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Abstract. We investigate finite right-distributive binary algebraic structures
called shelves. We first use symbolic computations with Python to classify (up
to isomorphism) all connected shelves with order less than six. We explore the
group structure generated by the rows of latin shelves. We also define two-
variable shelf polynomial by analogy with the quandle polynomial and then
state a conjecture about connected idempotent shelves.

1. Introduction

Shelves are sets with binary operations satisfying self-distributivity
These algebraic structures are derived from the axiomatization of Reidemeister
move III in classical knot theory. By adding the condition corresponding to Rei-
demeister move II, one gets the notion of a rack. Racks have been used to obtain
invariants of framed knots [6]. Framed knots can be visualized as closed loops of
knotted flat ribbons. Framed knots generated lot of interests mainly because of
the critical role they play in low-dimensional topology [6]. By adding the condition
corresponding to Reidemeister move I to the definition of a rack, one obtains the
notion of a quandle. Quandles have been studied extensively and are used to obtain
invariants of knots and links [5]. In [2], associative shelves have been investigated
and it was shown that unital shelves are associative. The authors also investigated
one-term and two-term homology groups of some associative self-distributive al-
gebraic structures in [2]. In [1], self-distributivity was investigated in a unified
manner via a categorical technique called internalization, a cohomology theory was
developed, and explicit relations to rack and Lie algebra cohomology theories were
given. Self distributivity was also investigated from a group theory point of view in
[4], where the automorphism groups of many quandles, including dihedral quandles,
were determined.

A monounary algebra is an algebra with one unary operation, usually denoted as
a pair (4, f), where A is a nonempty set with a map f : A — A. In [8], the author
considered finite monounary algebras and proved that every monounary algebra has
at least one left-distributive extension E such that x *y = z in A means z xy = 2
in E. A left-distributive extension of A is simply a left-distributive groupoid. The
author also gave an enumeration algorithm which computes the numbers of all left-
distributive groupoids and their isomorphism types on a given set of cardinality
less or equal to six. It is worth noting that the left-groupoids discussed in [8]
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are exactly the shelves that are under consideration in our paper, but with right-
distributive property. However, to the best of our knowledge, a classification of
connected shelves up to isomorphism has not appeared in the literature.

A Laver table [9] is a free shelf generated by one element. Precisely, Laver
proved that for every N > 1, there exists a unique binary operation * on the set
X ={1,2,..., N} such that, for all z, y, satisfies

xxl=2+4+1 (mod N),xx(y*x1) = (z*xy)*(xx1)
Then the binary operation * is left-distributive if and only if N is a power of 2. Laver
tables were introduced in 1995 by Richard Laver while investigating self-embedding
in set theory (see for example [3] for more details).

In this article, we use symbolic computations with Python to obtain the list
of shelves of order less than six. We also define two-variable shelf polynomial by
analogy with the quandle polynomial and then state a conjecture about connected
idempotent shelves. The organization of this paper is as follows: Section 2 reviews
the basics of shelves in general and connected shelves in particular. In Section 3,
we describe the algorithm which allows the classification of connected shelves of
order less than six. In Section 4, we study connected shelves and give the number
of connected shelves of order up to 6. We also present a conjecture regarding
connected shelves. A latin shelf is a shelf whose rows are permutations. We also
study latin shelves in Section 4, especially the group structure generated by rows
of latin shelves. Section 5 introduces shelf polynomial, and we end the section with
a conjecture strongly supported by our computational results. In Appendix A, we
give the list of all connected shelves of order less than six.

2. Review of Shelves

In this section, we review the basics of shelves, give some examples and introduce
the notion of connected shelves.

Definition 2.1. A shelf (S,x) is a set S with a binary operation * that is right-
distributive. Precisely, for all z,y, z € S, we have:

A shelf homomorphism between two shelves (S, ;1) and (S’ *3) isamap f: S —
S’ such that for all x,y € S we have f(z %1 y) = f(x)*2 f(y). A shelf isomorphism
is a bijective shelf homomorphism. Two shelves are isomorphic if there is a shelf
isomorphism between them.

Typical examples of shelves include:

e The set Z,, of integers modulo n with zxy = ax+ Py, such that f(a+F—-1) =0

in Z,,. For example Z1y with z * y = 2x 4 5y.

e Any group G with conjugation z * y = yxy~'.

e Laver tables: Zan with 1x2x =2+ 1 and (1 xz)xy = (1 xy) * (z *xy) (notice

that we are using right-distributivity instead of left-distributivity).
Let (S, %) be a shelf. The right multiplication R, by an element x of S is the map
R, : S — S such that R,(y) = y * 2. The monoid generated by R, is denoted by
Mg. This monoid acts naturally on S. When this action is transitive we say that
the shelf S is connected. In other words, if for all z,y € S, there exists ¢ € Mg
such that ¢(x) = y, then we say that the shelf S is connected.
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A wunital shelf is a shelf S with an identity element. That is, there exists an
element 1 in S such that 1*x =z =x* 1 for all x € S. A spindle is a shelf whose
elements are idempotent. In [2], the authors developed a theory of associative
shelves, and studied their one-term and two-term homology groups. They also
presented the number of unital shelves of order up to 4 in Table 3. The following
table is an update of it.

n | number of unital shelves
1 1
2 1
3 2
4 6
5 23

3. An Algorithm to Generate Shelves

A matrix M € M, (Z,,) is a shelf matrix if it satisfies right distributivity (ref. to
definition 2.1). A brute-force algorithm that enumerates all matrices in M, (Z,,) and
check each candidate for right distributivity does not scale for orders higher than
four, e.g., order five requires checking 52° candidate matrices. This section presents
a computationally efficient algorithm to generate shelves without enumerating all
of M,,(Z,,). The proposed algorithm is also parallelizable.

The right distributivity property requires to check n® conditions (all possible
orderings of three elements drawn with replacement from the set). Let us denote
this set of conditions by C,, and one of those conditions by a tuple of length three
(z,y, z), where x,y, z € Z,,. For example, consider order three where Z3 = {0, 1,2}
and C,, = {(x,y,2) | x,y,2 € Zy,} is the set of conditions and (0, 1,2) denotes the
particular right distributivity condition (0% 1) 2 = (0% 2) % (1 * 2).

The algorithm starts with an empty n x n matrix. Then it takes one of the
conditions from C,, and generates all the possible partially filled matrices that satisfy
the condition. We call these candidate matrices. For example consider (0,0,0)
condition in order three. Let us represent the empty matrix as

(-1,-1,-1],[-1,-1,-1],[-1, -1, —1]],

where the rows are unstacked into a single row to preserve space and —1 is used
to represents the empty value in the computer program (any value outside of Zg
will do). From this empty matrix generating all partially filled matrices that satisfy
condition (0,0, 0) gives the following seven candidates:

(i) [[0,—-1,-1],[— 1,—1,—1} [-1,—1,—1]]
(i) [[1,-1,-1],[ 0, 0,-1],[-1,-1,-1]]
i) [,-1,-1],[ 1, 1,-1],[-1,-1,—1]]
(iV) [[1771371]3[ 27 23 1]3[ 1’ 17 1]]
(V) [[2’_17_1]7[ ]-a 1’ 1}’[ 07 ]-7 0]]
(vi) [[2,-1,-1],[-1,-1,-1],[ 1,-1, 1]]
(vii) [[2,-1,-1],[-1,-1,-1],[ 2,-1, 2]]

The generation technique of the candidates is as follows. In Python or C pro-
gramming array indices start at 0. Therefore, the operation (x*y), where x,y € Z,,
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is identical to reading the value at (x,y) indices of the 2D array containing the ma-
trix. Assume we are given a matrix M (partially or fully empty) and the condition
(z,y,z). First check if the location (z,y) is empty in M and if so it can be filled
with n possible values. This is done in a loop. Enter the loop and fill with one
value. Now check if (z,z) is empty and if so it too can be filled with n possible
values in a similar loop. Do the same for (y,z). Then in the final stage check if
either one of ((z,y),2) or ((z,2), (y, 2)) is empty. If both are empty (or they point
to same location in the matrix and that is empty) there are n possible values to
consider, each of which satisfies the condition. If just one is empty then assign
the value of other to it. If both are filled with the same value then the condition
is satisfied. If they are filled but with different values then the condition is vio-
lated. The generation process is computationally intensive with a series of nested
loops. Therefore, an efficient algorithm should minimize the total number of false
candidates that it generates while searching for shelves. This brings us to the next
important step of the algorithm.

For each of these candidates check if at least one of the remaining conditions is
violated. For example consider the condition (0,0,1) and first candidate

[o,-1,-1],[-1,-1,-1],[-1,-1,-1]]

generated above. To check both LHS and RHS of (0,0, 1) we need the value at (0,1).
However, (0,1) = —1, as the matrix location (0, 1) has not yet been filled by a value
from Zs. Therefore, one cannot make a conclusion as to if this condition is violated.
Likewise, check this matrix for all of the remaining conditions for violations. This
checking is important to reduce the search space in the latter steps. Those that do
not violate any of the remaining conditions become candidates for the next step.
Now in the next step the algorithm takes each of these candidates and the next
condition and generates all possible candidates that do not violate the remaining
conditions. Thus, in each step the candidates satisfy all the conditions that have
been applied so far to generate them and they also do not violate the remaining
conditions. This process can be visualized as a tree with the empty matrix at the
root.

The above described steps are succinctly presented in Algorithm 1 in the form of
a recursive depth first search. The function getNextCondition(), takes as input
the current condition (None for the first call) and returns the next condition to
apply. The function generateCandidates() takes as input a candidate matrix,
and a condition and then derives all candidates that satisfy the given condition.
The function notViolateRestOfTheConditions () takes as input a matrix and the
current condition and returns True if the matrix does not violate any of the remain-
ing conditions. This function can be modified to verify additional conditions when
looking for specific kinds of shelves, such as connected or unitial. The algorithm is
started by calling the function getShelves() with the empty initial matrix Mt
and the first condition. Then getShelves() proceeds recursively in a depth first
manner collecting the matrices that satisfy all the conditions of right distributivity,
which are shelves.

A Python implementation of Algorithm 1, a list of shelves of order less than 6
(up to isomorphism), and a list of connected shelves of order less than seven (up
to isomorphism) are available in [7]. This Python implementation also parallelizes
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the algorithm for multiprocessing. The parallelization is achieved by first applying
two of the n® conditions in a breadth first search, thus generating all the candidates
that satisfy these two conditions and that do not violate remaining conditions and
then parallelly applying the depth first search on these candidates. The order in
which the conditions are applied does not affect the final result, however, through
experimentation we found that the order very much affects the time to completion.
Optimal ordering is left for future research.

Algorithm 1 Algorithm to construct shelves

n < order >n>2
Minis < empty matrix of size n X n
¢1 < getNextCondition(None)
L+ ] > list to store shelves
procedure getShelves(M ¢y, ) > recursively applies conditions
¢ < getNextCondition(cip)
if all conditions applied & M not in L then
append M to L
else
for m in generateCandidates(M, ¢i,) do
if notViolateRestOfTheConditions(m, ciy) then
getShelves(m, ¢)
end if
end for
end if
end procedure
getShelves(Minit, ¢1) > call the procedure
> when the procedure exits L contains all the shelves of order n

4. Connected Shelves
In this section, we classify connected shelves of order up to 5.

Definition 4.1. A connected shelf (X, %) is a shelf such that for all z,y € X, there
exists a finite number of elements x1, xs, ..., x,, such that
y=((((zxx1)*x2)*T3)...) * Ty

The definition of a connected shelf simply means that we can go from one element
to any other element by finite number of steps. In other words, the orbit of each
element must equal the shelf itself.

n | # of connected shelves | # of connected racks | # of connected quandles
1 1 1 1
2 2 1 0
3 5 2 1
4 18 2 1
5 165 4 3
6 3987 4 2
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We refer the reader to Appendix A for the complete list of connected shelves of
order less than or equal to 5, up to isomorphism.

Our computer search results support the following conjecture for order up to 5.

Conjecture 4.2. Let S be a shelf. Then there exists a shortest cycle that covers
all the elements in S exactly once if and only if S is connected.

A cycle from 0 to 0 that covers all elements in the shelf may contain an element
more than once. For example, consider the following connected shelf of order 4.

*lo 1 2 3
00 1 13
1[0 120
210 120
3]0 11 3

A cycle from 0 to 0 in this shelf is
0—-1—-2—=-1—=3—=0.
However the shortest cycle from 0 to 0 is
0—+3—-1—-2-=0.
4.1. Latin shelves. In this subsection, we explore the groups generated by rows

in Latin shelves. Recall the left multiplication map. For each = € S, the left
multiplication by z is the map denoted by

L,:5—=S
and given by
La(y) = w*y.

Definition 4.3. A shelf is Latin or strongly connected if the shelf operation is left-
invertible. This means the rows of a Latin shelf are permutations of {1,2,...,n}.

Clearly, Latin shelves are connected, and a Latin quandle is always a Latin shelf.
Let z € S, where S is a Latin shelf.

Lywy(z) = (xxy)* 2= (z*2) x (y x 2) = Ly(2) * Ly(2)

In a Latin shelf, each L,, where = € S, is a bijection. Let X be the set of all L,,,
ie.
X ={L, : z €S}

Clearly, we have X C S,,.
Let t € S. Define an operation > on the set X as follows:

(Lo & Ly)(t) 1= La(t) * Ly(t).

Then
(Lx > Ly)(t) = Lx*y(t)-
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Now consider
(Lo > Ly) > L2)(t) = (
* L.(t)
* ) * L(t))
= (Ly> L,)(t) * (L, > L,)(¢)
= Ly (t) * Lys2(t)
Lz > Lys2) (1)
(Lo > Lz) > (Ly > L2))(t)
Since t is arbitrary, we have
(Ly>Ly)> L, =(Ly>L,)> (L, > L.,),
i.e.
Loy Lo = Lyws > Lyes.
Thus, (X, >) is a shelf.
Note that L, > L, = Lg... So, if the elements in the shelf S are idempotent, so
are the elements in X.

Now we show that the elements in X do not satisfy the second axiom of a
quandle. Let t € S.

(L > Ly) > Ly)(t) = (Lo > Ly ) (t) * Ly (t)
= (La(t) * Ly (t)) * Ly (t)
= (La(t) % Ly (t)) * (Ly(t) * Ly (t))
=(La > u) t)  (Ly > Ly)(t)

L,
= L(zuy)s (y*y)( ) # La(t)
For each x € S, define a map
¢:S—=X
given by
z+— L,

The map ¢ is a homomorphism because
Pz *y) = Lasy = Lo > Ly = ¢(z) > ¢(y)

In fact, it is an epimorphism.
Now, let G be the group generated by L,, where z € S, i.e. G= (L, : © € S).
Since we are only considering finite shelves, G is a finitely generated group.
Define an operation on G as

LyoLy = L;'L,L,
Then we have

(LyoLy)o YLyoLy)L,
YL;'L.L,)L,

= (LyL:)"' Lo (Ly L)

Z
Z
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and
(LyoL,)o(LyoL,)=(L;'L,L,)o(L;'L,L,)

L7'Ly L) N (L7 Lo L) (L L, L)

'L LL) (L L L) (L Ly L)

LMLy La(LyL:)

LyLz) Lo (LyL:),

z

z

(L
= (L
= (L
= (
=(

which imply
(LgyoLy)oL, = (LyoL,)o(LyoL,)
Hence the conjugation in G turns it into a shelf.
We are now interested in seeing whether the conjugation in G satisfies Axiom 1
and Axiom 2 of a quandle. Consider L, ¢ L.
LyoL,=L;'L,L, =1L,

Thus the elements in G are idempotent.

Let’s consider Axiom 2. We show that under certain conditions on left multipli-
cation, elements in G satisfy Axiom 2. In other words, under certain conditions on
left multiplication, G is a quandle.

(LyoLy) oL, YLyo L)L,
"L, 'LoLy)L,
D2La(Ly)?

:(Lf,) L. (L)

Yy
Yy

=L
=L
= (Ly

If rows are either 2-cycles or the identity permutation, then (L ¢ L,) o L, = L,
and thus (G, ) is a quandle. If cycles are disjoint, (Lg ¢ Ly) ¢ Ly = L,, and thus
(G,0) is still a quandle.

Since the rows of Latin shelves are permutations, we are curious about the groups
generated by them. We are interested in knowing whether the group structure can
be used to distinguish shelves in different isomorphism classes. In the following
table, we present the groups generated by rows of Latin shelves of order up to 5.
In the table, S, ;. denotes the kth shelf of order n listed in Appendix A. The shelf
S3,3 denotes the Latin shelf # 3 listed under order 3 in Appendix A. We first list
disjoint cycle notation for the rows of a Latin shelf, and then we list the group
generated by them. The cycle (id) denotes the identity permutation.

Consider the following example:

Ss3 = [[0,2,1],[2,1,0],[1,0,2]]

The first, second and third rows are two cycles (12), (02), (01), respectively. Thus
the group generated by rows (left multiplications) is

G = ((12),(02), (01)) = S3 = Dy

In fact, this is the only connected Latin quandle of order 3. The abbreviation
LQ stands for Latin Quandle.
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Latin Shelf | Disjoint Cycle Notation for the Rows of the Latin Shelf G
Sa.1 (id),(id) {id}
S3,1 (id),(id),(id) {id}
S3,2 (id),(id),(01) Zo

S3,3(LQ) (12),(02),(01) D3
S (id),(id),(id),(id) {id}
S4.2(LQ) (132),(023),(031),(012) Ag
Sa,3 (23),(23),(01),(01) Zo X Lo
Si4 (id),(id),(01),(01) Lo
Sq,7 (id),(id),(id),(021) Zs3
Si,13 (id),(id), (id),(12) Zy
S5,126 (id),(id),(id),(id),(id) {id}
Ss,127 (id),(id),(id), (id),(23) Lo
Ss,120 (id),(id),(id),(id),(132) L3
S5,133 (id),(id),(id),(id),(01)(23) Ly
S5,135 (id),(id),(id),(id),(0321) Za4
S5,136 (id),(id),(id),(12),(12) Lo
S5,139 (id),(id),(id),(12),(01) D3
Ss,140 (id),(id),(id),(12),(021) D3
S5,150 (id),(id),(id),(021),(021) L3
S5,151 (id),(id),(id),(021),(012) Zs3
Ss,152 (id),(id),(34),(01),(01) Zo X Ls
S5,153 (id),(id),(01),(01),(01) Zy
Ss,154 (id),(id),(01),(01),(01)(23) Ly X Ly
Ss,155 (id),(34),(34),(12),(12) Lo X Lz
S5,156 (34),(34),(34),(12),(12) Ly X Ly
S5,158 (34),(34),(34),(021),(021) Zo X L3
S5,159 (34),(34),(01)(34),(01),(01) Zo X Lo

S5,162(LQ) (12)(34),(03)(24),(13)(04),(02)(14),(01)(23) Ds

SS,IGB(LQ) (1432),(0342),(0413),(0124),(0231) GA(1,5)

55,164(LQ) (1432),(0423),(0134),(0241),(0312) GA(1,5)

We are able to distinguish many Latin shelves that belong to different isomor-
phism classes, but there are quite a few cases starting from order 4 in which shelves
that belong to different isomorphism classes have the same group structure. For
example, in order 4, the rows of Latin shelves Sy 4 and Sy 13 have the group struc-
ture ZQ, and in order 5, the rows of Latin shelves 55,152, 55,1547 5’571557 857156 and
Ss,159 generate the group Zg X Zs.

It also seems like the number of such cases increases as the order gets higher.
However, we believe that the group structure of the rows of Latin shelves would be
an interesting topic for further research, especially as the order gets higher.

5. Shelf Polynomials
In this section, we study shelf polynomials.

Definition 5.1. Let S be a finite shelf. For each element x € S, let r(z) be the
number of elements of S which act trivially on z, i.e. the set
r(@z) =y e Slzxy=a}|
and let ¢(x) be the number of elements of S on which z acts trivially, i.e. the set

c(x) =[{y € Sly*z =y}
In terms of the shelf’s operation table, r(x) counts the number of zs in row x
and ¢(z) counts the number of entries in the column of z equal their row number.
For every element x € S, we have a pair (r(z), c(x)) of integers. We can express
this data as a polynomial in two variables which we call the shelf polynomial of S
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P(S) =Y tr@sel),

zeS
Example 5.2. The shelf
lo 1 2 3
010 1 1 3
110 1 2 3
210 1 2 8
310 1 1 38

has the shelf polynomial P(S) = 4st

Definition 5.3. A shelf is Latin or strongly connected if the shelf operation is left-
invertible. This means the rows of a Latin shelf are permutations of {1,2,...,n}.

We now classify shelves as latin quandles, non-quandle racks, non-rack latin
shelves or non-rack shelves. The numbers in parentheses are the numbers assigned
to shelves listed in Appendix A. We also present the shelf polynomial of shelves in
Appendix A.

Order 2
e Non-rack shelves: (1)
e Non-quandle Racks: (2)

There are neither non-rack Latin shelves nor Latin quandles of order 2. The
shelf polynomials of shelves (1) and (2) are P(S) = 2st and P(S) = 2, respectively.

Order 3

Non-rack shelves: (5)

Non-rack Latin shelves: (1), (2)
Non-quandle Racks: (4)

Latin Quandles: (3)

The shelf polynomial of the shelf (non-quandle rack) (4) is the constant polyno-
mial P(S) = 3, and the shelf polynomial of all other shelves is P(S) = 3st.

Order 4

Non-rack shelves: (6), (8) — (12), (14) — (18)
Non-rack Latin shelves: (1), (3), (4), (7), (13)
Non-quandle Racks: (5)

Latin Quandles: (2)

The shelf polynomial of the shelves (5) and (6) is the constant polynomial P(S) =
4, and the shelf polynomial of all other shelves is P(S) = 4st.

We note to the reader that if P(S) = |S|st, then S is clearly idempotent. Then
the natural question to ask is “Is the converse true?”. This leads to the following
conjecture strongly supported by our computational results.

Conjecture 5.4. If a connected shelf S is idempotent, then P(S) = |S|st, where
|S| is the cardinality of S.
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We note to the reader that an idempotent shelf does not always have the shelf
polynomial P(S) = |S]st.
For example, the order 3 idempotent shelf, which is non-connected,

10 1 2
0]0 1 1
110 1 0
210 1 2

has the shelf polynomial P(S) = 3st, whereas the order 3 idempotent shelf, which
is non-connected,

1o 1 2
0[0 0 O
111 1 1
212 2 2

has the shelf polynomial P(S) = 3s3t3. The conjecture says that the shelf poly-
nomial of a connected spindle S is P(S) = |S|st, where |S| is the cardinality of
S.

Appendix A

In Appendix A, we list all connected shelves of order less than or equal to 5 up
to isomorphism. For a full list of shelves of order less than or equal to 5 up to
isomorphism and a full list of connected shelves of order less than or equal to six
up to isomorphism, we refer the reader to [7].

Order 2: There are two connected shelves.

(1) (o, 1], [0, 1]] (2) [[1,1],[0,0]]

Order 3: There are five connected shelves.

(1) [[o,1,2],[0,1,2],[0,1,2]] (4) [[1,1,1],[2,2,2],[0,0,0]]
(2) [0,1,2],[0,1,2],[1,0,2] (56) [[0,1,1],[0,1,2],0,1,2]]

(3) [00,2,1],[2,1,0],[1,0,2]]

Order 4: There are 18 connected shelves.

(1) [[o,1,2,3],[0,1,2,3],[0,1,2,3],[0,1,2,3]] (10) [[0,1,1,3],[0,1,2,3],[0,1,2,3],[0,1,1,3]]
(2) [[0,2,3,1],[3,1,0,2],[1,3,2,0],[2,0,1,3]] (11) [[0,1,1,3],[0,1,2,3],[0,1,2,3],[0,2,2,3]]
(3) [[o0,1,3,2],[0,1,3,2],[1,0,2,3],[1,0,2,3]] (12) [[0,1,1,3],[3,1,2,0],[3,1,2,0],[0,1,1,3]]
(4) [[0,1,2,3],[0,1,2,3],[1,0,2,3],[1,0,2,3]] (13) [[0,1,2,3],[0,1,2,3],[0,1,2,3],[0,2,1, 3]]
(5) [[1,1,1,1],[2,2,2,2],(3,3,3,3],[0,0,0,0]] (14) [[0,1,1,1],[0,1,2,2],]0,1,2,3],[0,1,2,3]]
(6) [[1,1,2,2],]0,0,3,3],[0,0,3,3],[1,1,2,2]] (15) [[0,1,1,2],[0,1,2,3],[0,1,2,3],[0,1,2,3]]
(7) [[0,1,2,3],[0,1,2,3],[0,1,2,3],[1,2,0,3]] (16) [[0,1,1,3],[0,1,2,3],[0,1,2,3],[0,1,2,3]]
(8) [[0,1,1,1],[0,1,2,3],[0,1,2,3],[0,1,2,3]] (17) [[0,1,1,3],[0,1,2,3],[0,1,2,3],[0,2,1, 3]]
(9) [[0,1,1,3],[0,1,2,0],[0,1,2,0],[0,1,1,3]] (18) [[0,1,2,3],[0,1,2,3],[0,1,2,3],[1,0,0, 3]]
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Order 5: There are 165 connected shelves.

&)
@)
)
()
(5)
(6)
)
®)
©)

(10)

(an

(12)

(13)

(14)

(15)

(16)

an

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

[[o,1,1,1,1],[0,1,2,2,2],[0,1,2,3,3],[0,1,2,3,4], [0, 1, 2, 3,4]]
[[o,1,1,1,1],[0,1,2,2,2],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 2, 3,4]]
[[0,1,1,1,1],[0,1,2,2,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 2, 2,4]]
[[o,1,1,1,1],[0,1,2,2,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 2, 3,4]]
[[o,1,1,1,1],[0,1,2,2,4],[0,1,2,3,4],[0,1, 2, 3,4], [0, 1, 3, 2,4]]
[[0,1,1,1,1],[0,1,2,2,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 3, 3,4]]
[[o,1,1,1,1],[0,1,2,3,4],[0,1,2,3,4],[0,1, 2, 3,4], [0, 1, 2, 3,4]]
[[o,1,1,1,2],[0,1,2,3,3],[0,1,2,3,3],[0,1, 2, 3,4], [0, 1, 2, 3,4]]
[[0,1,1,1,2],[0,1,2,3,4],[0,1,2,3,4],[0,1, 2, 3,4], [0, 1, 2, 3,4]]
[[0,1,1,1,2],[0,1,2,4,4],[0,1,2,4,4],[0,1,2, 3,4], [0, 1, 2, 3,4]]
[fo,1,1,1,4],[0,1,2,2,0],[0,1,2,3,0],[0,1,2,3,0],[0,1, 1,1, 4]]
[[o,1,1,1,4],[0,1,2,2,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,1, 1, 4]]
[[0,1,1,1,4],[0,1,2,2,4],[0,1,2,3,4],[0,1, 2,3,4], [0, 1, 2,2, 4]]
[fo,1,1,1,4],[0,1,2,3,0],[0,1,2,3,0],[0,1,2,3,0],[0,1,1,1,4]]
[[o,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1, 1,1, 4]]
[[o,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1, 1,2, 4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], (0,1, 1, 3,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 2, 2,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 2, 3,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 1, 3, 2,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,2,1, 1, 4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 2,1, 2,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1, 2, 3,4], [0, 2, 1, 3,4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 2, 2,1, 4]]
[[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1, 2, 3,4], [0, 2, 2, 2, 4]]

[0,1,1,1,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4], [0, 2, 2, 3,4]]
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