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Abstract. The study of fluid flow is a very fascinating area of fluid dynam-

ics. Fluid motion has received more and more attention in recent years and

numerous researchers have looked into this topic. However, they rarely used
a mathematical analysis approach to analyse fluid motion; instead, they used

numerical analysis. This serves as a significant justification for the researcher’s
decision to study fluid flow from the perspective of mathematical analysis. In

this paper, we consider the R-boundedness of the solution operator families of

the Lamé equation with surface tension in bent half-space model problem by
taking into account the surface tension in a bounded domain of N-dimensional

Euclidean space (N ≥ 2). The motion of the model problem can be described

by linearizing an equation system of a model problem. This research is a
continuation of [13]. They investigated the R-boundedness of the solution

operator families in the half-space case for the model problem of the Lamé

equation with surface tension. First of all, by using Laplace transformation
we consider the resolvent of the model problem, then treat the problem in

bent half-space case. By using Weis’s operator-valued Fourier multiplier the-

orem, we know that R-boundedness implies the maximal Lp-Lq regularity for
the initial boundary value. This regularity is an essential tool for the partial

differential equation problem.

1. Introduction

An important field of research in recent years has been the analysis of fluid-
structure interaction issues. At the end of the 1990s, research focusing on well-
posedness of fluid-structure interaction problems began. For example, [2] in 2008
investigated the well-posed of the Navier-Stokes motion in the exterior of a rotating
obstacle. The Lamé equation describes motion of the solid structure.

Let us consider the motion of Navier Lamé equation in N -dimensional space
RN (N ≥ 2). We define the velocity field u(x, t) = (u1(x, t), · · · , uN (x, t))T at
position x ∈ Ω and time t > 0, with Ω a bounded domain in the N -dimensional
space RN (N ≥ 2). The formula of the Navier-Lamé equation with free surface in
a bounded domain with surface tension is (see [13]):

∂tu−Div (αD(u) + (β − α)divuI) = f in Ω,

S(u)nt = σH(Γt)nt on Γt,

VN = nt · u on Γt,

(1.1)
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for 0 < t < T , where
S(u) = αD(v) + (β − α)divuI, (1.2)

u = (u1, . . . , uN ), D(u) is the doubled deformation tensor whose (i, j) components
are

Dij(u) = ∂iuj + ∂jui, (∂i = ∂/∂xi), (1.3)

I is the N ×N identity matrix and nt is the unit outer normal to Γt. Furthermore,
α and β are the first and second viscosity coefficients, respectively, H(Γt) is the
N − 1 times mean curvature of Γt, which is given by H(Γt)nt = ∆Γt

x for x ∈ Γt,
where ∆Γt

is the Laplace-Beltrami operator on ∆Γt
. For any matrix field K whose

components are Kij , the quantity DivK is an N vector whose i-th component is∑N
j=1 ∂jKij . We define

divu =

N∑
j=1

∂juj , (u · ∇u) =

N∑
j=1

uj∂jui, (1.4)

where the second equation of (1.4) is an N vector whose i-th component is written
above. Furthermore, VN denotes the evolution speed of the intersurface Γt in the nt

direction. By applying the Laplace transform to (1.1), we have following resolvent
equation 

λu− α∆u− β∇divu = g in Ω,

(αD(u) + (β − α)divuI)n− σ(∆′
Γη)n = k on Γ,

λη + a′ · ∇′η − u · n = d on Γ,

(1.5)

where a′ = (a1, . . . , aN−1) ∈ RN−1 and a′ · ∇′η =
∑N−1

j=1 aj∂jη. The function α is
uniformly continuous with respect to x ∈ Ω and satisfies the assumptions:

ρ∗/2 ≤ α(x) ≤ 2ρ∗, (1.6)

while β is a positive constant. There is much research in the existence of an R-
bounded solution operator to the resolvent problem related to the linearized prob-
lem of Navier-Lamé (1.5). It includes the R-sectoriality for the model problem in
the whole space by using the Green function [4], in half-space by using the estimate
of Poisson kernels [4] based on a multiplier theorem due to Shibata and Shimizu
[15].

In 2021, the existence of the R-bounded solution operator of problem (1.5) in the
case where σ > 0 and a′ = 0 has been proved in [13] by using the Weis operator-
valued Fourier multiplier theorem [16]. The existence of the R-boundedness solu-
tion operator of the problem (1.1) implies not only the maximal Lp-Lq regularity
but also the generation of an analytic semigroup. In the present article, we shall
prove the existence on an R-bounded solution operator for the Problem (1.5) in
the case where σ > 0 and a′ ̸= 0 in a bent half-space.

We believe that our main result Theorem 2.9 is an important contribution to the
analysis of regularity of the model problem, even though we only take into account
the bent half-space case.

We would also like to emphasize that the challenging part of our proof is finding
operator families of the model problem that are appropriate to deal with the Lamé
equation system’s nonlinearities and for which we are able to obtain R-boundedness
results for the linearized model of (1.5). Shibata [14] proved the existence of an
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R-bounded solution operator of the Stokes equations subject to free boundary con-
ditions.

Many researchers have recently been interested in researching fluid motion in
the compressible situation. Murata [8] looked into the R-boundedness with slip
boundary condition in 2014. However, we only know about the maximal Lp-Lq

regularity on a bounded domain and some unbounded domains that satisfy some
uniformity; and we know about global well-posedness in the bounded domain case
for the compressible non-newtonian viscous barotropic fluid flow of the Oldroyd-B
type without surface tension with free surface thanks to [10, 11].

By accounting for the surface tension at the boundary, this work extends Mary-
ani’s conclusion [13]. Investigating the R-boundedness of the solution operator
families for the Navier-Lamé equation with surface tension in bent half-space prob-
lem is the main goal of this research. We start with finding solving the case a ̸= 0
and σ > 0 in half-space. This kind of research has recently proven to be very helpful
in the study of fluid mechanics. We then consider the equation system

λv − α0(y0)∆v − β∇divv = f in Ω+,

(α0(y0)D(v)− (β − α0(y0))divvI)n+ − σ0(y0)(∆
′
Γη)n+ = gd on Γ+,

λη + a′(y0) · ∇′η − v · n+ = gd on Γ+.

(1.7)

1.1. Notation Let N denote the set of natural numbers and we let N0 = N∪ {0}.
Let C and R denote the set of complex numbers, and real numbers, respectively.
By Sym(RN ) and ASym(RN ) we denote the sets of all N × N symmetric and
anti-symmetric matrices, respectively. Let q′ = q/(q − 1) be the dual exponent
of q with 1 < q < ∞. For any multi-index κ = (κ1, . . . , κN ) ∈ NN

0 , we write
|κ| = κ1 + · · · + κN and ∂k

x = ∂κ1
1 · · · ∂κN

N with x = (x1, . . . , xN ). For a scalar
function f and an N -vector function g, we set

∇f = (∂1f, . . . , ∂Nf), ∇g = (∂igj | i, j = 1, . . . , N),

∇2f = {∂i∂jf | i, j = 1, . . . , N}, ∇2g = {∂i∂jgk | i, j, k = 1, . . . , N}.

For Banach spaces X and Y let L(X,Y ) denote the set of all bounded linear opera-
tors from X into Y , and Hol (U,L(X,Y)) the set of all L(X,Y )-valued holomorphic
functions defined on a domain U in C. Let Lq(D), Wm

q (D), Bs
p,q(D) and Hs

q (D)
denote the usual Lebesgue space, Sobolev space, Besov space and Bessel poten-
tial space, respectively, for any domain D in RN and 1 ≤ p, q ≤ ∞. We denote
by ∥ · ∥Lq(D), ∥ · ∥Wm

q (D), ∥ · ∥Bs
q,p(D) and ∥ · ∥Hs

q (D) their respective norms. For

θ ∈ (0, 1), Hθ
p (R, X) denotes the standard X-valued Bessel potential space defined

by

Hθ
p (R, X) = {f ∈ Lp(R, X) | ∥f∥Hθ

p(R,X) < ∞},

where

∥f∥Hθ
p(R,X) =

(∫
R
∥F−1[(1 + τ2)θ/2F [f ](τ)](t)∥pX dt

)1/p

.

We set W 0
q (D) = Lq(D) and W s

q (D) = Bs
q,q(D). Let C∞(D) denote the set all

C∞ functions defined on D. Further let Lp((a, b), X) and Wm
p ((a, b), X) denote

the usual Lebesgue space and Sobolev space of X-valued functions defined on an
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interval (a, b), and let ∥ · ∥Lp((a,b),X) and ∥ · ∥Wm
p ((a,b),X) denote their respective

norms. Moreover, we set

∥eηtf∥Lp((a,b),X) =

(∫ b

a

(eηt∥f(t)∥X)pdt

)1/p

for 1 ≤ p < ∞. The d-product space of X is defined by Xd = {f = (f, . . . , fd) |
fi ∈ X (i = 1, . . . , d)}, where its norm is denoted by ∥ · ∥X instead of ∥ · ∥Xd for the
sake of simplicity. We set

Wm,ℓ
q (D) = {(f,g,H) | f ∈ Wm

q (D),g ∈ W ℓ
q (D)N , H ∈ Wm

q (D)N×N},
∥(f,g,H)∥Wm,ℓ

q (Ω) = ∥(f,H)∥Wm
q (Ω) + ∥g∥W ℓ

q (Ω),

Lp,γ1
(R, X) = {f(t) ∈ Lp,loc(R, X) | e−γ1tf(t) ∈ Lp(R, X)},

Lp,γ1,0(R, X) = {f(t) ∈ Lp,γ1
(R, X) | f(t) = 0 (t < 0)},

Wm
p,γ1

(R, X) = {f(t) ∈ Lp,γ1
(R, X) | e−γ1t∂j

t f(t) ∈ Lp(R, X) (j = 1, . . . ,m)},
Wm

p,γ1,0(R, X) = Wm
p,γ1

∩ Lp,γ1,0(R, X).

Let Fx = F and F−1
ξ = F−1 denote the Fourier transform and the Fourier inverse

transform, respectively, which are defined by

Fx[f ](ξ) =

∫
RN

e−ix·ξf(x)dx, F−1
ξ [g](x) =

1

(2π)N

∫
RN

eix·ξg(ξ)dξ.

We also write f̂(ξ) = Fx[f ](ξ). Let L and L−1 denote the Laplace transform and
the Laplace inverse transform, respectively, which are defined by

L[f ](λ) =
∫ ∞

−∞
e−λtf(t)dt, L−1[g](t) =

1

2π

∫ ∞

−∞
eλtg(τ)dτ,

with λ = γ + iτ ∈ C. Given s ∈ R and X-valued function f(t), we set

Λs
γf(t) = L−1

λ [λsL[f ](λ)](t).
We introduce the Bessel potential space of X-valued functions of order s as follows:

Hs
p,γ1

(R, X) = {f ∈ Lp(R, X) | e−γtΛs
γ [f ](t) ∈ Lp(R, X) for any γ ≥ γ1},

Hs
p,γ1,0(R, X) = {f ∈ Hs

p,γ1
(R, X) | f(t) = 0 (t < 0)}.

For x = (x1, . . . , xN ) and y = (y1, . . . , yN ), we set x · y = ⟨x,y⟩ =
∑N

j=1 xjyj .

For scalar functions f, g and N -vectors of functions k, g we set (k, g)D =
∫
D
kg dx,

(k,g)D =
∫
D
k ·g dx, (k, g)Γ =

∫
Γ
kg dω, (k,g)Γ =

∫
Γ
k ·gdω, where ω is the surface

element of Γ. For N × N matrices of functions F = (Fij) and G = (Gij), we set

(F,G)D =
∫
D
F : G dx and (F,G)Γ =

∫
Γ
F : G dω, where F : G ≡

∑N
i,j=1 FijGij

and |F| ≡
(∑N

i,j=1 FijFij

)1/2

. Moreover, x·F denotes the vector with components∑N
i=1 xiFij . Let C

∞
0 (G) be the set of all C∞ functions whose supports are compact

and contained in G. The letter C denotes generic constants and the constant Ca,b,...

depends on a, b, . . .. The values of constants C and Ca,b,... denote a positive constant
which may be different even in a single chain of inequalities. We use small boldface
letters, e.g. u to denote vector-valued functions and capital boldface letters, e.g. H
to denote matrix-valued functions, respectively. But, we also use the Greek letters,
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e.g. ρ, θ, τ , ω, to denote mass densities, and also elastic tensors, although they are
N ×N matrices.

2. Preliminaries and Statement of the Main Result

Before stating our main result, first we introduce the definition ofR-boundedness
and the operator-valued Fourier multiplier theorem due to Weis [16].

Definition 2.1. A family of operators T ⊂ L(X,Y ) is called R-bounded on
L(X,Y ), if there exist constants C > 0 and p ∈ [1,∞) such that for any n ∈ N,
{Tj}nj=1 ⊂ T , {fj}nj=1 ⊂ X and sequences {rj}nj=1 of independent, symmetric,
{−1, 1}-valued random variables on [0, 1], we have the inequality:{∫ 1

0

∥
n∑

j=1

rj(u)Tjxj∥pY du

}1/p

≤ C

{∫ 1

0

∥
n∑

j=1

rj(u)xj∥pX du

}1/p

.

The smallest such C is called the R-bound of T , which is denoted by RL(X,Y )(T ).

Let D(R, X) and S(R, X) be the set of all X-valued C∞ functions having com-
pact support and the Schwartz space of rapidly decreasing X-valued functions,
respectively, while S ′(R, X) = L(S(R,C), X). Given M ∈ L1,loc(R\{0}, X), we
define the operator TM : F−1D(R, X) → S ′(R, Y ) by

TMϕ = F−1[MF [ϕ]], (F [ϕ] ∈ D(R, X)). (2.1)

The following theorem was obtained by Weis [16].

Theorem 2.2. Let X and Y be two UMD Banach spaces and 1 < p < ∞. Let M
be a function in C1(R\{0},L(X,Y )) such that

RL(X,Y )({(τ
d

dτ
)ℓM(τ) | τ ∈ R\{0}}) ≤ κ < ∞ (ℓ = 0, 1)

with some constant κ. Then, the operator TM defined in (2.1) extendeds to a
bounded linear operator from Lp(R, X) into Lp(R, Y ). Moreover, denoting this
extension by TM , we have

∥TM∥L(Lp(R,X),Lp(R,Y )) ≤ Cκ

for some positive constant C depending on p, X and Y .

Remark 2.3. For the definition of UMD space, we refer to Amann [1]. For 1 < q <
∞, the Lebesgue space Lq(Ω) and Sobolev space Wm

q (Ω) are both UMD spaces.

We quote [4, Proposition 3.4], which tells us that R-bounds behave like norms.

Proposition 2.4. (1) Let X and Y be Banach spaces and let T and S be R-
bounded families in L(X,Y ). Then T + S = {T + S | T ∈ T , S ∈ S} is also
an R-bounded family in L(X,Y ) and

RL(X,Y )(T + S) ≤ RL(X,Y )(T ) +RL(X,Y )(S).
(2) Let X, Y and Z be Banach spaces and let T and S be R-bounded families in

L(X,Y ) and L(Y, Z), respectively. Then ST = {ST | T ∈ T , S ∈ S} is also
an R-bounded family in L(X,Z) and

RL(X,Z)(T S) ≤ RL(X,Y )(T )RL(X,Y )(S).
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Definition 2.5. Let V be a domain in C, let Ξ = V × (RN−1 \ {0}), and let
m : Ξ → C; (λ, ξ′) 7→ m(λ, ξ′) be C1 with respect to τ , where λ = γ + iτ ∈ V , and
C∞ with respect to ξ′ ∈ RN−1 \ {0}.
(1) m(λ, ξ′) is called a multiplier of order s with type 1 on Ξ, if the estimates:

|∂κ′

ξ′ m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ′|,

|∂κ′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s−|κ′|

hold for any multi-index κ ∈ NN
0 and (λ, ξ′) ∈ Ξ with some constant Cκ′

depending solely on κ′ and V .
(2) m(λ, ξ′) is called a multiplier of order s with type 2 on Ξ, if the estimates:

|∂κ′

ξ′ m(λ, ξ′)| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′|,

|∂κ′

ξ′ (τ∂τm(λ, ξ′))| ≤ Cκ′(|λ|1/2 + |ξ′|)s|ξ′|−|κ′|

hold for any multi-index κ ∈ NN
0 and (λ, ξ′) ∈ Ξ with some constant Cκ′

depending solely on κ′ and V .

Let Ms,i(V ) be the set of all multipliers of order s with type i on Ξ for i = 1, 2.
For m ∈ Ms,i(V ), we set M(m,V ) = max|κ′|≤N Cκ′ .

Let F−1
ξ′ be the inverse partial Fourier transform defined by

F−1
ξ′ [f(ξ′, xN )](x′) =

1

(2π)N−1

∫
RN−1

eiξ
′·ξ′f(ξ′, xN ) dξ′.

Then, we have the following two lemmas which were proved essentially by Shibata
and Shimizu [15, Lemma 5.4 and Lemma 5.6].

Lemma 2.6. Let ϵ ∈ (0, π/2), q ∈ (1,∞) and λ0 > 0. Given m ∈ M−2,1(Λκ, λ0),
we define an operator L(λ) by

[L(λ)g](x) =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)λ1/2e−B(xn+yN )ĝ(ξ′, yN )](x′) dyN .

Then, we have

RL(Lq(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2∂α
xL(λ)) | λ ∈ Σϵ,λ0

}) ≤ rb(λ0),

where ℓ = 0, 1, j = 0, 1, 2 and τ denotes the imaginary part of λ, and rb(λ0) is a
constant depending on M(m,Σκ,λ0

), ϵ, λ0, N , and q.

Lemma 2.7. Let 1 < q < ∞, 0 < ϵ < π/2 and λ0 > 0 . Let m(λ, ξ′) be a function

defined on Σϵ,λ0
such that for any multi-index κ′ ∈ NN−1

0 there exists a constant
Cκ′ such that

|∂κ′

ξ′ {(τ
∂

∂τ
)ℓm(λ, ξ′)}| ≤ Cκ′(|λ|1/2 + |ξ′|−2−|κ′|) (ℓ = 0, 1) (2.2)

for any (λ, ξ′) ∈ Σϵ,λ0,. Let Ψj(λ) (j = 1, 2) be operators defined by

Ψ1(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)Be−B(xN+yN )Fx′ [f ](ξ′, yN )](x′) dyN ,

Ψ2(λ)f =

∫ ∞

0

F−1
ξ′ [m(λ, ξ′)B2M(xN + yN )Fx′ [f ](ξ′, yN )](x′) dyN .
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Then, we have

RL(Lq(RN
+ ),Lq(RN

+ )Ñ )({(τ
d

dτ
)ℓ(GλΨi(λ)) | λ ∈ Σϵ,λ0

}) ≤ C (ℓ = 0, 1, i = 1, 2)

RL(Yq(Rn
+),W

2−1/q
q (RN

0 ))
({(τ d

dτ
)ℓFλΨi(λ) | λ ∈ Σϵ,λ0

}) ≤ C (ℓ = 0, 1, i = 1, 2)

with some constant C. Here and hereafter, Cκ′ denotes a generic constant depend-
ing on κ′, ϵ, λ0.

Proof. The proof of the lemma can be found in [5], [3] and [8]. □

Lemma 2.8. Let 1 < q < ∞ and let Λ be a set in C. Let m = M(λ, ξ) be a
function defined on Λ× (RN \ {0}) which is infinitely differentiable with respect to
ξ ∈ RN \ {0} for each λ ∈ Λ. Assume that for any multi-index α ∈ NN

0 there exists
a constant Cα depending on α and Λ such that

|∂α
ξ m(λ, ξ)| ≤ Cα|ξ|−|α| (2.3)

for any (λ, ξ) ∈ Λ× (RN \ {0}). Let Kλ be an operator defined by

Kλf = F−1[m(λ, ξ)F [f ](ξ)]. (2.4)

Then, the family of operators {Kλ | λ ∈ Λ} is R-bounded on L(Lq(RN )) and

RL(Lq(RN ))({Kλ | λ ∈ Λ}) ≤ Cq,N max
|α|≤N+1

Cα (2.5)

for some Cq,N depending only on q and N .

The following theorem is the main result of this article.

Theorem 2.9. Let Ω+ be a bent half-space with boundary Γ+. Let 1 < q < ∞ and
0 < ϵ < π/2. Set

Yq(Ω+) = {(f+,gd+, gd+) | f+ ∈ Lq(Ω+)
N ,gd+ ∈ W 1

q (Ω+), gd+ ∈ W 2−1/q
q (Γ+)}

Yq(Ω+) = {(F1, F2, F3, F4) | F1, F2 ∈ Lq(Ω+)
N , F3 ∈ W 1

q (Ω+), F4 ∈ W 2−1/q
q (Γ+)}.

Then, there exist M1 ∈ (0, 1), λ̃0 ≥ 1 and operator families Ad(λ) and Hd(λ) with

Ad(λ) ∈ Hol(Σϵ,λ̃0
,L(Yq(Ω+),W

2
q (Ω+)

N )),

Hd(λ) ∈ Hol(Σϵ,λ̃0
,L(Yq(Ω+),W

3
q (Ω+)))

such that for any λ = γ + iτ ∈ Σϵ,λ̃0
and (f+,gd+, gd+) ∈ Yq(Ω+),

u = Ad(λ)(f+, λ
1/2gd+,gd+, gd+),

η = Hd(λ)(f+, λ
1/2gd+,gd+, gd+)

are unique solutions of equation (1.7) and

RL(Y(Ω+),W 2−j
q (Ω+)N )({(τ∂τ)

ℓ(λj/2Ad(λ)) | λ ∈ Σϵ,λ̃0
}) ≤ rb (ℓ = 0, 1, j = 0, 1, 2)

RL(Y(Ω+),W 3−j
q (Ω+)N )({(τ∂τ)

ℓ(λkHd(λ)) | λ ∈ Σϵ,λ̃0
}) ≤ rb (ℓ = 0, 1, k = 0, 1),

(2.6)

where, rb is a constant depending on m0, m1, m2, N , q, and ϵ but independent of
M1 and M2 and moreover, λ̃0 is a constant depending on M2.

Remark 2.10. The F1, F2, F3, and F4 are variables corresponding to f+, λ
1/2gd+,

gd+ and gd+, respectively.
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3. Proof of the Main Theorem

The proof of Theorem 2.9 consists of the following steps. Let Φ : RN → RN be
such that x 7→ y = Φ(x) be a bijection of C1 class and let Φ−1 be its inverse map.
Define

Ω+ = Φ(RN
+ ) ,Γ+ = Φ(RN

0 ),

where RN
0 = {(x1, . . . , xN ) ∈ RN | xN = 0}. We assume that ∇Φ and ∇Φ−1 have

forms

∇Φ = A+B(x), ∇Φ−1 = A−1 +B−1(y),

where A and A−1 are N × N orthogonal matrices with constant coefficients and
B(x) and B−1(y) are matrices of functions in C2(RN ) such that

∥(B,B−1)∥L∞(RN ) ≤ M1, ∥∇(B,B−1)∥L∞(RN ) ≤ Ca,

∥∇2(B,B−1)∥L∞(RN ) ≤ M2.

We consider the following equation system:
λv − α0(y0)∆v − β∇divv = f in Ω+,

(α0(y0)D(v) + βdivvI)n+ − σ0(y0)(∆
′
Γη)n+ = gd on Γ+,

λη + a′(y0) · ∇′η − v · n+ = gd on Γ+.

(3.1)

By the change of variables y = Φ(x), we transform (1.7) to a problem in the half-
space which can be seen in [13]. Let

y0 = Φ(x0), α̃(x) = ϕ(Φ(x))µ(Φ(x)),

σ̃(x) = ϕ(Φ(x))σ(Φ(x)), ã = ϕ(Φ(x))σ(Φ(x)).

Notice that

αy0
(Φ(x)) = α(y0) + α̃(x)− α̃(x0),

σy0
(Φ(x)) = σ(y0) + σ̃(x)− σ̃(x0),

a(Φ(x′, 0)) = a(y0) + ã(x)− ã(x0).

In addition, α, σ, and a satisfy the following conditions:

m0 ≤ α(y), σ(y) ≤ m1, |∇α(y)|, |∇σ(y)| ≤ m1 for any y ∈ Ω+,

|a(y)| ≤ m2 for any y ∈ Γ+,

∥a∥
W

2−1/q
r (Ω+)

≤ m3κ
−b (3.2)

for some m1,m2,m3 > 0. For a positive number of d0, we have

|α(y)− α(y0)| ≤ m1M1, |σ(y)− σ(y0)| ≤ m1M1 for any y ∈ Ω+ ∩Bd0
(y0),

|a(y)− a(y0)| ≤ m2M1 for any y ∈ Γ+ ∩Bd0(y0) (3.3)
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for some constants M1,M2 > 0. We may assume that m1, m2, m3 ≤ M2. Recall
that ∥∇ϕ∥W 1

∞(RN ) ≤ M2. According to (3.2) and (3.3) we have

|α̃(x)− α̃(x0)| ≤ m1M1, |σ̃(x)− σ̃(x0)| ≤ m1M1,

∥(α̃, σ̃)∥L∞(RN ) ≤ m1, ∥∇(α̃, σ̃)∥L∞(RN ) ≤ CM2
,

|ã(x)− ã(x0)| ≤ m2M1, ∥ã∥L∞(RN ) ≤ m2,

∥∇ã∥
W

1−1/q
q (RN

0 )
≤ CM2

κ−b for κ ∈ (0, 1). (3.4)

Using the change of the unknown functions: u = R−1v ◦ Φ as well as the change
variable: y = Φ(x), we have

∂

∂yj
=

N∑
k=1

(Rkj +Rkj(x))
∂

∂xk
and n+ = −(aN1, . . . , aNN )T + b+(x), (3.5)

where (∇Φ−1)(Φ(x)) = (Rij + Rij(x)). Then we will derive the problem in RN
+

from (1.7). Nothing that R = RT
−1, by (3.5), we can rewrite the equation (1.7) in

RN
+ to be


λu− α(y0)∆u− β∇divu+H1(u) = f+in RN

+ ,

(α(y0)D(u) + βdivuI)n+ − σ(y0)(∆
′
Γη)n+ +H2(u, η) = gd+ on RN

0 ,

λη + a′(y0) · ∇′η − u · n+ +H3
κ(u, η) = gd+ on RN

0 ,

(3.6)

where

f+ = R−1f ◦ Φ, gd+ = R−1gd ◦ Φ, gd+ = gd ◦ Φ,
H1(u) = P1∆u+ P2∇2u+ P3∇u,

H2(u, η) = P4∇2u+ P5η + P6∇u,

H3
0(u, η) = −u · (R−1b0) for κ = 0,

H3
κ′(u, η) = (ã(x)− ã(x0))∇′η − u · (R−1b0) for κ

′ = (0, 1),

and

H1(u) =

N∑
k=1

∂

∂xk
{(µ̃(x)− µ̃(x0))Dsk(u)}+

N∑
i,j,k

asiakj
∂

∂xk
(µ̃(x)bdij : ∇u),

H2(u, η) =− (µ̃(x)− µ̃(x0))DsN (u) + (µ(y0)

+ µ̃(x)− µ̃(x0))

N∑
i,j=1

(aijb+jDsi(u) + asib
d
ij : ∇u(−aNj + b+j))

− (σ̃(x)− σ̃(x0))(∆
′η)n0

− σ̃(x){(∆′η)(R−1b+) + (D+η)(n0 +R−1b+)}.
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In addition, H1, H2 and H3 are nonlinear in u and η, and satisfy the estimates:

∥H1(u, η)∥Lq(RN
+ ) ≤ CM1(∥∇2u∥Lq(RN

+ ) + ∥∇3η∥Lq(RN
+ ))

+ CM2(∥u∥W 1
q (RN

+ ) + ∥η∥W 2
q (RN

+ )),

∥H2(u, η)∥Lq(RN
+ ) ≤ CM1(∥∇u∥Lq(RN

+ ) + ∥∇2η∥Lq(RN
+ ))

+ CM2
(∥u∥Lq(RN

+ ) + ∥η∥W 1
q (RN

+ )),

∥H2(u, η)∥W 1
q (RN

+ ) ≤ CM1(∥∇2u∥Lq(RN
+ ) + ∥∇3η∥Lq(RN

+ ))

+ CM2(∥u∥W 1
q (RN

+ ) + ∥η∥W 2
q (RN

+ )),

∥H3
0(u, η)∥W 2−1/q

q (RN
0 )

≤ CM1(∥∇2u∥Lq(RN
+ ) + CM2

(∥u∥W 1
q (RN

+ ),

∥H3
κ′(u, η)∥W 2−1/q

q (RN
0 )

≤ CM1(∥∇2u∥Lq(RN
+ ) + ∥∇3η∥Lq(RN

+ ))

+ CM2(∥u∥W 1
q (RN

+ ) + κ−b∥η∥W 2
q (RN

+ )).

Here and in the following, C denotes a generic constant depending on N , q, m1, m2

and CM2
denotes a generic constant depending on N , q, m1, m2, m3 and M2. By

the R-boundedness in half-space [13], there exists a large number λ0 and operator
families A0(λ) and H0(λ) with

A0(λ) ∈ Hol (Σϵ,λ0 ,L(Y(RN
+ ),W 2

q (RN
+ )N )),

H0(λ) ∈ Hol (Σϵ,λ0
,L(Y(RN

+ ),W 3
q (RN

+ )N )),

such that for any λ ∈ Σϵ,λ0
and (f ,g, d) ∈ Yq(RN

+ ), u and η with

u = A0(λ)Fλ(f ,g, d), η = H0(λ)Fλ(f ,g, d),

where Fλ(f ,g, d) = (f , λ1/2g,∇g, d) are unique solutions of the equations:
λu− α∆u− β∇divu = f in RN

+ ,

(αD(u)− (β − α)divuI)n− σ(∆′
Γη)n = g on RN

0 ,

λη + a′ · ∇′η − u · n = d on RN
0 ,

(3.7)

and

RL(Y(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2A0(λ)) | λ ∈ Σϵ,λ0
}) ≤ rb (ℓ = 0, 1, j = 0, 1, 2)

RL(Y(RN
+ ),W 3−j

q (RN
+ )N )({(τ∂τ)

ℓ(λkH0(λ)) | λ ∈ Σϵ,λ0}) ≤ rb (ℓ = 0, 1, k = 0, 1).

Let

u = A0(λ)Fλ(f+,gd+, gd+),

η = H0(λ)Fλ(f+,gd+, gd+)

in (1.7). Then, (1.7) is written as

λu− α(y0)∆u− β∇divu+H1(u)

= f+ +H4(λ)Fλ(f+,gd+, gd+) in RN
+ ,

(α(y0)D(u) + βdivuI)n+ − σ(y0)(∆
′
Γη)n+ +H2(u, η)

= gd+ +H5(λ)Fλ(f+,gd+, gd+) on RN
0 ,

λη + a′(y0) · ∇′η − u · n+ +H3
κ(u, η)

= gd+ +H6(λ)Fλ(f+,gd+, gd+) on RN
0 ,

(3.8)



BENT HALF-SPACE 21

where we have set

H4(λ)(F1, F2, F3, F4) = H4(λ)(A0(λ)(F1, F2, F3, F4),H0(λ)(F1, F2, F3, F4)),

H5(λ)(F1, F2, F3, F4) = H5(λ)(A0(λ)(F1, F2, F3, F4),H0(λ)(F1, F2, F3, F4)),

H6(λ)(F1, F2, F3, F4) = H6(λ)(A0(λ)(F1, F2, F3, F4),H0(λ)(F1, F2, F3, F4)).

Let

H7(λ)F = (H4(λ)F,H5(λ)F,H6(λ)F )

for F = (F1, F2, F3, F4) ∈ Yq(RN
+ ). Notice that

H7(λ)F = (H4(λ)F, λ1/2H5(λ)F,∇H5(λ)F,H6(λ)F ).

Let

Aλ(u, η) = (A1,A2,A3),

where

A1 = λu− α(y0)∆u− β∇divu+H1(u),

A2 = (α(y0)D(u) + βdivuI)n+ − σ(y0)(∆
′
Γη)n+ +H2(u, η),

A3 = λη + a′(y0) · ∇′η − u · n+ +H3
κ(u, η)

and

Gλ(f+,gd+, gd+)

= (H4(λ)Fλ(f+,gd+, gd+),H5(λ)Fλ(f+,gd+, gd+),H6(λ)Fλ(f+,gd+, gd+)).

Then we may write

Aλ(u, η)(f+,gd+, gd+) = (I+ GλFλ)(f+,gd+, gd+).

By (3.2), (3.3), the R-boundedness theorem in half-space, and Proposition 2.4, we
have

RL(Yq(RN
+ ))({(τ∂τ)ℓFλH7(λ) | λ ∈ Σϵ,λ0

}) ≤ CM1 + CM2
(λ

1/2
1 + λ−1

1 γκ) (3.9)

for any λ1 ≥ λ0. Choosing M1 so small that CM1 ≤ 1/4 and choosing λ1 > 0 so

large that CM2
λ
−1/2
1 ≤ 1/8 and λ−1

1 γκ ≤ 1/8, by (3.9) we have

RL(Yq(RN
+ ))({(τ∂τ)ℓFλH7(λ) | λ ∈ Σϵ,λ0

}) ≤ 1/2, (ℓ = 0, 1). (3.10)

Let

F = (F1, F2, F3, F4) ∈ Yq(RN
+ ), (f+,gd+, gd+) ∈ Yq(RN

+ ).

Then

∥(F1, F2, F3, F4)∥Yq(RN
+ ) = ∥(F1, F2)∥Lq(RN

+ )N + ∥F3∥W 1
q (RN

+ ) + ∥F4∥W 2−1/q
q (RN

0 )
,

∥(f+,gd+, gd+)∥Yq(RN
+ ) = ∥f+∥Lq(RN

+ )N + ∥gd+∥W 1
q (RN

+ ) + ∥gd+∥W 2
q (RN

+ ). (3.11)

By (3.10), we have

∥Fλ(H7(λ)Fλ(f+,gd+, gd+))∥Yq(RN
+ ) ≤ 1/2∥Fλ(f+,gd+, gd+)∥Yq(RN

+ ). (3.12)



22 SRI MARYANI, ARI WARDAYANI, and RENNY

In view of (3.11), ∥Fλ(f+,gd+, gd+))∥Yq(RN
+ ) is equivalent to ∥(f+,gd+, gd+)∥Yq(RN

+ )

provided that λ ̸= 0. Thus, H7(λ)Fλ is a contraction map from Yq(RN
+ ) into itself,

that is H7(λ)Fλ : Yq(RN
+ ) → Yq(RN

+ ). Let

u = A0(λ)Fλ(I+H7(λ)Fλ)
−1(f+,gd+, gd+),

η = H0(λ)Fλ(I+H7(λ)Fλ)
−1(f+,gd+, gd+). (3.13)

By (3.8), we see that u and η are solutions of equation (3.7). In view of equation
(3.8), (I+ FλH7(λ))−1 =

∑∞
j=0(−FλH7(λ))j exists in L(Yq(RN

+ )) and

RL(Yq(RN
+ ))({(τ∂τ)ℓ(I+ FλH7(λ))−1 | λ ∈ Σϵ,λ1}) ≤ 4, (ℓ = 0, 1). (3.14)

Now

Fλ(I+H7(λ)Fλ)
−1 = Fλ

∞∑
j=0

(−H7(λ)Fλ)
j

= (

∞∑
j=0

(−FλH7(λ))j)Fλ

= (I+ FλH7(λ))−1Fλ.

We define A1(λ) and H1(λ) as operators which respect to F = (F1, F2, F3, F4) ∈
Yq(RN

+ ), such that

A1(λ)F = A0(λ)(I+ FλH7(λ))−1F,

H1(λ)F = H0(λ)(I+ FλH7(λ))−1F.

By using equation (3.13),

u = A1(λ)Fλ(f+,gd+, gd+)

η = H1(λ)Fλ(f+,gd+, gd+)

are solutions of equation (3.7). Moreover, by (3.14) and the result in half-space
[13],

RL(Y(RN
+ ),W 2−j

q (RN
+ )N )({(τ∂τ)

ℓ(λj/2A1(λ)) | λ ∈ Σϵ,λ0
}) ≤ 4rb (ℓ = 0, 1, j = 0, 1, 2),

RL(Y(RN
+ ),W 3−j

q (RN
+ )N )({(τ∂τ)

ℓ(λkH1(λ)) | λ ∈ Σϵ,λ0}) ≤ 4rb (ℓ = 0, 1, k = 0, 1).

(3.15)

Recalling that

v = (R−1u) ◦ Φ−1, f+ = R−1f ◦ Φ,
gd+ = R−1gd ◦ Φ, gd+ = gd ◦ Φ,

we define operators Ad(λ) and Hd(λ) acting on F = (F1, F2, F3, F4) ∈ Yq(Ω+) by

Ad(F1, F2, F3, F4) = RT
−1

[
A1(λ)(R−1F1 ◦ Φ, F2 ◦ Φ,R−1F3 ◦ Φ, F4 ◦ Φ)

]
◦ Φ−1

Hd(F1, F2, F3, F4) = RT
−1

[
H1(λ)(R−1F1 ◦ Φ, F2 ◦ Φ,R−1F3 ◦ Φ, F4 ◦ Φ)

]
◦ Φ−1.

Obviously, given any (f+,gd+, gd+) ∈ Yq(Ω+), u = Ad(λ)Fλ(f+,gd+, gd+) and η =
Hd(λ)Fλ(f+,gd+, gd+) are solutions of equation (1.7). By using (3.15), we can
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choose λ̃2 ≥ λ1 suitably large such that Ad(λ) and Hd(λ) satisfy the estimates:

RL(Y(Ω+),W 2−j
q (Ω+)N )({(τ∂τ)

ℓ(λj/2Ad(λ)) | λ ∈ Σϵ,λ0
}) ≤ Crb (ℓ = 0, 1, j = 0, 1, 2)

RL(Y(Ω+),W 3−j
q (Ω+)N )({(τ∂τ)

ℓ(λkHd(λ)) | λ ∈ Σϵ,λ0
}) ≤ Crb (ℓ = 0, 1, k = 0, 1).

(3.16)

This completes the proof of Theorem 2.9.

4. Conclusions

In this work, we developed a bent half-space model problem for Lamé equation.
Furthermore, we can consider a general domain and the maximal Lp-Lq regularity
class. For further research, we can analyse not only the local well-posedness of the
model problem but also the global well-posedness.
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