
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 48 (2018), 115-119

SPLITTING OF CLOSED SUBGROUPS OF LOCALLY COMPACT

ABELIAN GROUPS

A. A. Alijani and A. Yekrangi
(Received August 24, 2018)

Abstract. Let £ be the category of all locally compact abelian (LCA) groups.

In this paper, we investigate the splitting of the identity component, the sub-
group of all compact elements and the maximal torsion subgroup of a group

G ∈ £. A group G ∈ £ will be called split full if every closed subgroup of G

splits. In this paper, we give a necessary condition for an LCA group to be
split full.

1. Introduction

All groups considered in this paper are Hausdorff topological abelian groups and
they will be written additively. For a group G, we denote by tG, the maximal
torsion subgroup of G defined by tG =

⋃
n∈NG[n] where G[n] is the subgroup of G

defined by G[n] = {x ∈ G;nx = 0} for all positive integers n. An element g ∈ G
is called compact if the smallest closed subgroup which its contains is compact [4,
Definition 9.9]. We denote by bG, the subgroup of all compact elements of G. For
any group G, G0 is the identity component of G. Let H be a closed subgroup of G.
We say that H splits in G, if G contains a closed subgroup K such that H

⋂
K = 0

and the map H ×K → G, (h, k) 7−→ h+ k is a homeomorphism. Let £ denote the
category of all locally compact abelian groups with continuous homomorphisms as
morphisms. A morphism is called proper if it is open onto its image, and a short

exact sequence 0→ A
φ−→ B

ψ−→ C → 0 in £ is said to be an extension of A by C
if φ and ψ are proper morphism. We let Ext(C,A) denote the group of extensions
of A by C [3]. For a group G in £, tG need not be split in G [8]. Let G∗ be the
minimal divisible extension of G [4, A.15] . We proved that if G is torsion-closed,
then, tG∗ the maximal torsion subgroup of G∗ splits in G∗ ([7, Theorem 4.3]). In
[5], Loth studied the splitting of G0 and bG of an LCA group G. In Section 1, we
study the splitting of G0, bG and tG under certain conditions on G ∈ £. We show
that if G is torsion-free, then G0 splits in G (see Theorem (2.6)). If bG is compact,
then bG splits in G (Theorem (2.8)). We also show that if G is densely divisible,
then bG splits in G (Lemma 2.13). A group G is called torsion-closed if tG is closed
in G. In [7], we determined the LCA torsion-closed groups. We prove that the
subgroup tG of a torsion-closed group G splits if and only if G is a direct sum of a
torsion group and a torsion-free group (see Theorem 2.17).

We say that an LCA group G is split full if every closed subgroup of G splits.
We show that if an LCA group G is split full, then G ∼=

∏
p∈I⊆P (

∏
np

Z(p)) ⊕
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(
⊕

q∈I⊆P (
⊕

nq
Z(q))) where P is the set of all prime numbers, np and nq are some

cardinals and I, J ⊆ P (see Theorem 3.9).
The additive topological group of real numbers is denoted by R, Z is the group

of integers with the discrete topology and Z(n) is the cyclic group of order n. For a
closed subgroup H of G, H ↪→ G is the inclusion and π : G→ G/H is the natural
mapping. For any group G and H, Hom(G,H) is the group of all continuous
homomorphisms from G to H, endowed with the compact-open topology. The dual
group of G is Ĝ = Hom(G,R/Z) and (Ĝ, S) denotes the annihilator of S ⊆ G in

Ĝ. For more on locally compact abelian groups, see [4].

2. Splitting of G0, bG and tG in an LCA Group G

Let G be a group in £. In this section, we prove the following statements:
(1) If G is a torsion-free group, then G0 splits in G.
(2) If bG is compact, then bG splits in G.
(3) Let G be torsion-closed. tG splits in G if and only if G is a direct sum of a

torsion group and a torsion-free group.

Lemma 2.1. Let G ∈ £ and H be a closed subgroup of G. If Ext(G/H,H) = 0,
then H splits in G.

Proof. It is clear by the definition of Ext. �

Definition 2.2. A subgroup H of G is called pure if nH = H
⋂
nG for every

positive integer n [1].

Remark 2.3. (a) Every divisible subgroup of G is pure.
(b) Let G ∈ £. Then, G0 is connected. By [4, Theorem 24.25], a connected LCA

group is divisible. So G0 is a pure subgroup of G.

Lemma 2.4. Let G be a torsion-free group in £ and H a pure subgroup of G.
Then G/H is a torsion-free group.

Proof. Let n(x + H) = H for some positive integer n and x ∈ G. Then nx ∈ H.
Since H is a pure subgroup of G, so nx = nh for some h ∈ H. Hence n(x− h) = 0.
Since G is torsion-free, so x = h. So x+H = H and G/H is a torsion-free group. �

Definition 2.5. A group G ∈ £ is called an £−cotorsion group if Ext(X,G) = 0
for all torsion-free groups X ∈ £ [2].

Theorem 2.6. Let G be a torsion-free group in £. Then G0 splits in G.

Proof. Let G be a torsion-free group. By (b) of Remark 2.3, G0 is a pure subgroup
of G. Since G is torsion-free, G/G0 is a torsion-free group (see Lemma 2.4). By
[2, Corollary 6], G0 is an £−cotorsion group. So, Ext(G/G0, G0) = 0. Hence, by
Lemma 2.1, G0 splits in G. �

Lemma 2.7. Let G ∈ £. If G contains a compact open subgroup, then G/bG is a
discrete torsion-free group.

Proof. Let K be a compact open subgroup of G. Then (Ĝ,K) is a compact

open subgroup of Ĝ. By [4, Theorem 24.17], (Ĝ)0 = (Ĝ, bG). Since (Ĝ)0 is the

intersection of all open subgroups of Ĝ, so (Ĝ, bG) ⊆ (Ĝ,K). Hence, (Ĝ, bG) is a
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compact group. By [4, Theorem 23.25], ̂(G/bG) ∼= (Ĝ, bG) = (Ĝ)0. So, ̂(G/bG)
is a compact connected group. Hence, by [4, Theorem 24.25], G/bG is a discrete
torsion free group. �

Theorem 2.8. Let G be a group in £ such that bG is compact. Then bG splits in
G.

Proof. Let G be a group in £ such that bG is compact. By [4, Theorem 24.30],

G = Rn ⊕ G′
where G

′
contains a compact open subgroup K. So, bG′ = bG is

compact. On the other hand, G/bG is a discrete torsion-free group (see Lemma 2.7).
So, by [1, Proposition 53.4], Ext(G/bG, bG) = Pext(G/bG, bG) = 0. Hence, bG
splits in G. �

Lemma 2.9. Let G ∈ £ and H be a closed subgroup of G. Then, 0→ H ↪→ G→
G/H → 0 splits if and only if 0→ (̂G/H)→ Ĝ→ Ĥ → 0 splits.

Proof. It is clear by [3, Theorem 2.12]. �

Corollary 2.10. Let G ∈ £ and H be a closed subgroup of G. Then, H splits in
G if and only if (Ĝ,H) splits in G.

Definition 2.11. A group G ∈ £ is called densely divisible if G contains a dense
divisible subgroup [6].

Lemma 2.12. A group G is densely divisible if and only if Ĝ is a torsion-free
group [6].

Lemma 2.13. Let G be a densely divisible group in £. Then, bG splits in G.

Proof. Let G be a densely divisible group in £. By Lemma 2.12, Ĝ is a torsion-free
group. So,(Ĝ)0 = (Ĝ, bG) splits in G (see Theorem 2.6). Hence, by Corollary 2.10,
bG splits in G. �

Definition 2.14. A group G is called torsion-closed if tG is closed in G [7].

Let G ∈ £. In general, tG need not be closed in G [7].

Theorem 2.15. A group G is torsion-closed if and only if G = Rn ⊕ M ⊕ G
′

where n is a nonnegative integer, M a compact connected torsion-free group and G′

containing a compact open subgroup K ∼=
∏
i∈IZ/p

ri
i Z×

∏
p4p

np [7, Theorem 3.5].

Let G be a torsion-closed group in £. In general, tG need not be split in G.

Example 2.16. Let p be a prime number. Consider the group G =
∏
n∈N Z(pn)

with discrete topology. If tG splits in G, then G should be contain a torsion-free
subgroup which is a contradiction. Hence, tG do not split in G.

Theorem 2.17. Let G be a torsion-closed group in £. Then, tG splits in G if and
only if G is a direct sum of a torsion group and a torsion-free group.

Proof. First, suppose that tG splits in G. Then the extension 0 → tG ↪→ G
π−→

G/tG→ 0 splits. So G ∼= tG⊕G/tG. Conversely is clear. �
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3. Split Full LCA Groups

In this section, we define the concept of a split full LCA group and give a
necessary condition for an LCA group to be split full.

Definition 3.1. A discrete abelian group is said to be elementary if it can be
expressed as a sum of simple subgroups [1].

Remark 3.2. Let G be a discrete abelian group. If G is split full, then every
subgroup of G is a direct summand. So, a discrete abelian group G is split full if
and only if G is an elementary abelian group. But, elementary abelian groups has
the form

⊕
p∈I⊆P (

⊕
np

Z(p)) where P is the set of all prime numbers, np are some

cardinals and I ⊆ P [1].

Definition 3.3. A group G ∈ £ is called split full if every closed subgroup of G
splits.

Lemma 3.4. Let G be a group in £. Then, G is split full if and only if Ĝ is split
full.

Proof. Let G be a split full group in £ and H a closed subgroup of Ĝ. Then,
(G,H) splits in G (see Corollary 2.10). By [4, Theorem 24.10], H = (Ĝ, (G,H)).

So, H splits in Ĝ. Hence, Ĝ is split full. Conversely, suppose that Ĝ is split full
and H a closed subgroup of G. Then, (Ĝ,H) splits in Ĝ. By Corollary 2.10, H
splits in G. �

Theorem 3.5. A compact group G is split full if and only if G ∼=
∏
p∈I⊆P (

∏
np

Z(p))

where P is the set of all prime numbers, np are some cardinals and I ⊆ P .

Proof. It is clear by Remark 3.2 and Lemma 3.4. �

Lemma 3.6. A closed subgroup H of G ∈ £ splits if and only if there exists a
morphism f : G→ H such that f(x) = x for every x ∈ H.

Proof. It is clear. �

Lemma 3.7. Let G1 and G2 be two groups in £. If G1 ⊕G2 is split full, then G1

and G2 are split full.

Proof. Let H be a closed subgroup of G1. Then, H ⊕G2 is a closed subgroup of
G1⊕G2. By Lemma 3.6, there exists a morphism f : G1⊕G2 → H ⊕G2 such that
f |H⊕G2= 1 |H⊕G2 . It is clear that g = π1fl1 : G1 → H is a morphism such that
g |H= 1 |H . Similarly, it can be show that G2 is split full. �

Remark 3.8. It is clear that Z does not split in R. So, R is not split full.

Theorem 3.9. Let G be a split full group in £. Then,

G ∼=
∏

p∈I⊆P

(
∏
np

Z(p))⊕ (
⊕

q∈I⊆P

(
⊕
nq

Z(q)))

Where P is the set of all prime numbers, np and nq are some cardinals and I, J ⊆ P .

Proof. Let G be a split full group in £. By [4, Theorem 24.30], G = Rn ⊕ G′
where G′ contains a compact open subgroup K. By Lemma 3.7, Rn and G′ are
split full. So, n = 0 and G ∼= K⊕ (G/K). Hence, by Remark 3.2 and Theorem 3.5,
G ∼=

∏
p∈I⊆P Z(p)⊕ (

⊕
q∈J⊆P Z(q)). �
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