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Abstract. In this paper we extend previous results concerning the behaviour
of JSJ decompositions of closed 3-manifolds with respect to the profinite com-

pletion to the case of compact 3-manifolds with boundary.
We also illustrate an alternative and perhaps more natural approach to part

of the original theorem, using relative cohomology to analyse the actions of

an-annular atoroidal group pairs on profinite trees.

1. Introduction

Several recent papers have focused on those properties of 3-manifolds which can
be detected via the finite quotients of the fundamental group—or equivalently via
the profinite completion of the fundamental group. For example the geometry
of a 3-manifold is determined by the profinite completion [20], as is whether the
manifold fibres over the circle [8]. There has also been much progress made towards
answering the question of when two 3-manifold groups can have the same finite
quotients [4, 2, 3, 5, 17, 18].

One of the most important tools in the study of irreducible 3-manifolds and
their fundamental groups is the JSJ decomposition, a canonical graph of spaces
decomposition of the 3-manifold with annuli and tori as edge spaces. The vertex
spaces of such a decomposition are now known to always be geometric and therefore
we have strong control over the fundamental group of a 3-manifold via its JSJ
decomposition.

It is therefore interesting to study whether 3-manifolds whose fundamental groups
have isomorphic profinite completions must have similar JSJ decompositions in the
sense that the underlying graphs are isomorphic and corresponding vertex spaces
have fundamental groups with isomorphic profinite completions. This was proved
for irreducible 3-manifolds with toroidal boundary by Wilton and Zalesskii [21,
Theorem B]. The principal aim of this paper is to extend this theorem to the case
where the 3-manifold may have incompressible boundary of arbitrary genus. This
is accomplished in Theorem 6.5.

We remark in passing that analogous theorems for prime decompositions of 3-
manifolds are also known: by [21, Theorem A] in the closed case and [15, Theorem
6.22] in the bounded case.
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Wilton and Zalesskii remarked in [21] that one of the key parts of the proof of
the JSJ decomposition (analysing the possible actions of the profinite completion of
the fundamental group of a cusped hyperbolic 3-manifold on profinite trees) could
‘no doubt’ be handled by developing a theory of relative cohomology of profinite
groups. This theory has now been developed in [15] and a secondary aim of this
paper is to show that it does indeed have this application. This may be found in
Theorem 6.1.

The use of relative cohomology is perhaps a more natural argument than the
original analysis in [21]. In [21] cusped hyperbolic manifolds were handled by
Dehn filling the cusps to obtain a closed hyperbolic manifold in such a way that the
action on a profinite tree was not disturbed too much. The relative cohomology
argument essentially concerns the absence of ‘tori’ and ‘annuli’ in the profinite
completion and the obstruction this gives to splittings, which seems closer to the
original spirit of a JSJ decomposition.

Conventions. The following conventions will be in force through the paper.

 Generally profinite groups will be denoted with Roman letters G or H and

discrete groups by Greek letters Γ, Λ et cetera.

 Maps of topological groups or modules should be assumed to be continuous

homomorphisms in the appropriate sense.

 All 3-manifolds will be compact, orientable and connected.

 As we are interested in group-theoretic properties we will assume that 3-

manifolds never have spherical boundary components.

 A finite graph of discrete groups will be denoted pX,Γ
q where X is a finite

graph and Γx for x P X denotes an edge or vertex group (with similar notation
for graphs of profinite groups).

2. Preliminaries

2.1. Group pairs and relative cohomology. Here we collect various definitions
and properties of group pairs and relative cohomology. As in [15] one should in
sensu stricto only consider families of subgroups of a profinite group which are
‘continuously indexed by a profinite space’. However the issues associated to this
will not arise in this paper, as the families of subgroups arising from boundary
components of compact 3-manifolds are finite, so we shall ignore it to simplify the
exposition.

Definition 2.1. A profinite group pair pG,Sq consists of a profinite group G and
a family S of closed subgroups Sx of G indexed over a set X—that is, a function
S
 from X to the set of closed subgroups of G. We allow repetitions in this family
(that is, the function S
 need not be injective).

Definition 2.2. For a group G and a collection S � tSxuxPX of subgroups of G
indexed by a set X, we define }S} � |tx P X : Sx � 1u| P r0,8s.

Definition 2.3. Let G be a profinite group and let S � tSxuxPX be a family of
subgroups of G indexed by a set X. Let H be a closed subgroup of G. Fix a section
σ : HzGÑ G of the quotient map GÑ HzG. Define the family of subgroups

SHσ �
 
H X σpyqSxσpyq

�1 | x P X, y P HzG{Sx
(
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indexed over the set
HzG{S �

§
xPX

HzG{Sx

Changing the section σ only affects the family SHσ by changing its members by
conjugacy in H, and we will henceforth ignore σ.

Definition 2.4. Let G and H be profinite groups, let S � tSxuxPX be a family of
subgroups of G indexed by a set X and let T � tTyuyPY be a family of subgroups
of H indexed by a set Y . A weak isomorphism of pairs Φ: pG,Sq Ñ pH, T q is an
isomorphism Φ: GÑ H such that for some bijection f : X Ñ Y each group ΦpSxq
is a conjugate in H of Tfpxq.

Definition 2.5. If Σ is a collection of subgroups of the discrete group Γ define

the profinite completion of pΓ,Σq to be the group pair pG,Sq where G � pΓ and S
consists of the closure in G of each group in Σ.

Note that the groups in S may not be equal to the profinite completions of the
groups in Σ in the absence of conditions on the profinite topology of Γ—specifically
the condition that Γ induces the full profinite topology on each element of Σ in the
following sense.

Definition 2.6. Let Γ be a discrete group and let Λ ¤ Γ. Then we say that Λ is
separable in Γ if for every g P Γ r Λ there is a map φ from Γ to a finite group such
that φpgq R φpΛq.

We say that Γ induces the full profinite topology on Λ if for every finite index
normal subgroup U of Λ there is a finite index normal subgroup V of Γ and with
V X Λ ¤ U .

We say that Λ is fully separable in Γ if it is separable in Γ and Γ induces the full
profinite topology on Λ.

In our case we shall only be considering families of subgroups resulting from
incompressible boundary components of 3-manifolds. There are no problems with
the profinite topology on these subgroups because of the following theorem, which
builds on work of Przytycki and Wise [11] among others.

Theorem 2.7 (Corollary 6.20 of [15]). Let M be a compact 3-manifold with π1-
injective boundary and let L be a boundary component of M . Then π1L is fully
separable in π1M .

The primary tool we shall use to study profinite group pairs is their relative
cohomology. There is no need for us to define this theory here as we shall only need
properties as black boxes. Suffice it to say that for profinite group pairs there is a
theory of relative (co)homology which has the aspects one might expect, viz:

 a long exact sequence of relative cohomology [15, Proposition 2.4];

 functoriality with respect to sensible maps of group pairs [15, Proposition 2.6];

 invariance under replacing subgroups by conjugates [15, Proposition 2.9];

 a theory of cohomological dimension cdppG,Sq with respect to a prime p [15,

Section 2.3];

 a notion of cup product [15, Section 3]; and

 a notion of Poincaré duality (or PDn) pair (with respect to a set of prime

numbers) [15, Section 5].
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The relevant results we shall primarily be using are the following.

Theorem 2.8 (Theorem 6.21 of [15]). Let M be a compact aspherical 3-manifold
with incompressible boundary components BM1, . . . BMr. Let Γ � π1M and let
Σ � tπ1BMiu1¤i¤r. Then the profinite completion of pΓ,Σq is a PD3 pair at every
prime p.

Theorem 2.9 (Corollary 5.14 of [15]). Let pG,Sq be a profinite group pair which
is a PDn pair at every prime p. Suppose that G acts on a profinite tree T . Suppose
that for every edge e of T we have cdppGe,SGeq   n� 1 for all p where Ge denotes
the stabiliser of e. Then G fixes a vertex of T .

Lemma 2.10 (Lemma 2.20 of [15]). Let pG,Sq be a profinite group pair. Suppose
that the family S is such that at most one subgroup S0 P S is non-trivial. Then for
every k ¡ 1 and every discrete torsion G-module A, we have

HkpG,S;Aq � HkpG, tS0u;Aq

In particular, cdppG,Sq � cdppG, tS0uq for all p P π except possibly if one dimension
is 1 and the other 0.

2.2. JSJ decompositions of 3-manifolds.

Definition 2.11. A 3-manifold M is atoroidal if any embedded incompressible
torus is isotopic to a boundary component of M . Similarly M is an-annular if any
properly embedded incompressible annulus is isotopic into a boundary component
of M .

The JSJ decomposition of a closed irreducible 3-manifold [7, 9] consists of a
canonical collection of disjoint incompressible tori embedded in the manifold such
that, on removing small open neighbourhoods of these tori, the connected connected
components of the remainder are either Seifert fibred or atoroidal.

In this paper we shall be considering the analogous decomposition for a compact
irreducible 3-manifold M with incompressible boundary. Here the decomposition
consists of cutting along both annuli and tori embedded in the manifold. Our source
for this decomposition is [10]. The classification of the pieces of this decomposition
is not quite so clean as in the closed case.

An essential annulus or torus is one that is incompressible (there exists no em-
bedded disc meeting the annulus or torus exactly along the boundary of the disc)
and is not boundary-parallel.

Definition 2.12. Let pX,M
q be a graph-of-spaces decomposition of a 3-manifold
M whose edge spaces are annuli and tori. For a vertex space Mx let B0Mx be
the part of BMx coming from edge spaces Me and let B1Mx be the portion of BMx

coming from BM . Then Mx is simple if any essential annulus pA, BAq � pMx, B0Mxq
is parallel to B1Mx.

Theorem 2.13 (see Section 3 of [10]). Let M be a compact irreducible 3-manifold
with incompressible boundary. There exists a minimal collection of essential disjoint
annuli and tori (the JSJ annuli and tori) properly embedded in M such that the
complement of a regular neighbourhood of the union of these surfaces consists of
simple atoroidal manifolds, Seifert fibred manifolds, and I-bundles. This collection
is unique up to isotopy.
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We refer to the graph of spaces so obtained, whose edge spaces are the annuli and
tori and whose vertex spaces are closures in M of components of the complement
of a regular neighbourhood of the union of these surfaces, as the JSJ decomposition
of M .

Note that the simple atoroidal pieces may not be an-annular: they may contain
essential annuli whose boundaries run over the JSJ annuli of M .

Let D1M be the manifold obtained from two copies of M by identifying the
copies of each boundary component of M which is not a torus. We say we have
‘doubled M along its higher-genus boundary’. We use the symbol D1M rather than
DM to remind the reader that we have not necessarily doubled along all boundary
components of M , but only the higher-genus ones. Then D1M has toroidal bound-
ary and has a JSJ decomposition along only tori. These tori are either copies of the
JSJ tori of M or are the doubles of JSJ annuli of M along their boundary curves.
Notice that the obvious folding map D1M Ñ M carries JSJ pieces of D1M to JSJ
pieces of M .

The JSJ decomposition of a compact irreducible 3-manifold M with incompress-
ible boundary induces a graph-of-groups decomposition of its fundamental group
whose edge groups are abelian and whose vertex groups are the fundamental groups
of the corresponding vertex spaces.

By the comments above, the obvious retraction ρ : π1pD
1Mq Ñ π1pMq induces a

map of graphs of groups. More precisely let the graph of groups corresponding to the
JSJ decomposition of D1M be pX 1,Γ1


q. Let Z{2 � xτy act on D1M by swapping the
two copies of M . This action descends to an action on π1pD

1Mq and, by uniqueness
of JSJ decompositions, to an action of τ on X 1 such that Γ1

τ �x � τ �Γ1
x for all x P X 1.

Then the graph of groups for the JSJ decomposition of M is pX 1{xτy, ρpΓ1

qq where

the group corresponding to a point tx, τ � xu of X 1{xτy is ρpΓ1
xq � ρpτ � Γ1

xq. Note
that there is also a section ι : X Ñ X 1 of this quotient induced by the inclusion of
M in D1M , and we have Γx � Γ1

ιpxq.

3. Profinite Properties of JSJ Decompositions of Compact 3-Manifolds

Several useful properties of the JSJ decomposition of a closed 3-manifold were
proved by Wilton and Zalesskii [19, Theorems A and B]. In this section we note
that these results extend to the bounded case. First we require a notion of when a
graph of discrete groups is well-behaved with respect to its profinite completion.

We will denote the fundamental group of a graph of discrete groups pX,Γ
q by
π1pX,Γ
q, and the fundamental group of a graph of profinite groups pX,G
q by
Π1pX,G
q. See Section 6.2 of [12] for information on graphs of profinite groups.

Definition 3.1. A graph of discrete groups pX,Γ
q is efficient if π1pX,Γ
q is resid-
ually finite, each group Γx is closed in the profinite topology on π1pX,Γ
q, and
π1pX,Γ
q induces the full profinite topology on each Γx.

Theorem 3.2 (Exercise 9.2.7 of [13]). Let pX,Γ
q be an efficient finite graph of

discrete groups. Then the graph of groups pX, pΓ
q formed by taking the profinite
completion of each group Γx is an injective graph of profinite groups and

{π1pX,Γ
q � Π1pX, pΓ
q
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Here an ‘injective’ graph of groups is one for which the canonical morphismspΓ
 Ñ Π1pX, pΓ
q are inclusions. This is automatic for graphs of discrete groups, but
not for profinite groups.

Let G � zπ1M and let S be the collection of closed subgroups of G consisting
of the closures in G of the fundamental groups of boundary components of M . By
Theorem 2.7 these closures are precisely the profinite completions of the respective
fundamental groups of boundary components. It easily follows that doubling along
them will give efficient graphs of groups.

Proposition 3.3. Let M be a compact irreducible 3-manifold with incompressible
boundary. Let Γ � π1M , let the JSJ decomposition of M be pX,M
q and let
Γ
 � π1M
. Then the graph of groups pX,Γ
q is efficient.

Proof. For the case of manifolds with toroidal or empty boundary this is Theorem
A of [19]. We will deduce the general case from this. Let D1M be the double of M
along its higher-genus boundary and let the fundamental group of D1M be Γ1. Let
the graph of groups corresponding to the JSJ decomposition of D1M be pX 1,Γ1


q.
This graph of groups is efficient by the toroidal boundary case. Let ρ : Γ1 Ñ Γ be
the retraction and let ι : X Ñ X 1 be the section defined in Section 2.2.

Let x P X and let x1 � ιpxq. If g P Γ r Γx then g P Γ1 r Γ1
x1 , so there is a finite

quotient of Γ1 distinguishing g from Γ1
x1 , hence from Γx. So Γx is separable in Γ.

Let U �f Γx be a finite index normal subgroup of Γx. Then ρ�1pUq X Γ1
x1 is a

finite index normal subgroup of Γ1
x1 which intersects Γx in precisely U . There is a

finite index subgroup V of Γ1 such that V XΓ1
x1 is contained in ρ�1pUqXΓ1

x1 . Then
V XΓ is a finite index subgroup of Γ whose intersection with Γx is contained in U .
So Γ induces the full profinite topology on Γx and we are done. �

Retaining the notation of the previous proposition, we now have two injective graphs

of profinite groups pX, pΓ
q and pX 1, pΓ1

q. Because Γ1 induces the full profinite topol-

ogy on its retract Γ, the section ι still induces inclusions pΓx Ñ pΓ1
ιpxq. Furthermore

Z{2 still acts on doubles in the same way as in Section 2.2. The efficiency of dou-
bling operations and of JSJ decompositions implies that the analysis at the end of
Section 2.2 still applies. We collect this as a proposition for reference later.

Proposition 3.4. Let M be a compact irreducible 3-manifold with incompressible
boundary. Let Γ � π1M , let the JSJ decomposition of M be pX,M
q and let
Γ
 � π1M
. Further let D1M be the double of M along its higher genus boundary
and let pX,Γ1


q be the graph of groups decomposition of Γ1 � π1D
1M corresponding

to the JSJ decomposition of D1M .
Let Z{2 � xτy act on D1M by swapping the two copies of M . Then this action

descends to an action on pΓ1 which commutes with the natural retraction ρ : pΓ1 Ñ pΓ.

Also pΓ1
τ �x � τ � pΓ1

x for all x P X 1 and there is an equality of graphs of groups

pX, pΓ
q � pX 1{xτy, ρppΓ1

qq

where the group corresponding to a point tx, τ � xu of X 1{xτy is ρppΓ1
xq � ρpτ � pΓ1

xq.
Finally there is also section ι : X Ñ X 1 of this quotient induced by the inclusion of

M in D1M , and pΓx � pΓ1
ιpxq.
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Finally we make an observation that the graph of groups pX, pΓ
q has a useful
property called acylindricity. Just as in classical Bass-Serre theory these injective

graphs of groups give actions of the fundamental groups G � pΓ and G1 � pΓ1 on
profinite trees, called the standard graphs of the graphs of groups. Denote these
standard graphs by T and T 1. See [12, Section 2.4] for the definition of a profinite
tree and [12, Section 6.3] for the definition of the standard graph. By construction
of the standard graph there is a G-equivariant inclusion j : T Ñ T 1.

Recall that an action of a profinite group G on a profinite tree T is k-acylindrical
if the stabiliser of any path of length greater than k is trivial. If a path in T has
non-trivial stabiliser then the image of this path under j is a path of the same
length in T 1 with non-trivial stabiliser. Since G1 is the profinite completion of a
3-manifold with toroidal boundary and its action on T 1 is that coming from the
JSJ decomposition, the action of G1 on T 1 is k-acylindrical ([17, Proposition 6.8]
or [6, Lemma 4.11] and [20, Lemma 4.5]) with k equal to 1, 2 or 4 depending on
the manifold. We therefore have the following proposition.

Proposition 3.5. Let M be a compact irreducible 3-manifold with incompressible
boundary. Let Γ � π1M , let the JSJ decomposition of M be pX,M
q and let

Γ
 � π1M
. Then the action of pΓ on the standard graph of the graph of groups

pX, pΓ
q is acylindrical.
More precisely let D1M be the double of M along its higher genus boundary and

let pX,Γ1

q be the graph of groups decomposition of Γ1 � π1pD

1Mq corresponding to

the JSJ decomposition of D1M . If the action of pΓ1 on the standard graph of the

graph of groups pX 1, pΓ1

q is k-acylindrical then the standard graph of the graph of

groups pX, pΓ
q is k1-acylindrical for some k1 ¤ k.

Remark 3.6. The inequality in the final part of the theorem may be strict in the
following case. If the JSJ pieces of M consist of an-annular atoroidal manifolds

and at least one I-bundle then the action of pΓ is 1-acylindrical; however D1M has

a Seifert fibred piece and the action of pΓ1 is 2-acylindrical.

4. Atoroidality and An-Annularity for Profinite Group Pairs

Throughout this section let pG,Sq be a profinite group pair.

Definition 4.1. Let pG,Sq be a profinite group pair. We define the following
notions.

 pG,Sq is atoroidal if every abelian subgroup ofG is either procyclic or conjugate

into an abelian member of S. If in addition the collection of abelian members
of S is malnormal then we say the group pair is strictly atoroidal.


 pG,Sq is an-annular if for every procyclic subgroup A ¤ G we have }SA} ¤ 1.

The an-annularity property is in fact equivalent to malnormality of S in G (Prop-
sition 4.3 below), but provides a better formulation for the application of relative
cohomology theory.

The definition of an-annular states roughly that each cyclic subgroup has at
most one intersection with a peripheral subgroup. However a priori such a single
intersection could still represent something like a Möbius band properly embedded
in a manifold. However this, and any similar situations that could arise in a profinite
group, are ruled out by the following lemma (which may perhaps be thought of as
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a group theoretic analogue of taking a regular neighbourhood of a Möbius band to
obtain an annulus).

Lemma 4.2. Suppose pG,Sq is an-annular. Let A ¤ G be a procyclic subgroup
with }SA} � 1. Then the unique non-trivial member of SA is equal to A.

Proof. Let i P I and g P G be such that AX gSig
�1 � A1 � 1. We will show that

}SA1

} ¥ 2, contradicting the an-annularity condition. For let x P Ar A1 and note
that a�1x R gSig

�1 for all a P A1. This implies A1gSi � A1xgSi. Also, since A is
abelian we have

A1 � xA1x�1 � AX xgSipxgq
�1 � 1 � A1 X gSig

�1 � A1

Thus the distinct elements A1gSi and A1xgSi in the indexing set A1zG{S both give

non-trivial elements of SA1

. Hence }SA1

} ¥ 2 as required. �

Proposition 4.3. The family S is a malnormal collection in G if and only if pG,Sq
is an-annular.

Proof. Assume S is malnormal. Let A ¤ G be a procyclic subgroup and suppose
}SA} ¥ 2. Then there exist i, j P I and g, h P G such that either i � j or i � j and
AgSi � AhSi, and such that

AX gSig
�1 � 1 � AX hSjh

�1

Firstly note that both of these intersections equal A. For if, say, there exists
x P Ar gSig

�1 then since A is abelian we have

AX gSig
�1 � AX xgSipxgq

�1

whence SiXg
�1xgSipg

�1xgq�1 � 1. Then by malnormality we would have g�1xg P
Si, a contradiction.

Therefore we have A ¤ gSig
�1XhSjh

�1 whence malnormality implies i � j and
g�1h P Si so that AgSi � AhSj , again a contradiction.

For the converse, if S is not malnormal then there is a non-trivial cyclic subgroup
1 � A � Si X Sgj where either i � j or i � j and g R Sj . Then A1Si and Ag�1Sj
are distinct elements of AzG{S with

AX 1Si1
�1 � 1 � AX g�1Sjg

hence }SA} ¥ 2 and we are done. �

Theorem 4.4. Let pG,Sq be a profinite group pair which is a PDn pair at every
prime p, for some n ¥ 3. Suppose pG,Sq is strictly atoroidal and an-annular. Then
any action of G on a profinite tree T with abelian edge stabilisers fixes a vertex of
T .

Proof. If not, then by Theorem 2.9 there exists a prime p and an edge e of T such
that cdppGe,SGeq ¥ 2, where Ge denotes the stabiliser of e. We show that this is
not the case. Let e be an edge of T .

If Ge is not cyclic then by strict atoroidality Ge intersects a unique conjugate of
a member of S and is contained within it. Therefore the collection SGe contains
exactly one non-trivial member which is Ge itself. Therefore by Lemma 2.10 we
have

HkpGe,SGe ;Mq � HkpGe, tGeu;Mq � 0 for all k ¥ 2
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with coefficients in any finite Ge-module M . Hence cdppGe,SGeq   2.
Otherwise if Ge is cyclic then by hypothesis }SGe} ¤ 1. If }SGe} � 0 then

cdppGe,SGeq � 1. If }SGe} � 1 then by Lemma 4.2 the one non-trivial member of
SGe is Ge itself and, as before, cdppGe,SGeq ¤ 1. �

5. Malnormality in the Profinite Completion

We first set up some notation for the section. Let M be a compact 3-manifold
with non-empty incompressible boundary. Denote by π1BM a collection of sub-
groups of π1M containing one conjugacy representative of the fundamental group
of each boundary component of M , indexed over some finite set I. Let pG,Sq be
the profinite completion of the pair pπ1M,π1BMq.

The following malnormality result is closely related to the results of [20] but
does not appear in the precise form we require. We will therefore deduce it from
those previous results by a doubling argument.

Proposition 5.1. Suppose M is irreducible, atoroidal and an-annular. Then S is
malnormal in G.

Proof. Let N be the 3-manifold obtained by doubling M along those boundary
components which are not tori. By a standard topological argument the atoroidal-
ity and an-annularity of M imply that N is atoroidal. Then N is an atoroidal
irreducible Haken 3-manifold (and is not the orientable I-bundle over a Klein bot-
tle) and is therefore cusped-hyperbolic by Thurston’s hyperbolisation theorem [14].
Furthermore M (or rather its interior) is infinite-volume hyperbolic by the same
theorem.

The decomposition of π1N along the former boundary components of M is effi-
cient. By considering the retraction π1N Ñ π1M one finds that π1N induces the
full profinite topology on π1M and so, by Theorem 2.7, on the fundamental group of
each boundary component of M . By the same theorem these boundary groups are
separable in π1M , so it only remains to show that π1M is separable in π1N . Given
Theorem 2.7 this follows by a standard argument concerning fundamental graphs
of groups, using the theory of reduced words. An example of such an argument
may be found in, for example, [16, Proposition 3.5]. Alternatively one may use the
mighty theorem that the fundamental group of a hyperbolic 3-manifold such as N
is LERF [1].

We shall denote by �M the second copy of M contained in N and use tildes to

denote the canonical isomorphism from π1M to π1
�M . Similarly for their profinite

completions, boundary components et cetera. The graph of groups decomposition
of N consists of two vertices and several edges between them. Choose one edge to
give a maximal subtree and let tj denote the stable letter for the HNN extension
along the edge e corresponding to the boundary component indexed by j (with the
understanding that the stable letter for the chosen edge e is the identity). Hence

in H � zπ1N conjugation by ti gives the standard isomorphism Si Ñ rSi for the
non-abelian Si.

Let i, j P I and suppose that Si X Sgj � 1 for some g P G. We must show that
i � j and g P Si. We now break into cases depending on whether Si and Sj come
from toroidal boundary components of M or not.
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Case 1 If Si and Sj are abelian, then they persist as peripheral subgroups of zπ1N .
Lemma 4.5 of [20] informs us that the profinite completions of the fundamental
groups of the remaining toroidal boundary components of N form a malnormal

collection in zπ1N , so we are done in this case.
Case 2 Suppose Sj is abelian and Si is not, and let Si X Sgj � A � 1. By symmetry

we have rSiX rSg̃j � rA. Hence Sgtij X rSg̃j � rA � 1, which is impossible as Sj and
rSj are distinct peripheral subgroups of H (again using Lemma 4.5 of [20]).

Case 3 Suppose i � j and Si is non-abelian. Since π1M is virtually compact special
(Theorem 14.29 and paragraph before Corollary 14.33 of [22]) and is hyperbolic
relative to its toral peripheral subgroups, and since M is an-annular so that
π1BM is a malnormal collection we may apply Theorem 4.2 of [20] to conclude
that Si is malnormal relative to the abelian groups in S. That is, if Si XS

g
i is

not conjugate into an abelian group of S then g P Si. However by Case 2 this
intersection meets any conjugate of such an abelian group trivially so Si is in
fact absolutely malnormal.

Case 4 Suppose i � j and that Si and Sj are non-abelian. Without loss of generality

tj � 1. If Si X Sgj � A � 1 then also rSi X rSg̃j � rA � 1. It easily follows that

Sj X Sj
^ttj g̃t

�1
i g�1u � 1. Since tj g̃t

�1
i g�1 R Sj (consider the homomorphism

to pZ corresponding to the stable letter tj) this contradicts Case 3 and we are
done.

�

Combining with Proposition 4.3 gives the following corollary.

Corollary 5.2. Suppose M is irreducible, atoroidal and an-annular. Then pG,Sq
is strictly atoroidal and an-annular.

Proof. We have now proven everything except the atoroidality condition; this
follows from Lemma 4.5 of [20] via the same doubling argument as in Proposition
5.1. �

6. Main Theorems

Theorem 6.1. Let M be a compact irreducible orientable 3-manifold with incom-

pressible boundary. Assume that M is atoroidal and an-annular. If G � zπ1M acts
on a profinite tree with abelian edge stabilisers then G fixes a unique vertex.

Proof. This follows from Theorem 4.4 and Corollary 5.2 together with Theorem
2.8. �

Remark 6.2. This is our replacement and improvement for Lemmas 3.4 and 4.4
of [21]. It is an improvement in two senses: it extends the result to more general
boundaries than toral, and removes the assumption that the action is acylindrical.

The following definition will be useful for our purposes.

Definition 6.3. Let pX,G
q and pY,H
q be graphs of profinite groups with fun-
damental groups G and H respectively. A preservation of decompositions

pf,Φq : pX,G
q Ñ pY,H
q
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is a pair of maps where f : X Ñ Y is a graph isomorphism and Φ: G Ñ H is an
isomorphism of profinite groups such that ΦpGxq is a conjugate of Hfpxq for all
x P X.

Theorem 6.4 (= Theorem B of [21]). Let M and N be irreducible orientable
3-manifolds with toroidal boundary and let their respective JSJ decompositions be

pX,M
q and pY,N
q. Suppose there exists a weak isomorphism of pairs Φ: zπ1M Ñ
zπ1N . Then there exists a graph isomorphism f : X Ñ Y such that

pf,Φq : pX,{π1Mxq Ñ pY, zπ1Nxq

is a preservation of decompositions.

Proof. As this theorem is already known we shall only sketch the proof. First recall
that in the case of toroidal boundary one only has tori in the JSJ decomposition
and therefore all pieces are Seifert fibred or cusped hyperbolic. One may either
follow the proof as given in Section 4 of [21] and substitute Theorem 6.1 to handle
hyperbolic pieces; or one may use Theorem 6.2 of [17] to detect the Seifert-fibred
portions of the JSJ graph, apply Theorem 6.1 to detect hyperbolic pieces and then
locate the remaining edge groups via the intersections of these hyperbolic pieces
with each other and with Seifert fibred pieces. �

Theorem 6.5. Let M and N be compact irreducible orientable 3-manifolds with
incompressible boundary and let their respective JSJ decompositions be pX,M
q and
pY,N
q. Let pπ1BMqhg and pπ1BNqhg denote the families of peripheral subgroups
corresponding to (one conjugate of) the fundamental group of each higher-genus
boundary component, and let Shg and Thg be their profinite completions. Suppose

there exists an isomorphism of group pairs Φ: pzπ1M,Shgq Ñ pzπ1N, Thgq. Then
there exists a graph isomorphism f : X Ñ Y such that

pf,Φq : pX,{π1Mxq Ñ pY, zπ1Nxq

is a preservation of decompositions.

Proof. LetG � zπ1M andH � zπ1N . Let Shg � tP1, . . . , Pnu and Thg � tQ1, . . . , Qnu,
indexed so that ΦpPiq � Qgii for some gi P G.

Take copies rG and rH of G and H. We will use tildes �p � q to denote the translation

of an element or map of G or H to the copy rG or rH. Form the high-genus double
D1G of G as the fundamental group of the natural graph of groups with vertex

groups G and rG with respect to a maximal subtree consisting of the edge with edge
group P1. Let the stable letter for another edge group Pi be si. That is, in D1G we

have rPi � P sii . Similarly form D1H with respect to the subtree with edge labelled
by Q1 and let the stable letter for an edge group Qi be ti.

The map Φ induces an isomorphism Ψ � D1Φ: D1GÑ D1H defined by

Ψpgq � Φpgq for g P G, Ψpg̃q � rΦpg̃qg1 for g̃ P rG, si ÞÑ g�1
i tig̃i

The reader may readily check that this is a well-defined isomorphism of graphs of
groups. Note that if ρG denotes the canonical retraction D1GÑ G and ρH denotes
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the canonical retraction D1H Ñ H then there is a commuting diagram

D1G D1H

G H

Ψ
�

ρG ρH

Φ
�

Furthermore if τ denotes the action of Z{2 on a double by swapping the two copies
of G (or H) then τ commutes with Ψ. More precisely τ is the map which swaps
the two copies g and g̃ of any element of G and sends each si to its inverse, and
similarly for H.

Let the graph of groups decompositions of D1G and D1H corresponding to the
JSJ decompositions of D1M and D1N be pX 1, G1


q and pY 1, H 1

q. By Theorem

6.4 applied both to Ψ and to τ there is a commuting diagram of preservations of
decompositions

pX 1, G1

q pY 1, H 1


q

pX 1, G1

q pY 1, H 1


q

pf,Ψq

pτ,τq pτ,τq

pf,Ψq

By Proposition 3.4 the graphs of groups decomposition of G given by the JSJ
decompositions of M is pX 1{xτy, ρGpG

1

qq. Similarly the decomposition of H is

pY 1{xτy, ρHpH
1

qq. The two commutative diagrams above now imply that there is a

preservation of decompositions pf{xτy,Φq from one JSJ decomposition to the other.
This concludes the proof. �

Remark 6.6. The reason that a doubling argument (and hence some constraint
upon the isomorphisms with respect to peripheral structure) seems necessary is
that the JSJ decompositions may contain I-bundles over surfaces-with-boundary.
These pieces have free fundamental groups and therefore their actions on (profinite)
trees could be quite wild. In particular there is no a priori reason for them to fix
a vertex, so the proof strategy of Theorem 6.4 (showing that each JSJ piece fixes a
vertex) breaks down.
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