
/ [Vhunll ;=% dt < oo,with 0 <a <1, (1.6)
0 oo

then the solution (u,w) is regular on (0, T1.

Remark 1.1. The condition on micro-rotational velocity is removed in (1.4), (1.5)
and (1.6) and Vju is replaced by Vaup in (1.4) and (1.6). Therefore, the (1.4),
(1.5) and (1.6) are obviously improved results. What’s more, for (1.4), when p =
00, q = 1, the condition (1.4) can reduce being a part of (1.2). In addition, it should
be pointed out that (1.4) and (1.5) like the supplementary cases when a = 0 and
a =1 for (1.6).
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2

2 2
Remark 1.2. Noting that |[Vus| ;% & [lunll;:%. and letting 1 —a = r , the
condition (1.6) can be substituted by Y '

T 2
/ Jul B dt < o0, 0<r <1,
; .

2. Preliminaries

In this section, we will review some preliminaries on the Littlewood-Paley decom-
position theory and the definition of the homogeneous Besov spaces and introduce
some useful inequalities, which will play an important role in the later proof. Let
S(R™) be the Schwartz class of rapidly decreasing functions, and f € S(R™). The
Fourier transform Ff = f is defined by

fe) = [ Flaje s,

and the inverse Fourier transform F~'f = f is defined by
. 1
f(&) =
(2m)" Jr

Let us choose a nonnegative radial function x(¢) € C§°(R™) such that 0 < x(¢) <1
and

f(z)e™sda.

{x(é) =1, for ¢ <3,

X(§) =0, for[¢] >3,

and let §(§) = x(£/2) — x(&), x;(&) = x(57) and $;(£) = (35 for j € Z. Write
h(z) = F~'x, hj(x) = 2" h(2x);
pi(x) =2"p(2x).

The Littlewood-Paley projection operators S; and A; are defined respectively as
follows,

Sif(@) = hy + f(z) = 2 / h(2y) f(z - y)dy,

R?)
£11(@) = 95+ 1(@) = Sy 1) = ;@) =2 [ o(2in) 1= v)ay.

Formally, A; is a frequency projection to the annulus |£| ~ 27, while S; is a
frequency projection to the ball |¢| ~ 27 for j € Z. For any f € L?(R"), we have
the Littlewood-Paley decomposition

F=hxf+Y ¢;xf(x),

720

“+o0
=Y ¢ fx),

and it is not difficult to verify
suupx(€) N suup;(€) = 0 with j > 1,
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suup; (&) N suupp;(§) = 0 with |i — j| > 2.
For details of Littlewood-Paley theory, one may refer to [1, Chapter 2]. With the
help of the definitions above, we now give the definition of the homogeneous Besov
space.

Definition 2.1. Let s € R, p, ¢ € [1, 00|, the homogeneous Besov space is defined
by

By =A{feZ R");|fllz; < oo}
where

+oo
1lg, = (52 27 lpg * £IIE0)M,

and Z'(R™) represents the dual space of Z(R")

Z(R") = {f € S(R"); D*f = 0,Ya € N" multi — index}.

Next, we state some lemmas used in the proof of our main results. The first one
is the classical Bernstein inequality (see [1, page 52 |).

Lemma 2.1. Assume k is a nonnegative integer, 1 < p < ¢ < 0o, then the following
holds

sup |02 f||pa < C2FFHGE=D A f o, (2.1)
a=k

here C is a positive constant independent of f, j.

Lemma 2.2. (Page 2 in [5]) Let f € H!(R3),2 < p < 6, then exists a constant C
such that

6

1Fllze < CUFIZ N0uF I 2 021 % N0 £1I,Z - (2.2)

Lemma 2.3. (Page 82in [1]). Let 1 < ¢ < p < oo and « be a positive real number.
Then there exists a constant C such that

» < =0 0 ‘ —a® - _— .
1Fllze < ClAll g NN gs s with B a(q 1),0 ) (2.3)
In particular, when 8 =1, ¢ = 2 and p = 4, we have a = 1 and
1 1
1fllee < CIF G 19512 (2.4)

Lemma 2.4. ([13, Lemma 5]) Let f € B;OTOO(RLS), g,h € HY(R3) and for any
e>0,0<r <1, we have

2
/RB forde < ClIfI 52 (lglize + 1AIIZ:) + e(IVallZe + I VRIZL)-

Lemma 2.5. Assume the initial data (ug,wp) € HY(R3) x HY(R?), u and 0 is a
pair weak solution of the system (1.1). If the following H'! estimate of u is satisfied

T
V|2, +/ |Aul|22dt < oo, (2.5)
0

then we have

T
Vel + [ Il < C.
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Proof Firstly, it is not difficult to get the L? estimates of u and w. Multiplying
u and w to the equations (1.1); and (1.1)s respectively, then integrating it on R3,
one has

1d

sa

z/ (wa)udx—i—/ (qu)wdeC/ |Vw\|u|dw+/ |Vu||w|dz
R3 RS R? RS

ullZ + llwlZ) + 1 VullZe + IVwlZe + 2wllie + 1V - w2

1
< C(lullze + llwlizz) + S (IVulze + [ Volz2).
Hence it can be inferred by Gronwall’s inequality
T
2 2 2 2 2 2
(lullze + llwllz2) +/0 (IVullzz + [[Vewllze + 4llwllzz + 2V - wl|72)dt

< C(lluollZ + llwollZ2)-

Next, multiplying the second equation of (1.1) by —Aw and integrating it on R?,
we get

1d

53 IVelie + 14wz + 2[Veli: + VYV - wllZ:

= / (u-Vw) - Awdz — V X u - Awdz. (2.6)
R3 R3

By Holder’s inequality and the Gagliardo-Nirenberg inequality, we have that
/Rg(u - Vw) - Awdz < Ollullpe< [[Vewl| L2 [|Aw]| L2
< C|[Vullfa | Aull 2 [ Ve 2 | Ac] 1
< I Vullzal|Aule Vel + 5 lAw]E
< Vel |Vullfs + 1Awl? (27)

For the second term in right of (2.6), it is clear that by Holder’s inequality and
Young’s inequality that

1
— | Vxu-Awdz < O||Vul|p2||Awl| e < O||Vul3: + Z\|Aw||2L2. (2.8)
R3

Then plugging the above estimates (2.7) and (2.8) into (2.6), we obtain

[Vw|[Z2 + [[Aw]|72 + 4] Vw|[: +2([VV - w]|72 < C(1+ [[Vowl|72)[[Vul 7.
(2.9)

=
dt
Finally applying the L? norm of Vu in (2.5) and Gronwall’s inequality, it yields

T
IVelZ: +/O (1Aw]Z: + 41 Vwllf2 +2[VV - wl|F2)dt

< C(1+ [lwol|72)[Vwo|)3- < C. (2.10)
Thus the proof of Lemma 2.4 is completed.
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3. Proof of the Main Theorem

In this section, we are dedicated to proving Theorem 1.1. We first deal with (7),
showing the validness of condition (1.4). At first, applying V to the first equation
in system (1.1), and multiplying the resulting equation with Vu, then integrating
it on R3, it follows that

d
—||Vu||%2 + |Aul|2, = 7/ V(u-Vu) - Vudz +/ V(V X w) - Vudz
-

R3

1
2d
= / ) kuidiuogude + / Z Opuzdu;Opu;de — / V(V X w) - Vudz
R3 R3

Gk=11i=1 jk=1
2

3 2
= / Z Z OLU; aujﬁku]dx—k/ ZZ@kuza uzO0pusde
R3

k=14,j=1 k=1 i=1

3 2
+ / Z Z OkugOsu;Okuj + OpugOsusOpus)de — V(V X w) - Vudz
RS

k=1 _]=1 R?

2 2
/ Z Z Ort; Oju;Opujde —l—/ Z Z(@kuﬁiug@kug + O3u;0;u303u3)dx
3 % k=1i=1

k=114,j=1
/ Z Z 8ku383ujaku] + 83U333uja3’u,j + akU383U3akU3)
RS p—1 =1

— | V(V xw)-Vudz
R3

< c/ |vhuh|\vu\|w|dx+/ Veol|Auldz = Iy + L. (3.1)
R3 R3

Bringing the Littlewood-Paley formal decomposition to Vyuy yields

j=N
Vyup = Z Ajvhuh + Z Athuh + Z Ajvhuh.
Jj<—-N j=—N >N

Therefore, the term I; can be rewritten as follows

L<c ) / | Aj V||Vl |[Vuldz + C Z / | A Vius||Vul|Vuldz

j<—N

+CZ/ | A Viun| |Vl [Vauldz

j>N
= I + Lo + Li3.

In the following, the terms I, 112, I13 will be bounded one by one. Firstly for 114,
by the virtue of Holder’s inequality and Bernstein’s inequality, it can be deduced
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that
m=c Y / | 2 Viun||Vu|[Vulde < O Vull2: Y (1 &) Vaunl|p=
j<N I j<-N
<CIVul?: > 289 A Vi e
j<—N
< 027NV up| g2 | V]| 2. (3.2)

For 115, making use of Holder’s inequality and the Definition 2.1, we arrive at
=

=N j=N
Ly =C | &) Viup|[Vul[Vulde < C 125 Vaup|| ol Val? 2
R3 Lp—1
j=—N

Jj= j=—N
2p=—3 3
Jj=N 2r j=N - 2p
<c| Y 1w Y18 Vaulls | IVl 2
=N J=—N Lp—

2p—3

2p=3 3
< CVhunllgo , [Vully, [|Auz,
P53

= 2 1 2
< ClVaunllgo” IVullz, + glliAullz,. (3.3)
Similarly as above, by Gagliardo-Nirenberg’s inequality and Holder’s inequality, we
have

Ii3=C Z / | A Viup||Vu||Vulde < C|| V|3, Z | & Viaun| s
>N /R j<—N

< C||Vul 2| Aullpz > 23| A Viun| 2
j>N

Nl=

1
2

<c|> 27 > 2% 8 Vaunlize | I Vullz2l|Aul| 2

j>N j>N
< C2% |[Vu| 2 | Au . (3.4)
Now, collecting the estimates (3.2)-(3.4), we get

_3 : 22 _N 1
I <C27 2| Vul3z + C||Viun| 7 . IVull, + C27 7 | Vul| 2 || Aul 2 + §||AU||%2-

P
(3.5)
And it is easy to check that by Holder’s inequality and Young’s inequality

1
I = / [Vw||Auldz < C||Vw| L2 [[Aul 2 < C[[Vw]|72 + gI\AUH%z~ (3.6)
RS
For Iy, We can choose N such that

i

C2™ 7 ||V 12 <

=

and it can be gotten

N> 2log(1+ C||Vul|L2)

4.
log 2 +



64 Q. LI and M. ZOU

Therefore, adding the estimates (3.5) and (3.6) into (3.1), combining condition (1.4)
and applying Gronwall’s inequality, it yields

T
V|22 +/ | Aul2.dt < C. (3.7)
0
Finally, employing the Lemma 2.5 with above (3.7), we can derive that
T
IVullze + [IVelZ- +/ (1AulZ2 + | Aw]Z2)dt < C. (3.8)
0

In the following part, we will show (i7) and (¢i¢). Firstly, we prove the (i) that
the solution is regular under condition (1.5). Taking V} on the first equation in
system (1.1), multiplying Vju to the resulting equation and integrating it on R3,
one has

1d

id—”thH%z + IVaVul|2: = —/ Vi(u-Vu) - Vyudz
t R3

+ Vi(V X w) - Vyudx := Jy + Jo. (3.9)
]R3

By Hoélder’s inequality and (2.4), J; can be bounded as:

Ji=— [ Vpu-Vu-Vyudr < / IV ru||Viu| | Vu|de
R3 R3
< OlIVaul2al|Vullze < CVaul s [IVVaullr2 [ Vul| 2
1
< C|Vnulfo_[IVullze + IV Vrula. (3.10)
For Js, we have using Holder’s inequality and Young’s inequality that
1
T2 < OVl 2 VVaull 2 < ClIVellZ: + 21V VaulZa. (3.11)
Adding (3.10) and (3.11) into (3.9), then integrating on [0,t),0 < t < T, we have
t t
IVt +/ IV hulZedt < [ Vo] 2a +/ IVnulds_[IVullZadt +C.
0 0 :
(3.12)

With this result above, we re-estimate I; in (3.1). Employing Lemma 2.2, it can
be arrived that

I gc/ IVl |Vl | Vuldz < C||Vaul|ze]| Va2
RS
1 1
< O Vaull 2| Vul[ 22 [VVhul[ 2 | Aul| 7. (3.13)

Combining (3.1), (3.6) and (3.13), one has

d t 1 1
&IIVUII%z +/ [Aul|72dt < C|IVaul| L2 | Vol .|V Viul 2 [|Aul|F + Cl[Vw| 7.
0
(3.14)
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Integrating above (3.14) on time, and making use of Holder’s inequality and inqual-
ity (3.12) , we infer that

t t 1 1
Va2 + / | Au|22dt < (Vo2 + / IVl 2 | Vull £ |V yl| 2| A 2 dt + €
0 0

1
2

1
t 1 t
< O+ [Vl + € s |vhu||Lz>( / w%zdt) ( / |vvhu||%zdt)
<s<t 0 0

¢ 1
X (/ ||Au|%2dt>
0

t
< C+ | Vugl?: +C (1 + |V 22 +/ IVhull? ||Vu||i2dt>
. :

t ;
« </ ||Au|§2dt> . (3.15)
0

By utilising Holder’s inequality and Young’s inequality, one has

t s
V|7 +/ [Au|Z2dt < C(1+ [[Vuol72) + C|[Vuoll 7.
0

¢ 3
20 ([ 19l 190l
< C(1+ [[VuolZ2) + ClIVuol ;-

t . t 3
o ([ 1l 1vuar) ([ 1vuaa)

< C(1+ [[VuolZ2) + ClIVuol ;-

t 8
+C(/ IVhull %, ||Vu||2L2dt>. (3.16)
0 00,00

Finally, we deduce from the Gronwall’s inequality that

t 8 t 8
IVullze + [ |AulRadt < O+ [VaollZ + [ Vunl ) x exp ( JAN dt)
0 0 60,00
(3.17)

Then applying Lemma, 2.5, we can get the H' norm of w, which completes the proof
of (it).

Now we prove (iii) and we estimate I; again in another way. Using Lemma 2.4,
it follows that

L gc/ IV ][Vl [Vl
R3

2 1
< CIVhunl 35 Vel + 5lAult. (3.13)
Combining (3.1), (3.6) and (3.18), we obtain

2

d T 2
&HVUH%Z +/0 IAull72dt < O Viunl 55 [IVullie + ClVwlZ..  (3.19)

2—«a
H— o
Boo,oe
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Then employing the Gronwall’s inequality for (3.19), the H' norm of u is available.
Finally, applying Lemma 2.5, the H' norm of w can be achieved. This completes
the proof of Theorem 1.1.
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