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Abstract. Let 𝜑(𝑛) be the Euler function, 𝜎(𝑛) =
∑

𝑑∣𝑛 𝑑 the sum of divisors function and
𝛾 = 0.577… the Euler constant. In 1982, Robin proved that, under the Riemann hypoth-
esis, 𝜎(𝑛)∕𝑛 < 𝑒𝛾 log log 𝑛 holds for 𝑛 > 5040 and that this inequality is equivalent to the
Riemann hypothesis. The aim of this paper is to give a similar equivalence for 𝑛∕𝜑(𝑛).

1. Introduction

Let 𝑛 be a positive integer, 𝜑(𝑛) the Euler function (i.e. the number of integers 𝑚 sat-
isfying 1 ⩽ 𝑚 ⩽ 𝑛 and coprime with 𝑛), 𝜎(𝑛) =

∑

𝑑∣𝑛 𝑑 the sum of divisors of 𝑛 and
𝛾 = 0.577… the Euler constant.

When 𝑛 → ∞, Landau proved that

𝑛∕𝜑(𝑛) ⩽
(

1 + 𝑜(1)
)

𝑒𝛾 log log 𝑛 (1.1)

(cf. [6], [7, 216–219] and [5, Theorem 328]), while in 1913, Gronwall proved that 𝜎(𝑛)∕𝑛 ⩽
(

1 + 𝑜(1)
)

𝑒𝛾 log log 𝑛, (cf. [4] and [5, Theorem 323]). There are infinitely many 𝑛’s such
that 𝑛∕𝜑(𝑛) > 𝑒𝛾 log log 𝑛 (cf. [9, 10]) but there are infinitely many 𝑛’s such that 𝜎(𝑛)∕𝑛 >
𝑒𝛾 log log 𝑛 only if the Riemann hypothesis fails (cf. [16, 15, 12]).

In 1982, Robin proved that
𝜎(𝑛)
𝑛

< 𝑒𝛾 log log 𝑛 for 𝑛 > 5040, (1.2)

is equivalent to the Riemann hypothesis (cf. [16, 15]). The inequality (1.2) is called Robin
inequality.

Let 𝑓 (𝑛) be an arithmetical function, i.e. a function defined on the positive integers
with positive real values. The integer 𝑛 is said to be an 𝑓 -champion if 1 ⩽ 𝑚 < 𝑛 implies
𝑓 (𝑚) < 𝑓 (𝑛).

The champions for the number 𝑑(𝑛) of divisors of 𝑛 are called highly composite numbers.
They have been defined and studied by Ramanujan (cf. [13], [1, Sect. 4] and [11]). The
champions for 𝜎(𝑛)∕𝑛 are said to be superabundant (cf. [14, Sect. 59], [1, Sect. 4] and [12,
Sect. 3.4]).

An integer 𝑀 is called a super 𝑓 -champion if there exists 𝜀 > 0 such that
𝑓 (𝑛)
𝑛𝜀

⩽ 𝑓 (𝑀)
𝑀𝜀 for 𝑛 ∈ ℕ. (1.3)

Let 𝑝𝑗 denote the 𝑗th prime and

𝑀𝑝𝑗 = 𝑝1𝑝2… 𝑝𝑗
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the 𝑗th primorial, i.e. the product of the first 𝑗 primes. It is easy to see that, if 𝑓 (𝑛) = 𝑛∕𝜑(𝑛)
then the 𝑓 -champions are the numbers 𝑀𝑝𝑗 for 𝑗 ⩾ 1. Indeed, if 𝑛 < 𝑀𝑝𝑗 then the standard
factorization of 𝑛 can be written 𝑛 = 𝑞𝛼11 𝑞𝛼22 … 𝑞𝛼𝑟𝑟 with 𝑞1 < 𝑞2 < … < 𝑞𝑟, 𝑟 < 𝑗 and
𝑞𝑖 ⩾ 𝑝𝑖 for 1 ⩽ 𝑖 ⩽ 𝑟. Therefore,

𝑛
𝜑(𝑛)

=
𝑟

∏

𝑖=1

𝑞𝑖
𝑞𝑖 − 1

⩽
𝑟

∏

𝑖=1

𝑝𝑖
𝑝𝑖 − 1

<
𝑗

∏

𝑖=1

𝑝𝑖
𝑝𝑖 − 1

=
𝑀𝑝𝑗

𝜑
(

𝑀𝑝𝑗

) . (1.4)

It follows from (1.3) that a super champion is a champion. In Sect. 2, in the case of 𝑓 (𝑛) =
𝑛∕𝜑(𝑛), it is proved that all the 𝑓 -champions are super 𝑓 -champions, i.e. that the set of
super 𝑓 -champions coincide with the set of primorials.

Let us set
𝛿 = 𝑒𝛾 (4 + 𝛾 − log(4𝜋)) = 3.6444150964… (1.5)

and, if 𝑛 is an integer ⩾ 2,

𝑐(𝑛) =
( 𝑛
𝜑(𝑛)

− 𝑒𝛾 log log 𝑛
)

√

log 𝑛. (1.6)

In [10, Theorem 1.1], it is proved that, under the Riemann hypothesis,

lim sup
𝑛→∞

𝑐(𝑛) = 𝛿.

Theorem 1.1. Let

𝑘 = 120568, 𝑝𝑘 = 1591873, log𝑀𝑝𝑘 = 1590171.635973… (1.7)

and

𝐴 = 𝑀𝑝𝑘
𝑝𝑘+1𝑝𝑘+2
𝑝𝑘𝑝𝑘−10

= 𝑀𝑝𝑘
1591883 × 1591901
1591873 × 1591697

, log𝐴 = 1590171.636107… (1.8)

Then,
𝑐(𝐴) = 3.6444151157… > 𝛿 = 3.6444150964… (1.9)

and, under the Riemann hypothesis, for 𝑛 > 𝐴,

𝑐(𝑛) < 𝛿 = 𝑒𝛾 (4 + 𝛾 − log(4𝜋)) = 3.6444150964… (1.10)

In other words, 𝐴 is the largest number 𝑛 such that (1.10) holds.
Moreover,

𝑛
𝜑(𝑛)

< 𝑒𝛾 log log 𝑛 +
𝑒𝛾
(

4 + 𝛾 − log(4𝜋)
)

√

log 𝑛
for 𝑛 > 𝐴 (1.11)

is equivalent to the Riemann hypothesis.

In [10, cf. Theorem 1.1 and p. 320], it is proved that (1.10) holds for 𝑛 ⩾ 𝑀𝑝𝑘+1 , but not
for 𝑛 = 𝑀𝑝𝑘 . So, to prove 1.10, it suffices to show that 𝐴 is the largest number satisfying
𝑀𝑝𝑘 ⩽ 𝐴 < 𝑀𝑝𝑘+1 and 𝑐(𝐴) ⩾ 𝛿. This will be done in Sect. 3 by using the method of
benefits, cf. below, Sect. 2.1.

If the Riemann hypothesis does not hold, then (cf. [9, Theorem 3 (c)] and [10, p. 312])

lim sup
𝑛→∞

𝑐(𝑛) = +∞ (1.12)

which contradicts (1.10) and proves the equivalence of (1.11) with the Riemann hypothesis.
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1.1. Notation
∙ 𝑝1 = 2, 𝑝2 = 3,… , 𝑝𝑗 is the 𝑗th prime.
∙  = {2, 3, 5,…} is the set of primes.
∙ 𝜃(𝑥) =

∑

𝑝⩽𝑥
log 𝑝 is the Chebyshev function.

∙ 𝑀𝑝𝑗 = 𝑝1𝑝2… 𝑝𝑗 is the 𝑗th primorial. If 𝑝 is the 𝑗th prime then 𝑀𝑝 = 𝑀𝑝𝑗 .
∙ 𝑘 and 𝑝𝑘 are defined in (1.7).
∙ We use the following constants: 𝛾 is Euler constant, 𝐴 is defined in (1.8), 𝛿 in (1.5)

and 𝜆 in (3.2).
∙ All the computations have been carried out in Maple, cf. [17].

2. The Super Champions for 𝑛∕𝜑(𝑛)

𝑀 is said to be a super champion (cf. (1.3)) for the function 𝑛 ↦ 𝑛∕𝜑(𝑛) if there exists
an 𝜀 > 0 such that

𝑛(1−𝜀)

𝜑(𝑛)
⩽ 𝑀 (1−𝜀)

𝜑(𝑀)
(2.1)

for all positive integers 𝑛. The number 𝜀 is said to be a parameter of 𝑀 . From (1.1),
it follows that, for 𝜀 > 0, lim𝑛→∞ 𝑛(1−𝜀)∕𝜑(𝑛) = 0 so that 𝑛(1−𝜀)∕𝜑(𝑛) has a maximum
attained in one or several numbers, and all these numbers are super champions.

The study of these super champions is similar to the one of superior hignly composite
numbers (cf. [13], [1], [2, Sect. 6.3] and [11, Sect. 4]) or of CA numbers (cf. [14, Sect.
59], [1], [3] or [12]), but much simpler. We consider the set of decreasing numbers

̂ =
{

𝜀0 = ∞ > 𝜀1 = 1 > 𝜀2 =
log(3∕2)
log 3

> … > 𝜀𝑖 =
log

(

𝑝𝑖∕(𝑝𝑖 − 1)
)

log 𝑝𝑖
> …

}

,

(2.2)
where 𝑝𝑖 denotes the 𝑖th prime.

Proposition 2.1. Let 𝑀 be a super champion for the function 𝑛 ↦ 𝑛∕𝜑(𝑛) with parameter
𝜀. One defines 𝑖 ⩾ 1 by 𝜀𝑖 ⩽ 𝜀 < 𝜀𝑖−1 (cf. (2.2)).

If 𝜀 satisfies 𝜀𝑖 < 𝜀 < 𝜀𝑖−1 then there is one and only one super champion for the function
𝑛 ↦ 𝑛∕𝜑(𝑛) with parameter 𝜀. This super champion number 𝑀 is equal to the primorial
defined by

𝑀 = 𝑀𝑝𝑖−1 =
∏

𝑝⩽𝑝𝑖−1

𝑝. (2.3)

(By convention, 𝑝0 = 1 and the empty product 𝑀1 = 1).
If 𝜀 = 𝜀𝑖, then there exist two super champions with parameter 𝜀, namely

𝑀𝑝𝑖−1 =
∏

𝑝⩽𝑝𝑖−1

𝑝 and 𝑀𝑝𝑖 =
∏

𝑝⩽𝑝𝑖

𝑝. (2.4)

Proof. Let 𝑛 =
∏

𝑗⩾1 𝑝
𝑎𝑗
𝑗 (with only finitely many 𝑎𝑗’s positive). We have to find the

maximum of

𝑛1−𝜀

𝜑(𝑛)
=
∏

𝑗⩾1

𝑝
𝑎𝑗 (1−𝜀)
𝑗

𝜑
(

𝑝
𝑎𝑗
𝑗
)

,
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i.e. for each 𝑗 ⩾ 1, to find the maximum on 𝑎𝑗 of

𝑝
𝑎𝑗 (1−𝜀)
𝑗

𝜑
(

𝑝
𝑎𝑗
𝑗
)

=

⎧

⎪

⎨

⎪

⎩

1 if 𝑎𝑗 = 0
𝑝𝑗

(𝑝𝑗−1)𝑝
𝑎𝑗 𝜀
𝑗

= 𝑝
𝜀𝑗−𝑎𝑗𝜀
𝑗 ⩽ 𝑝

𝜀𝑗−𝜀
𝑗 if 𝑎𝑗 ⩾ 1. (2.5)

So, this maximum is attained for 𝑎𝑗 = 0 or 𝑎𝑗 = 1.

If 𝑗 ⩽ 𝑖−1, then 𝜀𝑗 ⩾ 𝜀𝑖−1, 𝜀𝑗 − 𝜀 is positive and 𝑝
𝜀𝑗−𝜀
𝑗 > 1 holds so that from (2.5) the

maximum on 𝑎𝑗 of 𝑝𝑗∕
(

(𝑝𝑗 − 1)𝑝
𝑎𝑗𝜀
𝑗

)

is attained for 𝑎𝑗 = 1.

If 𝑗 ⩾ 𝑖 + 1, then 𝜀𝑗 < 𝜀𝑖, 𝜀𝑗 − 𝜀 is negative and 𝑝
𝜀𝑗−𝜀
𝑗 < 1 holds so that the maximum

on 𝑎𝑗 of 𝑝𝑗∕
(

(𝑝𝑗 − 1)𝑝
𝑎𝑗𝜀
𝑗

)

is attained for 𝑎𝑗 = 0.

If 𝑗 = 𝑖 and 𝜀 ≠ 𝜀𝑖, then 𝜀𝑗 = 𝜀𝑖, 𝜀𝑗 − 𝜀 is negative and 𝑝
𝜀𝑗−𝜀
𝑗 < 1 holds so that the

maximum on 𝑎𝑗 of 𝑝𝑗∕
(

(𝑝𝑗 − 1)𝑝
𝑎𝑗𝜀
𝑗

)

is still attained for 𝑎𝑗 = 0. Therefore, if 𝜀 ≠ 𝜀𝑖, the
maximum on 𝑛 of 𝑛1−𝜀∕𝜑(𝑛) is attained on 𝑛 = 𝑀𝑝𝑖−1 .

If 𝑗 = 𝑖 and 𝜀 = 𝜀𝑖, then the maximum of 𝑝𝑗∕
(

(𝑝𝑗−1)𝑝
𝑎𝑗𝜀
𝑗

)

is equal to 1 and is attained on
two points, namely 𝑎𝑗 = 0 and 𝑎𝑗 = 1 which implies that the maximum on 𝑛 of 𝑛1−𝜀∕𝜑(𝑛)
is attained on 𝑛 = 𝑀𝑝𝑖−1 and 𝑛 = 𝑀𝑝𝑖 . □

From now on, we shall replace the expression “super champion for the function 𝑛 ↦
𝑛∕𝜑(𝑛) with parameter 𝜀” by “primorial with parameter 𝜀” . The first primorial numbers
are given in Figure 1.

𝑖 𝑝𝑖 𝜀𝑖 𝑀 = 𝑀𝑝𝑖 𝑀∕𝜑(𝑀) parameter
0 1 ∞ 1 1 [𝜀1, 𝜀0)
1 2 1 2 2 [𝜀2 , 𝜀1]
2 3 log(3∕2)∕ log(3) = 0.369 6 3 [𝜀3 , 𝜀2]
3 5 log(5∕4)∕ log(5) = 0.138 30 15∕4 [𝜀4 , 𝜀3]
4 7 log(7∕6)∕ log(7) = 0.079 210 35∕8 [𝜀5 , 𝜀4]
5 11 log(11∕10)∕ log(11) = 0.039 2310 77∕16 [𝜀6 , 𝜀5]
6 13 log(13∕12)∕ log(13) = 0.031 30030 1001∕192 [𝜀7, 𝜀6]
7 17 log(17∕16)∕ log(17) = 0.021 510510 17017∕3072 [𝜀8, 𝜀7]

FIGURE 1. The first primorial numbers

2.1. Benefit.

Definition 2.2. Let 𝜀 be a positive real number and 𝑀 a primorial of parameter 𝜀. For a
positive integer 𝑛, we introduce the benefit of 𝑛

ben𝜀(𝑛) = log
(𝑀1−𝜀

𝜑(𝑀)

)

− log
(𝑛1−𝜀

𝜑(𝑛)

)

= log
( 𝜑(𝑛)
𝜑(𝑀)

)

+ (1 − 𝜀) log
(𝑀

𝑛

)

. (2.6)

Note that that, if𝑀 is another primorial of parameter 𝜀, then (2.1) yields𝑀1−𝜀∕𝜑(𝑀) ⩽
𝑀1−𝜀∕𝜑(𝑀) and𝑀1−𝜀∕𝜑(𝑀) ⩽ 𝑀1−𝜀∕𝜑(𝑀), which implies𝑀1−𝜀∕𝜑(𝑀) = 𝑀1−𝜀∕𝜑(𝑀)
so that (2.6) returns the same value for ben𝜀(𝑛) if 𝑀 is replaced by 𝑀 .
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This notion of benefit has been used in [8, 3] for theoretical results and, for computation,
in [11, Sect. 3.5] and [12, Sect. 4.6].

From (2.1), it follows that, for any 𝑛,

ben𝜀(𝑛) ⩾ 0 (2.7)

holds. Let 𝑀 be a primorial of parameter 𝜀. Let us write

𝑀 =
∏

𝑝∈
𝑝𝑎𝑝 and 𝑛 =

∏

𝑝∈
𝑝𝑏𝑝 , (2.8)

(with only finitely many 𝑏𝑝’s positive). For 𝑝 ∈  , (2.6) yields

ben𝜀
(

𝑀𝑝𝑏𝑝−𝑎𝑝
)

= log
(𝜑

(

𝑝𝑏𝑝
)

𝜑
(

𝑝𝑎𝑝
)

)

+ (1 − 𝜀)
(

𝑎𝑝 − 𝑏𝑝
)

log 𝑝 ⩾ 0. (2.9)

As 𝜑(𝑛) is multiplicative, (2.6) and (2.9) give

ben𝜀(𝑛) =
∑

𝑝∈
ben𝜀

(

𝑀𝑝𝑏𝑝−𝑎𝑝
)

(2.10)

and, from (2.9),

ben𝜀
(

𝑀𝑝𝑏𝑝−𝑎𝑝
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑎𝑝 = 𝑏𝑝,
log

(

𝑝∕(𝑝 − 1)
)

− 𝜀 log 𝑝 if 𝑎𝑝 = 1, 𝑏𝑝 = 0,
log

(

(𝑝 − 1)∕𝑝
)

+ 𝜀𝑏𝑝 log 𝑝 if 𝑎𝑝 = 0, 𝑏𝑝 ⩾ 1,
(

𝑏𝑝 − 1
)

𝜀 log 𝑝 if 𝑎𝑝 = 1, 𝑏𝑝 ⩾ 1.

(2.11)

Note that, if 𝑎𝑝 = 1 and 𝑏𝑝 = 0, then

ben𝜀(𝑀∕𝑝) = log
(

𝑝∕(𝑝 − 1)
)

− 𝜀 log 𝑝 is decreasing on 𝑝 (2.12)

while, if 𝑎𝑝 = 0 and 𝑏𝑝 = 1 then, from (2.11),

ben𝜀(𝑀𝑝) = log
(

(𝑝 − 1)∕𝑝
)

+ 𝜀 log 𝑝 is increasing on 𝑝. (2.13)

3. Proof of Theorem 1.1

In this section, 𝑘 and 𝑝𝑘 are defined by (1.7). The benefit (cf. Sect. 2.1) is defined
relatively to the primorial 𝑀𝑝𝑘 with the parameter (cf. (2.2))

𝜀 = 𝜀𝑘+1 =
log

(

𝑝𝑘+1∕(𝑝𝑘+1 − 1)
)

log 𝑝𝑘+1
= 4.39893721125… × 10−8, (3.1)

which is the common parameter of the primorials 𝑀𝑝𝑘 and 𝑀𝑝𝑘+1 . Note that

log𝑀𝑝𝑘 = 𝜃
(

𝑝𝑘
)

= 1590171.6359… , 𝑀𝑝𝑘∕𝜑
(

𝑀𝑝𝑘

)

= 25.43545096…

and

log𝑀𝑝𝑘+1 = 𝜃
(

𝑝𝑘+1
)

= 1590185.9164… ,𝑀𝑝𝑘+1∕𝜑
(

𝑀𝑝𝑘+1

)

= 25.43546694…

From (1.5), we also introduce the notation

𝜆 = 𝛿𝑒−𝛾 = 4 + 𝛾 − log(4𝜋) = 2.046191417932… (3.2)
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Lemma 3.1. The function

𝑔(𝑡) = 𝜀𝑡 − log
(

log 𝑡 + 𝜆∕
√

𝑡
)

, (3.3)
with 𝜀 defined by (3.1) and 𝜆 by (3.2), is convex for 𝑡 > 2.36. Moreover, 𝑔 is decreasing on
𝑡 for log𝑀𝑝𝑘 ⩽ 𝑡 ⩽ log𝑀𝑝𝑘+1 .

Proof. We have

𝑔′(𝑡) = 𝜀 −
1∕𝑡 − 𝜆∕

(

2𝑡3∕2
)

log 𝑡 + 𝜆∕
√

𝑡
, (3.4)

𝑔′′(𝑡) =
1∕𝑡2 − 3𝜆∕

(

4𝑡5∕2
)

log 𝑡 + 𝜆∕
√

𝑡
+

(

1∕𝑡 − 𝜆∕(2𝑡3∕2)
)2

(log 𝑡 + 𝜆∕
√

𝑡)2
. (3.5)

The second fraction of (3.5) is clearly non-negative while the first one is positive for 𝑡 >
9𝜆2∕16 = 2.35513…, which proves the convexity of 𝑔. Therefore, 𝑔′(𝑡) is increasing on 𝑡
for 𝑡 > 2.36. As

𝑔′
(

log𝑀𝑝𝑘+1

)

= −9.49208… × 10−12 < 0 and lim
𝑡→+∞

𝑔′(𝑡) = 𝜀 > 0,

𝑔(𝑡) is decreasing for 2.36 ⩽ 𝑡 ⩽ log𝑀𝑝𝑘+1 and since log𝑀𝑝𝑘 > 2.36 holds, 𝑔(𝑡) is
decreasing for log𝑀𝑝𝑘 ⩽ 𝑡 ⩽ log𝑀𝑝𝑘+1 . In fact, the minimum of 𝑔(𝑡) is attained for
𝑡 = 1590506.7305… (cf. [17]). □

Lemma 3.2. Let 𝑛 satisfy 𝑀𝑝𝑘 < 𝑛 < 𝑀𝑝𝑘+1 and

𝑐(𝑛) ⩾ 𝛿 = 𝜆𝑒𝛾 , (3.6)
where 𝑐(𝑛) is defined by (1.6), 𝛿 by (1.5) and 𝜆 by (3.2). If 𝜀 is defined by (3.1), then

ben𝜀(𝑛) ⩽ 𝛽 = 9.1 × 10−11. (3.7)

Proof. As 𝜀 is a parameter of the primorial 𝑀𝑝𝑘 , from (2.6) and (1.6),

ben𝜀(𝑛) = − log 𝑛
𝜑(𝑛)

+ 𝜀 log 𝑛 + log
𝑀𝑝𝑘

𝜑(𝑀𝑝𝑘 )
− 𝜀 log𝑀𝑝𝑘

= − log

(

𝑒𝛾
(

log log 𝑛 +
𝑐(𝑛)∕𝑒𝛾
√

log 𝑛

)

)

+ 𝜀 log 𝑛 + log
𝑀𝑝𝑘

𝜑(𝑀𝑝𝑘 )
− 𝜀 log𝑀𝑝𝑘 ,

which, from (3.6) and Lemma 3.1, implies

ben𝜀(𝑛) ⩽ 𝑔(log 𝑛) − 𝛾 + log
𝑀𝑝𝑘

𝜑(𝑀𝑝𝑘 )
− 𝜀 log𝑀𝑝𝑘

⩽ 𝑔
(

log𝑀𝑝𝑘

)

− 𝛾 + log
𝑀𝑝𝑘

𝜑(𝑀𝑝𝑘 )
− 𝜀 log𝑀𝑝𝑘 = 9.0974000017… × 10−11, (3.8)

which proves (3.7). □

Lemma 3.3. Let 𝑛 be an integer satisfying 𝑀𝑝𝑘 < 𝑛 < 𝑀𝑝𝑘+1 and ben𝜀(𝑛) ⩽ 𝛽 = 9.1 ×
10−11. Then there there exist primes 𝑞1, 𝑞2,… , 𝑞𝑟, 𝑞′1, 𝑞

′
2,… , 𝑞′𝑟 such that

𝑛 =
𝑞1𝑞2… 𝑞𝑟
𝑞′1𝑞

′
2… 𝑞′𝑟

𝑀𝑝𝑘 with 1 ⩽ 𝑟 ⩽ 4, (3.9)

𝑝𝑘+1 ⩽ 𝑞1 < 𝑞2 < … < 𝑞𝑟 ⩽ 𝑝𝑘+14 = 1592081
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and
𝑝𝑘 ⩾ 𝑞′1 > 𝑞′2 > … > 𝑞′𝑟 ⩾ 𝑝𝑘−10 = 1591697.

Proof. Let us write 𝑛 =
∏

𝑝∈ 𝑝𝑏𝑝 and 𝑀𝑝𝑘 =
∏

𝑝∈ 𝑝𝑎𝑝 with 𝑎𝑝 = 1 if 𝑝 ⩽ 𝑝𝑘 and 𝑎𝑝 = 0
if 𝑝 > 𝑝𝑘. From (2.10),

ben𝜀(𝑛) =
∑

𝑝∈
ben𝜀

(

𝑀𝑝𝑘𝑝
𝑏𝑝−𝑎𝑝

)

. (3.10)

From (2.7), each term of the above sum is non-negative and our hypothesis, ben𝜀(𝑛) ⩽ 𝛽,
implies

0 ⩽ ben𝜀
(

𝑀𝑝𝑘𝑝
𝑏𝑝−𝑎𝑝

)

⩽ 𝛽 for 𝑝 ∈  . (3.11)
∙ If 𝑎𝑝 = 1 and 𝑏𝑝 = 0, then 𝑝 ⩽ 𝑝𝑘 and from (2.11) and (2.12),

ben𝜀
(

𝑀𝑝𝑘∕𝑝
)

= log
(

𝑝∕(𝑝 − 1)
)

− 𝜀 log 𝑝

is decreasing on 𝑝. From (2.11)

ben𝜀
(

𝑀𝑝𝑘∕𝑝𝑘−11
)

= ben𝜀
(

𝑀𝑝𝑘∕1591663
)

= 9.29… × 10−11 > 𝛽,

so that
𝑝 ∈ {𝑝𝑘−10, 𝑝𝑘−9,… , 𝑝𝑘}. (3.12)

∙ If 𝑎𝑝 = 1 and 𝑏𝑝 ⩾ 2, then, from (2.11),

ben𝜀
(

𝑀𝑝𝑘𝑝
𝑏𝑝−𝑎𝑝

)

= (𝑏𝑝 − 1)𝜀 log 𝑝 ⩾ 𝜀 log 𝑝

⩾ 𝜀 log 2 = 3.049… × 10−8 > 𝛽. (3.13)

Consequently, from (3.11), such a 𝑝 does not divide 𝑛.
∙ If 𝑎𝑝 = 0 and 𝑏𝑝 ⩾ 2, then 𝑝 ⩾ 𝑝𝑘+1 holds and from (2.11),

ben𝜀(𝑀𝑝𝑘𝑝
𝑏𝑝 ) = log

(

(𝑝 − 1)∕𝑝
)

+ 𝜀𝑏𝑝 log 𝑝

⩾ log
(

(𝑝𝑘+1 − 1)∕𝑝𝑘+1
)

+ 2𝜀 log 𝑝𝑘+1
= 6.28… × 10−7 > 𝛽 (3.14)

so that such a 𝑝 does not divide 𝑛.
∙ If 𝑎𝑝 = 0 and 𝑏𝑝 = 1 then 𝑝 ⩾ 𝑝𝑘+1 holds and, from (2.11) and (2.13),

ben𝜀
(

𝑀𝑝𝑘𝑝
𝑏𝑝−𝑎𝑝

)

= ben𝜀
(

𝑝𝑀𝑝𝑘

)

= log
(

(𝑝 − 1)∕𝑝
)

+ 𝜀 log 𝑝

is increasing on 𝑝. From (2.11),

ben𝜀
(

𝑝𝑘+15𝑀𝑝𝑘

)

= log
(

(𝑝𝑘+15 − 1)∕𝑝𝑘+15
)

+ 𝜀 log 𝑝𝑘+15 = 9.119… × 10−11 > 𝛽,

so that
𝑝 ∈ {𝑝𝑘+1, 𝑝𝑘+2,… , 𝑝𝑘+14}. (3.15)

From (3.12) – (3.15), it follows that 𝑛 should be equal to

𝑛 =
𝑞1𝑞2… 𝑞𝑟
𝑞′1𝑞

′
2… 𝑞′𝑠

𝑀𝑝𝑘 (3.16)

with 𝑟 ⩾ 0, 𝑠 ⩾ 0, 𝑝𝑘+1 ⩽ 𝑞1 < 𝑞2 < … < 𝑞𝑟 ⩽ 𝑝𝑘+14 and 𝑝𝑘 ⩾ 𝑞′1 > 𝑞′2 > … > 𝑞′𝑠 ⩾ 𝑝𝑘−10.
Let us prove that 𝑟 = 𝑠. Ad absurdum, if 𝑟 > 𝑠, then, from (3.16), we would have

𝑛 ⩾ 𝑀𝑝𝑘

𝑝𝑟𝑘+1
𝑝𝑠𝑘

⩾ 𝑀𝑝𝑘𝑝
𝑟−𝑠
𝑘+1 ⩾ 𝑀𝑝𝑘𝑝𝑘+1 = 𝑀𝑝𝑘+1 ,
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which contradicts our hypothesis 𝑛 < 𝑀𝑝𝑘+1 . Similarly, if 𝑠 > 𝑟, then we would have

𝑛
𝑀𝑝𝑘

⩽
𝑝𝑟𝑘+14
𝑝𝑠𝑘−10

=
(𝑝𝑘+14
𝑝𝑘−10

)𝑟 1
𝑝𝑠−𝑟𝑘−10

⩽
(𝑝𝑘+14
𝑝𝑘−10

)14 1
𝑝𝑘−10

= 1.00183…
1591697

< 1,

which contradicts 𝑛 > 𝑀𝑝𝑘 .
It remains to show that 1 ⩽ 𝑟 ⩽ 4. If 𝑟 = 0, 𝑛 = 𝑀𝑝𝑘 and we have supposed 𝑛 > 𝑀𝑝𝑘 .

If 𝑟 ⩾ 5, (2.10), (2.12), (2.13) and (2.11) imply

ben𝜀(𝑛) = ben𝜀
(𝑞1𝑞2… 𝑞𝑟
𝑞′1𝑞

′
2… 𝑞′𝑟

𝑀𝑝𝑘

)

=
𝑟
∑

𝑖=1

(

ben𝜀
(

𝑞𝑖𝑀𝑝𝑘

)

+ ben𝜀
(𝑀𝑝𝑘

𝑞′𝑖

)

)

⩾
5
∑

𝑖=1

(

ben𝜀
(

𝑝𝑘+𝑖𝑀𝑝𝑘

)

+ ben𝜀
( 𝑀𝑝𝑘
𝑝𝑘−𝑖+1

)

)

= 1.21…10−10 > 𝛽,

which completes the proof of Lemma 3.3. □

After the statement of Theorem 1.1, we have seen that, to prove it, it suffices to show that
𝐴 is the largest number satisfying 𝑀𝑝𝑘 < 𝐴 < 𝑀𝑝𝑘+1 and 𝑐(𝐴) ⩾ 𝛿. Let 𝑛 be an integer
satisfying 𝑀𝑝𝑘 < 𝑛 < 𝑀𝑝𝑘+1 and 𝑐(𝑛) > 𝛿. Lemma 3.2 implies ben𝜀(𝑛) ⩽ 𝛽 defined
by (3.7). From Lemma 3.3, we compute the numbers 𝑛 described in (3.9) and satisfying
ben𝜀(𝑛) ⩽ 𝛽, cf. [17]. There are 882 such numbers and all of them satisfy 𝑐(𝑛) > 𝛿
and 𝑀𝑝𝑘 < 𝑛 < 𝑀𝑝𝑘+1 . Moreover, if we order these 882 numbers in a decreasing sequence
𝑛1 > 𝑛2 > … > 𝑛882 then the sequence ben𝜀(𝑛𝑖) is decreasing while the sequences 𝑛𝑖∕𝜑(𝑛𝑖)
and 𝑐(𝑛𝑖) are increasing. The largest number is 𝑛1 = 𝐴 (defined in (1.8)), which completes
the proof of Theorem 1.1.
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