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Abstract. We define the projective symmetry group of a finite sequence of

vectors (a frame) in a natural way as a group of permutations on the vectors

(or their indices). This definition ensures that the projective symmetry group is
the same for a frame and its complement. We give an algorithm for computing

the projective symmetry group from a small set of projective invariants when
the underlying field is a subfield of C which is closed under conjugation. This

algorithm is applied in a number of examples including equiangular lines (in

particular SICs), MUBs, and harmonic frames.

1. Introduction

1.1. Motivation. Finite frames provide redundant and stable expansions, which
have numerous applications [6]. The 1–dimensional projections in the frame ex-
pansion are unchanged if the vectors are multiplied by scalars of unit modulus. In
many applications of finite frames, e.g., robustness to erasures, the cross correlation
between the vectors (the modulus of their inner products) is is vitally important.
This is unchanged if the vectors are multiplied by a unitary matrix, or by scalars
of unit modulus, i.e., the frame is considered up to projective unitary equivalence.
Many frames which are optimal for applications are projectively unitary equivalent
to one from a special class of frames, e.g., harmonic frames, SICs (equiangular tight
frames with a maximal number of vectors) and MUBs (used in quantum informa-
tion theory). Understanding such a frame, which usually comes as a group orbit, is
often helped by knowing its projective symmetry group. For example, the standard
method for finding an analytic form of a SIC is to find a generating vector which is
an eigenvector of a projective symmetry. This allows one to simplify the system of
equations which determine such a vector. It may not be clear that a given frame is
a group frame, e.g., the original constructions of harmonic frames and MUBs were
not as group orbits. There is a growing body of evidence that complex (projective)
spherical t–designs with the minimal number of vectors are group frames, or the
orbit a small number of vectors. This can be determined (for any frame) by calcu-
lating the projective symmetry group. Moreover, knowing the full symmetry group
simplifies the counting of frames up to projective unitary equivalence. In this paper,
we give an explicit parallelisable algorithm for computing the projective symmetry
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group of any finite frame. We then apply this to SICs, MUBs, and harmonic frames
(including calcuating their number of erasures).

1.2. Key definitions. Let Φ = (vj)j∈J be a finite sequence of vectors. A “pro-
jective symmetry” of (vj) is given by an invertible linear map L for which (Lvj)
equals (vj) up to reordering and multiplication by unit scalars, i.e.,

Lvj = cjvσj , |cj | = 1, σ ∈ SJ . (1.1)

The example Φ = (e1,−e1, e2,−e2) shows that the choice for L and (cj) is far from
unique, and the example Φ = (e1, e1, e2, e2) that L and (cj) are not sufficient to
determine the permutation σ. For these reasons, we define the projective symmetry
group as a group of permutations on the index set J (or the vectors themselves).
Throughout, we assume all vector spaces X are over a subfield of C. If the span
of a finite sequence (vj) is X, then we will refer to (vj) as a frame for X, as is
commonly done when X is an inner product space.

Definition 1.1. Let Φ = (vj)j∈J be a finite sequence of vectors with span X. Then
(1) The projective symmetry group of Φ is

SymP (Φ) := {σ ∈ SJ : ∃L ∈ GL(X), |cj | = 1 with Lvj = cjvσj ,∀j ∈ J}.

(2) The symmetry group of Φ is

Sym(Φ) := {σ ∈ SJ : ∃L ∈ GL(X) with Lvj = vσj, ∀j ∈ J}.

These are clearly subgroups of SJ (the symmetric group on J), and the symmetry
group is a subgroup of the projective symmetry group, i.e.,

Sym(Φ) ⊂ SymP (Φ) ⊂ SJ .

One can also consider projective symmetries induced by antilinear maps (see Section
5). We say that (vj)j∈J and (wj)j∈J which span X and Y are projectively similar
if

wj = cjQvj , ∀j, (1.2)

and similar if

wj = Qvj , ∀j, (1.3)

where Q : X → Y is invertible, and |cj | = 1. We observe,
• Projectively similar sequences of vectors have the same projective symmetry

group.
• Similar sequences of vectors have the same symmetry group.

The symmetry group and its calculation from the Gram matrix of the canonical
tight frame was studied in [20], [21]. At that time (cf. §5 of [21]), it was believed
that the projective symmetry group could not be calculated in general (except over
R) because of the nonuniqueness of the L and (cj) in (1.1). A recent characterisation
of projective similarity in terms of a small number of projective invariants (m–
products) [4], [9] now makes this possible.
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1.3. Outline. The paper is set out as follows. In Section 2, we recall some basic
frame theory [6], [24], and then extend it to vector spaces without inner products.
In particular, a sequence of vectors is similar to a (canonical) tight frame. This
allows the complement of a sequence of vectors (vj) to be defined (up to projective
similarity). We show that a frame and is complement have the same projective
symmetry group. In Section 3, we give a set of projective invariants which determine
a sequence of vectors up to projective similarity. This requires that the underlying
field be closed under complex conjugation. In Section 4, we give an algorithm
for calculating the projective symmetry group from a small set of the projective
invariants. The only known algorithm [16] is for the special case of d2 equiangular
vectors in Cd which are given as a group orbit. In Section 5, we consider “antilinear
symmetries”, and the corresponding extended projective symmetry group and its
calculation. In Section 6, we consider simplifications in our algorithm that occur for
group frames, and apply the algorithm to find the extended projective symmetry
group of certain SICs and MUBs. In Section 7, we give the results of our extensive
calculations of the projective symmetry group, and extended projective symmetry
group of harmonic frames.

2. Tight Frames and the Complement of a Frame

We now give the basic theory of tight frames we require (see [25] for further
detail). A sequence of vectors Φ = (vj)j∈J in a real or complex Hilbert space H is
said to be a frame for H with frame bounds A,B > 0 if

A‖f‖2 ≤
∑
j∈J
|〈f, vj〉|2 ≤ B‖f‖2, ∀f ∈ H. (2.4)

For J finite this is equivalent to the (vj) having span H. When A = B, Φ is said
to be a tight frame, and when A = B = 1 it is a normalised tight frame. For
tight frames the polarisation identity implies (2.4) is equivalent to

f =
1

A

∑
j∈J
〈f, vj〉vj , ∀f ∈ H. (2.5)

A tight frame is said to be equiangular if its vectors have equal norms, and there
is some C > 0 with

|〈vj , vk〉| = C, ∀j 6= k.

The synthesis operator for a finite sequence (vj)j∈J in H is the linear map

V := [vj ]j∈J : `2(J)→ H : a 7→
∑
j∈J

ajvj ,

and its frame operator is the linear map S = SV = V V ∗ : H → H given by

Sf :=
∑
j∈J
〈f, vj〉vj , ∀f ∈ H.

If Φ = (vj)j∈J is a frame, then S is invertible, and the canonical dual frame

Φ̃ = (ṽj) is defined by

ṽj := S−1vj , ∀j ∈ J, (2.6)

and the canonical tight frame Φcan = (vcan
j ) by

vcan
j = S−

1
2 vj , ∀j ∈ J. (2.7)
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A frame and its canonical dual satisfy the expansion

f =
∑
j∈J
〈f, vj〉ṽj =

∑
j∈J
〈f, ṽj〉vj , ∀f ∈ H,

and the canonical tight frame is a normalised tight frame, i.e.,

f =
∑
j∈J
〈f, vcan

j 〉vcan
j , ∀f ∈ H.

In view of definitions (2.6) and (2.7), a frame, its canonical dual and canonical tight
frame are all similar. A simple calculation shows that normalised tight frames are
similar if and only if they are unitarily equivalent, i.e., the Q in (1.3) can be taken
to be unitary. The Gramian of a sequence of n vectors Φ = (vj)j∈J in H is the
n× n matrix

Gram(Φ) := V ∗V = [〈vk, vj〉]j,k∈J .
The injective linear map

RΦ = V ∗S−1
V = V ∗(V V ∗)−1

takes the vectors of a frame Φ to the columns of

Gram(Φcan) = (S
− 1

2

V V )∗S
− 1

2

V V = V ∗(V V ∗)−1V = V ∗S−1
V V, (2.8)

i.e.,

RΦvj = V ∗(V V ∗)−1vj = Gram(Φcan)ej ,

where ej is the j–th standard basis vector. A sequence of vectors is a normalised
tight frame (for its span) if and only if its Gramian matrix P is an orthogonal
projection matrix, i.e., P 2 = P and P = P ∗. Hence for the purpose of determining
similarity, Φ can be replaced by the normalised tight frame given by the columns of
the orthogonal projection matrix Gram(Φcan). In view of (2.8), Gram(Φcan) can be
calculated without taking the square root of the frame operator SV , a preprocessing
step which is usually not numerically stable. Using the theory of frames for vector
spaces [22], this association can be extended to vector spaces (without an inner
product), where Gram(Φcan) is replaced by the orthogonal projection matrix PΦ

(cf. [9]). This requires that the underlying field F of the vector space X be a subfield
of C which is closed under conjugation, e.g., F = Q,R,C. We assume this from
now on.

Definition 2.1. Let Φ = (vj)j∈J be a finite sequence of vectors in X, with synthesis
operator V = [vj ]j∈J . The subspace of all linear dependencies between the vectors
of Φ is

dep(Φ) := ker(V ) = {a ∈ FJ :
∑
j ajvj = 0},

and we denote the orthogonal projection onto dep(Φ)⊥ (orthogonal complement) by
PΦ.

If X = span(Φ) and Λ : X → Fm is an injective linear map, then

PΦ = (ΛV )†ΛV,

where A† is the pseudoinverse of A. For Φ a frame, taking Λ = V ∗, gives

PΦ = Gram(Φcan).
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The sequence Φ is similar to the normalised tight frame (for a subspace of FJ)
given by (Pej), the columns of P = PΦ, via the well defined injective linear map
RΦ : X → FJ with

RΦvj = PΦej , ∀j. (2.9)

The Euclidean inner product between these vectors is

〈Pej , P ek〉 = Pkj ,

i.e., P is the Gram matrix of (Pej).

Proposition 2.2. Let Φ = (vj) and Ψ = (wj) be finite frames for X and Y . Then
(1) Φ and Ψ are similar if and only if

PΨ = PΦ.

(2) Φ and Ψ are projectively similar, i.e., wj = cjQvj, if and only if

PΨ = C∗PΦC,

where C is the diagonal matrix with diagonal entries cj of unit modulus.

Proof. It suffices to show that Φ and Ψ are projectively similar, i.e., wj = cjQvj ,
equivalently W = QV C, if and only if PΨ = C∗PΦC. (=⇒) Suppose that Φ and
Ψ are projectively similar. Let Λ : X → Fm be an injective linear map. Then
ΛQ−1 : Y → Fm is an injective linear map, and so

PΨ = (ΛQ−1W )†ΛQ−1W = (ΛQ−1QV C)†ΛQ−1QV C

= (ΛV C)†ΛV C = C∗(ΛV )†ΛV C = C∗PΦC.

(⇐=) Suppose that PΨ = C∗PΦC. By the implication just proved,

PΦ = CPΨC
∗ = P(cjwj).

Thus Q := R−1
(cjwj)

RΦ maps vj to cjwj , i.e., wj = cjQvj . �

We say that two frames Φ and Ψ are complementary (or complements of each
other) if PΦ and PΨ are complementary projection matrices, i.e.,

PΦ + PΨ = I. (2.10)

The complement of a frame is well defined up to similarity. In view of Proposition
2.2, the complement of a tight frame in the class of normalised tight frames is
well defined up to unitary equivalence, and complement of a frame in the class
of projectively similar frames is defined up to projective similarity. There is a
bijection between permutations σ ∈ SJ and the J × J permutation matrices, given
by σ 7→ Pσ, where

Pσej := eσj .

We can express a symmetry σ in terms of Pσ as follows.

Lemma 2.3. Let Φ = (vj)j∈J be a finite frame for X. Then
(1) σ ∈ Sym(Φ) ⇐⇒ P ∗σPΦPσ = PΦ.
(2) σ ∈ SymP (Φ) ⇐⇒ P ∗σPΦPσ = C∗PΦC, for some unitary diagonal matrix

C.
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Proof. We observe that σ ∈ Sym(Φ) if and only if Φ = (vj) is similar to Ψ = (vσj),
and σ ∈ SymP (Φ) if and only if Φ is projectively similar to Ψ = (vσj). Let V = [vj ],
and Λ : X → Fm be an injective linear map. Then

[vσj ] = [V eσj ] = V [eσj ] = V Pσ,

so that

PΨ = (ΛV Pσ)†ΛV Pσ = P ∗σ (ΛV )†ΛV Pσ = P ∗σPΦPσ,

and so we obtain the result by applying Proposition 2.2. �

In [21] (Theorem 3.7) it was shown that if Ψ is a complement of Φ up to similarity,
i.e., PΦ + PΨ = I, then

Sym(Ψ) = Sym(Φ).

We now prove the corresponding result for the projective symmetry group.

Theorem 2.4. Suppose that Φ = (vj)j∈J is a finite frame for X. If Ψ is a comple-
ment of Φ up to projective similarity, i.e., PΦ +CPΨC

∗ = I, where C is a unitary
diagonal matrix, then

SymP (Ψ) = SymP (Φ).

Proof. Since the definition of frames being complementary is symmetric, it suffices
to show that SymP (Φ) ⊂ SymP (Ψ). Suppose σ ∈ SymP (Φ). Then, by Lemma 2.3,

P ∗σPΦPσ = C∗σPΦCσ,

for some unitary diagonal matrix Cσ. Now

P ∗σPΨPσ = P ∗σ (I − C∗PΦC)Pσ = I − P ∗σC∗PΦCPσ.

Let cj be the diagonal entries of the matrix C. Since (cjvj) is projectively similar
to Φ = (vj), P(cjvj) = C∗PΦC, and σ ∈ SymP ((cjvj)) = SymP (Φ), we have

P ∗σC
∗PΦCPσ = C̃∗σC

∗PΦCC̃σ,

for some unitary diagonal matrix C̃σ. Thus

P ∗σPΨPσ = I − C̃∗σC∗PΦCC̃σ = I − C̃∗σ(I − PΨ)C̃σ = C̃∗σPΨC̃σ,

and so, by Lemma 2.3, we have σ ∈ SymP (Ψ). �

Example 2.5. Let Φ = (vj)j∈J be an equal–norm tight frame of d+ 1 vectors for
Cd, e.g., the vertices of the regular simplex. Since PΦ has a constant diagonal, the
complement Ψ of Φ consists of d+ 1 equal–norm vectors (wj) in C1. Let wj = [aj ].
For any σ ∈ SJ ,

wj = cjwσj , cj := aja
−1
σj ,

so that σ ∈ SymP (Φ), and we obtain

SymP (Φ) = SymP (Ψ) = SJ .

Thus all equal–norm tight frames Φ = (vj)j∈J of d+1 vectors in Cd are projectively
similar, with projective symmetry group SymP (Φ) = SJ .
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3. Projective Invariants

For the purpose of determining projective similarity between Φ = (vj) and Ψ =
(wj), and hence calculating SymP (Φ), it suffices to assume that Φ and Ψ are the
normalised tight frames given by the columns of PΦ and PΨ. Under this assumption,
if Φ and Ψ are projectively similar, i.e., wj = cjQvj , equivalently W = QV C, then
Q is unitary, since

I = WW ∗ = QV CC∗V ∗Q∗ = QV V ∗Q∗ = QQ∗.

Further, the conditions of Proposition 2.2 become

〈wj , wk〉 = (PΨ)kj = (PΦ)jk = 〈vj , vk〉 (similarity).

〈wj , wk〉 = (PΨ)kj = (C∗PΦC)jk = cjck〈vj , vk〉 (projective similarity).

The second of these shows that the inner product between vectors is not a projective
invariant (preserved by a projective similarity), indeed

〈wj , wk〉 = 〈cjQvj , ckQvk〉 = cjck〈Qvj , Qvk〉 = cjck〈vj , vk〉.

There do exist projective invariants, e.g.,

〈wj1 , wj2〉〈wj2 , wj3〉〈wj3 , wj1〉 = 〈cj1Qvj1 , cj2Qvj2〉〈cj2Qvj2 , cj3Qvj3〉〈cj3Qvj3 , cj1Qvj1〉
= cj1cj2〈vj1 , vj2〉cj2cj3〈vj2 , vj3〉cj3cj1〈vj3 , vj1〉
= 〈vj1 , vj2〉〈vj2 , vj3〉〈vj3 , vj1〉.

Generalising this example gives the following projective invariants.

Definition 3.1. Let Φ = (vj)j∈J be a sequence of n vectors (in a vector space over
a subfield of C which is closed under complex conjugation), and P = PΦ = [pjk].
Then the (canonical) m–products of Φ are

∆C(vj1 , . . . , vjm) := 〈Pej1 , P ej2〉〈Pej2 , P ej3〉 · · · 〈Pejm−1
, P ejm〉

= pj2j1pj3j2 · · · pj1jm , j1, . . . , jm ∈ J, 1 ≤ m ≤ n.
(3.11)

Clearly, ∆C(vj1 , . . . , vjm) is invariant under cyclic shifts of j1, . . . , jm, and so it is
often convenient to think of it being defined on the m–cycle (j1, . . . , jm). A subset
of the m–products is called a determining set for Φ if it characterise Φ up to
projective similarity. In [9] certain determining sets were studied.

Theorem 3.2. ([9]) Let Φ = (vj) and Ψ = (wj) be finite sequences of vectors
in vector spaces over a subfield F of C which is closed under complex conjugation.
Then
(1) Φ and Ψ are similar if and only if PΦ = PΨ.
(2) Φ and Ψ are projectively similar if and only if their canonical m–products (for

a determining set) are equal.

Here the first equivalence is included for the purpose of comparison (see Proposition
2.2). The subsets of the m–products which are determining sets depend on the zeros
of PΦ. The frame graph of Φ is the graph with vertices the vectors of Φ = (vj)
and

an edge between vj and vk, j 6= k ⇐⇒ 〈vj , vk〉 6= 0.
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One choice for a determining set is the m–products which correspond to a basis
for the cycle space of the frame graph. In particular, when PΦ has no zero entries,
i.e., the frame graph is complete, a determining set is given by the 3–products.
From Theorem 3.2, we obtain the following computable condition for a permutation
σ ∈ SJ to be in the projective symmetry group of Φ = (vj)j∈J .

Proposition 3.3. Let Φ = (vj)j∈J be a finite frame for X. Then σ ∈ SymP (Φ) if
and only if

∆C(vj1 , . . . , vjm) = ∆C(vσj1 , . . . , vσjm),

for all cycles (j1, . . . , jm) from a determining set for Φ.

Proof. Since σ ∈ SymP (Φ) if and only if Φ is projectively similar to Ψ = (vσj),
this follows from Theorem 3.2. �

4. The Algorithm

For frames Φ = (vj)j∈J and Ψ = (wj)j∈J of n vectors, we now give an algorithm
which determines the set of σ for which Φ and (wσj) are projectively similar, i.e.,

∆C(vj1 , . . . , vjm) = ∆C(wσj1 , . . . , wσjm), (4.12)

for all cycles (j1, . . . , jm) from a determining set for Φ. In particular, for Ψ = Φ
it calculates SymP (Φ), and if there exists some σ then Φ and Ψ are projectively
equivalent. A priori, the calculation of (4.12) requires one to consider all n! per-
mutations σ ∈ SJ . To make this feasible (for large n), we seek an algorithm which
checks the m–product condition efficiently, i.e, for many permutations at a time.
There are two cases:
(1) SymP (Φ) is large, i.e., the m–products take few different values.
(2) SymP (Φ) is small, i.e., the m–products take many different values.

An extreme example of the first is the vertices of a regular d–simplex (cf. Example
2.5), where

(PΦ)jk =

{
d
d+1 , j = k;

− 1
d+1 , j 6= k,

SymP (Φ) = SJ .

Here the m–products are all equal (for fixed m), and so it is easy to check each
σ ∈ SJ is a projective symmetry. In such cases, where SymP (Φ) is large, one
could try to build it using generators: starting with the identity subgroup, check
whether a random permutation not in the subgroup of SymP (Φ) known so far is in
SymP (Φ), and if so use it to generate a larger subgroup. If the index of SymP (Φ)
in SJ is small, then this process has a high probability of quickly finding generators
for SymP (Φ). Henceforth, we will concern ourselves only with the second case:
when SymP (Φ) is small, and the m–products take many different values. This is
the generic situation. Indeed, if the diagonal entries of PΦ are distinct, then so are
the 1–products, and hence |SymP (Φ)| = 1. For an index set J of size n, we define
a k–flag f to be an ordering of k distinct elements of J

f = (j1, j2, . . . , jk).

For a given fixed n–flag

fb = (j1, . . . , jn),



THE PROJECTIVE SYMMETRY GROUP OF A FINITE FRAME 63

we can represent the permutation σ : j` 7→ σj` (giving a projective similarity or
symmetry) by the n–flag

fσ = (σj1, . . . , σjn).

Thus determining whether Φ = (vj) and Ψ = (wσj) are projectively similar is
equivalent to determining which of the n! permutations σ, i.e., n–flags fσ, satisfy
(4.12). We think of each possible n–flag fσ = (σj1, . . . , σjn) as being built up from
the 0–flag () by successively adding entries

f0
σ = (), f1

σ = (σj1), f2
σ = (σj1, σj2), . . . fnσ = (σj1, σj2, . . . , σjn).

We will call the operation of going from a set Fk−1 of (k − 1)–flags to a set Fk
of k–flags as growing. At the k–th stage there are n − k + 1 choices for the next
entry, so that

|Fk| ≤ (n− k + 1)|Fk−1|.
If |Sym(Φ)| < n!, then, at some stage, not all fkσ ∈ Fk will be extendable to an
n–flag satisfying (4.12). A necessary condition for such an extension to exist is
that (4.12) hold for all cycles (of length ≤ k) on the first k indices of the fixed flag
fb = (j1, . . . , jn) from a determining set for (vj1 , . . . , vjk). Removing elements from
Fk because they fail this condition (either in full or in part) will be called pruning.
When the condition is imposed for all eligible cycles then we have a full pruning,
otherwise a partial pruning. In these terms, our algorithm for finding the set Fn
of n–flags fσ giving the permutations σ that Φ and (wσj) are projectively similar
is: Algorithm1 (to determine the n–flags Fn giving a projective similarity).

Let F0 := {()} consist of the empty flag

for k from 1 to n do

Grow Fk−1 to Fk
Prune Fk

end for

Fully prune Fn, if necessary.

The art is in balancing the cost of pruning, with that of growing the set of possible
k–flags overly large. One can do this on a case by case basis, or program an adaptive
algorithm. For our calculations, detailed in the next sections, we used full pruning,
which is easily programmed. We stored each k–flag (j1, . . . , jk) as an n–vector

(j1, . . . , jk|J \ {j1, . . . , jk}),

(j1, . . . , jk|jk+1, . . . , jn), {jk+1, . . . , jn} = J \ {j1, . . . , jk},
so that the (k + 1)–flags could easily be constructed. The algorithm can easily be
parallelised: simply partition Fk in any way, at any stage k, and apply the algorithm
to each subset. We now illustrate our algorithm with a couple of examples, where
Ψ = Φ. As a pruning rule we ask that a k–flag (j1, . . . , jk) match

∆C(vj1 , . . . , vjk) = ∆C(wσj1 , . . . , wσjk).

Thus at each stage we check only one new m–product, which is easily calculated.

1The code (in magma and maple) used in our implementation of this algorithm can be found on

the second author’s homepage under a link to this paper.
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Example 4.1. The simplest example of a SIC (see Section 6) is the equiangular
tight frame Φ := (v, Sv,Ωv, SΩv) of four vectors for C2, where

v :=
1√
6

( √
3 +
√

3

e
π
4 i
√

3−
√

3

)
, S :=

(
0 1
1 0

)
, Ω :=

(
1
−1

)
.

We have

PΦ =
1

2


1 1√

3
1√
3
− i√

3
1√
3

1 −i√
3

1√
3

1√
3

i√
3

1 − 1√
3

i√
3

1√
3
− 1√

3
1

 .

Take the base flag to be (1, 2, 3, 4). The empty flag (0–flag)

F0 = {()}, () = (|1, 2, 3, 4)

grows to the set of 1-flags

F1 = {(1), (2), (3), (4)}.

The pruning rule is that 〈v1, v1〉 = 〈wσ1, wσ1〉, i.e., the norm is preserved, and so
there is no pruning. Growing gives

F2 = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)},

and pruning gives no reduction since Φ is equiangular. We now consider growing
the 2–flag (3, 2), the others being similar. This grows to the 3–flags (3, 2, 1), (3, 2, 4).
Since

∆C(v1, v2, v3) =
i

24
√

3
, ∆C(w3, w2, w1) = − i

24
√

3
, ∆C(w3, w2, w4) =

i

24
√

3
,

the 3–flag (3, 2, 1) is pruned. Continuing in this way gives

F3 = {(1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 1, 4), (2, 3, 1), (2, 4, 3),

(3, 1, 2), (3, 2, 4), (3, 4, 1), (4, 1, 3), (4, 2, 1), (4, 3, 2)}.

The final stage k = n, growing does not increase the size of Fn−1, and in this case
nothing gets pruned, by the rule used, or a full prune. Thus we have

SymP (Φ) = F4 = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3), (2, 1, 4, 3), (2, 3, 1, 4), (2, 4, 3, 1),

(3, 1, 2, 4), (3, 2, 4, 1), (3, 4, 1, 2), (4, 1, 3, 2), (4, 2, 1, 3), (4, 3, 2, 1)}.

This is the alternating group A4. Generators for SymP (Φ) (written in cycle nota-
tion), and matrices L which induce them are

(12)(34) S, (13)(24) Ω, (132) B :=
1√
2

(
1 1
−i i

)
.

Example 4.2. Let Φ = (vj) be the following two MUBs (see Section 6) in C2

v1 = e1, v2 = e2, v3 =
1√
2

(e1 + e2), v4 =
1√
2

(e1 − e2).
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Here

PΦ =
1

2


1 0 1√

2
− 1√

2

0 1 1√
2

1√
2

1√
2

1√
2

1 0

− 1√
2

1√
2

0 1

 .

We arrive at the same F2 as in Example 4.1, without pruning. The pruning rule
says that the modulus of the inner product between v1 and v2 must be preserved.
Since this is zero, the index pairs in F2 must correspond to pairs of orthogonal
vectors, which leads to the pruning

F2 = {(1, 2), (2, 1), (3, 4), (4, 3)}.
Growing this gives

F3 = {(1, 2, 3), (1, 2, 4), (2, 1, 3), (2, 1, 4), (3, 4, 1), (3, 4, 2), (4, 3, 1), (4, 3, 2)}.
All 3–products for distinct vectors are zero, and so there is no pruning at this stage.
Growing, then full pruning leads to

SymP (Φ) = F4 = {(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3),

(3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), (4, 3, 2, 1)}.
This group is the dihedral group of order 8 (the only subgroup of S4 of order 8),
which is generated by the following permutations

(1324) (rotation through 90 degrees), (34) (reflection in the x–axis).

5. The Extended Projective Symmetry Group

Let K : Cd → Cd be the complex conjugate operator

Kz := z = (zj).

A product of a linear/unitary map with complex conjugation is called an anti-
linear/antiunitary map (these are not linear maps). Antiunitary maps preserve
the modulus of the inner product, and so take SICs to SICs, and MUBs to MUBs.
For this reason it is useful to extend to projective symmetry group (see [2] for
SICs). Since the product of two antilinear/antiunitary maps is linear/unitary, we
can extend the groups of linear maps and unitary maps

EGL(Cd) := {LKs : L ∈ GL(Cd), s = 0, 1}, EU(Cd) := {UKs : L ∈ U(Cd), s = 0, 1},
and the projective symmetry group as follows.

Definition 5.1. Let Φ = (vj)j∈J be a finite sequence of vectors with span Cd. Then
the extended projective symmetry group of Φ is

SymEP (Φ) := {σ ∈ SJ : ∃A ∈ EGL(Cd), |cj | = 1 with Avj = cjvσj, ∀j ∈ J},
and we will refer to σ as an anti projective symmetry if the A above is antilinear.

A permutation σ is an anti projective symmetry of Φ = (vj) if and only if for some
linear L

Lvj = cjvσj , ∀j ∈ J,
i.e., Φ = (vj) and (vσj) are projectively similar. Since PΦ = PΦ,

∆C(vj1 , . . . , vjm) = ∆C(vj1 , . . . , vjm) = ∆C(vjm , . . . , vj1).
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Thus (by Theorem 3.2), σ is an anti projective symmetry of Φ = (vj) if and only if

∆C(vjm , . . . , vj1) = ∆C(vσj1 , . . . , vσjm), (5.13)

for all cycles (j1, . . . , jm) from a determining set for Φ. Since condition (5.13) is just
(4.12) with the ordering of (vj1 , . . . , vjm) reversed, our algorithm can be modified
to calculate the anti projective symmetries by simply replacing PΦ by its transpose
PTΦ .

Example 5.2. Applying the full pruning algorithm to Example 4.1, with the m–
products ∆C(vj1 , . . . , vjm) replaced by their conjugates, and base flag (1, 2, 3, 4) gives
the following anti projective symmetries

F4 = {(1, 2, 4, 3), (1, 3, 2, 4), (1, 4, 3, 2), (2, 1, 3, 4), (2, 3, 4, 1), (2, 4, 1, 3),

(3, 1, 4, 2), (3, 2, 1, 4), (3, 4, 2, 1), (4, 1, 2, 3), (4, 2, 3, 1), (4, 3, 1, 2)}.

Hence, we have

SymP (Φ) = A4 ⊂ SymEP (Φ) = S4.

Since the product of two anti projective symmetries is a projective symmetry, if
there exist antiprojective symmetries of Φ, then

|SymEP (Φ)| = 2|SymP (Φ)|,

and SymEP (Φ) is generated by the anti projective symmetries, or by SymP (Φ)
together with any anti projective symmetry. In all cases

SymP (Φ) / SymEP (Φ), [SymEP (Φ) : SymP (Φ)] = 1 or 2.

6. Group Frames, Nice Error Bases, SICs and MUBs

Many tight frames of interest come as the orbit of a unitary group action on
H = Rd,Cd (cf. [23], [24]). For these, the calculation of SymP (Φ) can be simplified.
Let G be a finite group. A group frame or G–frame for H is a frame Φ = (vg)g∈G
for which there exists a unitary representation ρ : G→ U(H) with

gvh := ρ(g)vh = vgh, ∀g, h ∈ G.

When ρ(G) contains scalar matrices other than the identity, then the vectors in Φ =
(gv)g∈G are repeated (up to unit scalar multiples). In this case it is often convenient
to consider the frame (gv)g∈ρ(G)/Z where Z is the group of scalar matrices in ρ(G).
This setup can also be described in the language of projective representations, and in
some special cases nice error bases (cf. [14], [17], [10]). Without loss of generality,
we now assume Z is a subgroup of ρ(G) consisting of scalar matrices, so that if
(gv)g∈G is a group frame, then Φ = (gv)gZ∈ρ(G)/Z is “group frame”, where the
vectors gv are defined up to multiplication by a unit scalar (and so the m–products
are well defined). For simplicity, we will write g ∈ G for gZ ∈ ρ(G)/Z. Recent
work of [7], [25] extends the theory of group frames to this situation, with the
corresponding frames being called twisted group frames or projective group frames
for the (abstract) group ρ(G)/Z. Let Φ = (gv)g∈G be a group frame. Since the
index set is G, the projective symmetries are permutations of G. We observe that
each h ∈ G induces a projective symmetry

τh : G→ G : g 7→ hg,
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and the subgroup τG = {τh}h∈G of SymP (Φ) acts transitively on G. Moreover, if
σ ∈ SymP (Φ) and h ∈ G, then

σ = τσ(h)h−1σh, σh := τhσ(h)−1σ,

i.e., σ is a product of an element of τG and a σh ∈ SymP (Φ) which fixes h (the
vector hv). Thus we obtain the following.

Proposition 6.1. Let Φ = (gv)g∈G be a group frame, then SymP (Φ) is generated
by the “translations” τG, and the stabiliser of any vector hv, i.e.,

Stab(h) := {σ ∈ SymP (Φ) : σ(h) = h}.

In particular, to calculate SymP (Φ) it suffices to find the stabiliser of some vector.

For |G| = n, the calculation of Stab(h) as above, requires the examination of the
(n− 1)! permutations which fix h, and checking (4.12) for only those cycles from a
determining set for Φ = (gv)g∈G which do not involve h. Thus our algorithm can
be applied (with a reduced set of permutations to examine, and a simpler pruning
rule).

Example 6.2. Consider Example 4.1. This is a group frame with ρ(G) = 〈S,Ω〉
having order 8, and centre Z = {I,−I}. The group ρ(G)/Z is Z2 × Z2 (since
ΩS = −SΩ), and we will write it elements in the order (Z, SZ,ΩZ, SΩZ). The
corresponding translations are

τZ = I, τSZ = (12)(34), τΩZ = (13)(24), τSΩZ = (14)(23).

If we fix the first vector, i.e., consider only possible projective symmetries with
σ1 = 1, then applying our algorithm as before gives

F2 = {(1, 2), (1, 3), (1, 4)}.

Growing and pruning gives

F3 = {(1, 2, 3), (1, 3, 4), (1, 4, 2)}, F4 = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)}.

Thus the stabliser of the first vector is generated by the cycle (234), and SymP (Φ)
is generated by generators for τρ(G)/Z , say (12)(34) and (13)(24) and the generator
(234) for Stab(1).

We now present the results of our calculation of the symmetry group for SICs
and MUBs. These were done in the computer algebra packages Maple and Magma.
We use the notation <n,k> to denote the k–th group of order n, as used in Magma.
For values of n for which the Magma command IdentifyGroup(G) is unable to
identify the group, which simply give its order n. Example 6.2 can be generalised
as follows.

Definition 6.3. A symmetric informationally complete positive operator
valued measure, or SIC for short, is an equiangular tight frame of d2 vectors for
Cd.

SICs are usually considered up to projective equivalence, i.e., as sequences of
equiangular lines. There is a growing body of work (cf. [18], [2], [19], [4]) indicating
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that these exist in every dimension, as group frames, where the ρ(G) is the Weyl–
Heisenberg group which is generated by the cyclic shift and modulation operators

S :=


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , Ω :=


1

ω
ω2

. . .

ωd−1

 , ω := e2πi/d.

(6.14)

and has centre Z = {ωjI}d−1
j=0 . Here the index group is ρ(G)/Z ≈ Zd × Zd, which

we denote by G. Such a “Weyl–Heisenberg” SIC Φ is determined (up to projective
unitary equivalence) by its 3–products (cf. [4], [9])

Λjg,h := d3‖v‖6∆C(jv, gv, hv) = 〈jv, gv〉〈gv, hv〉〈hv, jv〉, j, g, h ∈ G.

In particular, a permutation σ : G→ G is a projective symmetry if and only if

Λσjσg,σh = Λjg,h, ∀j, g, h.

By Proposition 6.1, it suffices to find the stabiliser of some fixed j ∈ G, i.e., the
subgroup of σ satisfying

Λjσg,σh = Λjg,h, ∀g, h.

This observation is made in [16] (Chapter 10), where the Hermitian G×G matrix

[Λjg,h] is replaced by the real antisymmetric matrix Λ(j), with entries

Λ
(j)
g,h := arg

( Λjg,h

|Λjg,h|

)
.

For Example 6.2 (with the same ordering), we have

ΛI =
1

8


1 1

3
1
3

1
3

1
3

1
3

i
3
√

3
− i

3
√

3
1
3 − i

3
√

3
1
3

i
3
√

3
1
3

i
3
√

3
− i

3
√

3
1
3

 , Λ(I) =


0 0 0 0
0 0 π

2 −π2
0 −π2 0 π

2
0 π

2 −π2 0

 .

The stabiliser of some j, i.e., the set of permutations satisfying

Λ
(j)
σg,σh = Λ

(j)
g,h, ∀g, h,

is called an automorphism of the angle matrix Λ(j). An algorithm, akin to ours,
for computing the automorphism group of a symmetric or antisymmetric matrix is
given in [16]. It is observed that such a matrix can be thought of as a weighted
(directed) graph with vertices G, and the calculation of the automophism group
is equivalent to the (well studied) weighted graph isomorphism problem. Using
our algorithm, we obtained the same extended projective symmetry groups for the
numerically known SICs in dimensions d 6= 3 as in [16], namely the subgroup of
it that lies in the extended Clifford group (the normaliser of the Weyl–Heisenberg
group in the unitary and antiunitary matrices), as given in [19]. As a consequence
of Proposition 6.1, we obtain a necessary condition for a frame to be a group frame.
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Corollary 6.4. Let Φ be a finite frame. Then a necessary condition for Φ to be a
group frame for G/Z (up to scalar multiples of its vectors) is that SymP (Φ) has a
transitive subgroup which is isomorphic to G/Z.

This is a sufficient condition in the following situation.

Lemma 6.5. Let Φ = (vj) be a finite frame. If the frame graph of (PΦej) is
connected, and σ ∈ SymP (Φ), i.e.,

Lvj = cjvσj , ∀j,

then the linear map L = Lσ is unique up to multiplication by a unit scalar, i.e.,the
map σ 7→ Lσ gives a projective representation of SymP (Φ).

Proof. First, we assume that (vj) is a normalised tight frame, so that L = U is
unitary, and 〈vk, vj〉 = 〈PΦek, PΦej〉 = (PΦ)kj . Suppose that

Uvj = cjvσj , Ũvj = c̃jvσj , ∀j, (6.15)

with U and Ũ unitary, and cj and c̃j unit scalars. Then

〈cjUvj , ckUvk〉 = 〈vσj , vσk〉 = 〈c̃jŨvj , c̃kŨvk〉, ∀j, k,

which gives
ck
cj
〈vj , vk〉 =

c̃k
c̃j
〈vj , vk〉, ∀j, k.

In particular,

〈PΦej , PΦek〉 = 〈vj , vk〉 6= 0 =⇒ cj
c̃j

=
ck
c̃k
. (6.16)

Since the frame graph of Φ is connected, for any j and k, there exists a sequence
of vectors vj , v`1 , v`2 , . . . , v`m , vk with

〈vj , v`1〉 6= 0, 〈v`1 , v`2〉 6= 0, . . . 〈v`m−1 , v`m〉 6= 0, 〈v`m , vk〉 6= 0,

and so by (6.16), we have

cj
c̃j

=
c`1
c̃`1

=
c`2
c̃`2

= · · · = c`m
c̃`m

=
ck
c̃k
.

Thus c̃ = αc for some unit scalar α, and (6.15) gives

Ũvj = c̃jvσj = αcjvσj = αUvj , ∀j,

i.e., Ũ = αU . Finally, we consider the general case. Using (2.9), Lvj = cjvσj can
be written as (

RΦLR
−1
Φ

)
PΦej = cj(PΦeσj), ∀j,

where the inverse of the injective linear map RΦ is defined on its image (the range
of PΦ). Since (PΦej) is a normalised tight frame, U = RΦLR

−1
Φ is unitary, and we

may apply the result just proved. �

Theorem 6.6. Let Φ = (vj) be a frame of n vectors for H, for which
(1) No vector in Φ is repeated (up to a unit scalar multiple).
(2) The frame graph of (PΦej) is connected.

Then Φ is a group frame for G/Z (up to scalar multiples of its vectors) if and only
if SymP (Φ) has a transitive subgroup which is isomorphic to G/Z.
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Proof. In view of Corollary 6.4, it suffices to prove that given a transitive subgroup
of H of SymP (Φ), there is a group G of linear maps for which the orbit of any vector

v ∈ Φ is Φ (with possible repeats). Let d be the dimension of H, and ω := e
2πi
d .

For each σ ∈ H, choose some Lσ as in Lemma 6.5, with

det(Lσ) = 1.

There are d scalar multiples of Lσ with determinant 1, namely Lσ, ωLσ, . . . , ω
d−1Lσ.

Let
G := {ωjLσ : j = 0, . . . , d− 1, σ ∈ H}, Z := {ωjI}d−1

j=0 .

Since the vectors in Φ are not repeated, G has d|H| elements. Moreover, G is a
group with G/Z ≈ H, since

Lστvj = cστj vστj , LσLτvj = Lσc
τ
j vτj = cτj c

σ
τjvστj ,

and the uniqueness of Lστ gives

LσLτ = αLστ , |α| = 1 =⇒ 1 = det(LσLτ ) = det(αLστ ) = αd

=⇒ α ∈ {1, ω, . . . , ωd−1}, LσLτ ∈ G.
Since H is transitive, Φ is the G–orbit of any one of its vectors (up to repeats). �

As an example, we consider the generalisation of Example 4.2.

Definition 6.7. A family B1, . . .Bm of orthonormal bases for Cd is mutually
unbiased if

|〈v, w〉| = 1√
d
, v ∈ Bj , w ∈ Bk, j 6= k.

We call B1, . . .Bm a sequence of m mutually unbiased bases, or MUBs for
short.

The frame graph of two or more MUBs is connected. There is considerable
interest in findingM(d) the maximal number of MUBs in Cd (cf. [26], [11], [5]). For
d a prime power,M(d) = d+1, and for d = 6, it is only known that 3 ≤M(6) ≤ 7.

Example 6.8. One can add a third orthonormal basis to those of Example 4.2, to
obtain a maximal set of MUBs for C2

Φ = (vj) =
((1

0

)
,

(
0
1

)
,

1√
2

(
1
1

)
,

1√
2

(
−1
1

)
,

1√
2

(
1
i

)
,

1√
2

(
1
−i

))
.

The projective symmetry group SymP (Φ) has order 24, and is generated by the
permutations

(13)(24)(56), (3645).

It has three transitive subgroups

H1 = 〈(12)(36)(45), (164)(253)〉 ≈ S3, |H1| = 6,

H2 = 〈(164)(253), (34)(56), (12)(56)〉, |H2| = 12,

H3 = SymP (Φ), |H3| = 24.

Thus the three MUBs are a group frame for G/Z ≈ Hj. For G/Z ≈ S3, it is even
possible to choose G so that Z = {1}, e.g., take

G = 〈A,B〉, A :=
1√
2

(
1 1
1 −1

)
, B :=

1√
2

(
0 −1− i

−1 + i 0

)
.
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For d a prime power, there is a standard construction for Φ a maximal set of
d + 1 MUBs in Cd [1], [26], as the eigenvectors of elements of a Weyl–Heisenberg
group. This Φ can be interpreted as a group frame [27], [3], [5], where the group
is a subgroup of the Clifford group (the normaliser of the Weyl–Heisenberg group
in the unitary matrices). For d a prime, the appropriate Weyl–Heisenberg group is

d m n C(Zd)/Z SymP (Φ) SymEP (Φ) transitive subgroups of SymP (Φ)
2 3 6 <24,12> <24,12> <48,48> <6,1>, <12,3>
3 4 12 <216,153> <216,153> <432,734> <72,41>

4 5 20 <768,1088659> 1920 3840 <20,3>,<60,5>, <80,49>,
<120,34>, <160,234>,
<320,1635>, <960,11357>,

5 6 30 3000 3000 6000 <600,150>

7 8 56 16464

Table 1. The symmetry groups SymP (Φ) and SymEP (Φ) for Φ
the tight frame of n vectors given by m MUBs in Cd, including the
proper transitive subgroups of SymP (Φ).

that generated by S and Ω of (6.14), and the Clifford group is generated by these,
the unitary scalar matrices, the Fourier matrix F and the diagonal matrix R, where

Fjk :=
1√
d
ω−jk, Rjk := µj(j+d)δjk, µ := e

2πi
2d .

We denote this Clifford group, factored by its centre (the unit scalar matrices) by
C(Zd)/Z. Here we have

Φ = (gej)g∈C(Zd)/Z ,

where ej is any standard basis vector. Our calculations for d ≤ 5 suggest (see Table
1), the Clifford group accounts for all the projective symmetries, and the extended
Clifford group [2] for all extended projective symmetries.

Conjecture 6.9. Let d be a prime. The standard construction of d + 1 MUBs in
Cd has no projective symmetries other than those given by the (generating) Clifford
group.

For d a prime power pm, m > 1, the appropriate Clifford group is the Galoisian
Clifford group of [3], [15]. We consider the first such example.

Example 6.10. Let Φ be the five MUBs in C4 (these are unique up to projective
similarity). We calculated that the projective symmetry group SymP (Φ). It is
transitive, with order

1920 = 27 · 3 · 5.
The Galoisian Clifford group has order 11520 = 28 · 32 · 5 (see [15]). Since Φ is
known to be a group frame for a subgroup of the Galoisian Clifford group (see [27]),
we conclude that Φ is not a group frame for the full Galoisian Clifford group. It is
a group frame for groups with orders 20, 60, 80, 120, 160, 320, 960, 1920 (see Table
1). It is not known whether all these groups appear as subgroups of the Galoisian
Clifford group.
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7. Harmonic Frames

Tight group frames for abelian groups are called harmonic frames. Of partic-
ular interest (cf. [13], [12]) are those for the cyclic group G = Zn, which are said
to be cyclic. All of these can be given explicitly (up to unitary equivalence) by

subsets J of Zn (cf. [20], [8]), as follows. Let ω := e
2πi
n . For J = {j1, . . . , jd} a

subset of Zn, a group frame for Cd is given by

ΦJ = (vk)k∈Zn , vk :=

ω
j1

. . .

ωjd


k1

...
1

 =

ω
kj1

...
ωkjd

 .

Let Aut(G) be the automorphisms of G. For cyclic harmonic frames ΦJ and ΦK ,
it was shown in [8], [9] that
• ΦJ and ΦK are similar (up to a reordering) if K = σ(J), for some σ ∈ Aut(G).
• ΦJ and ΦK are projectively similar (up to a reordering) if K = σ(J) − b, for

some σ ∈ Aut(G), b ∈ G.
We say that frame is projectively real if all its m–products are real, and hence
it is projectively similar to a frame in Rd. Otherwise it is said to be projectively
complex. We say that Φ = (vj) has projectively distinct vectors if no vj is a
unit scalar multiple of another, i.e., none of the lines corresponding to vectors of
equal length are equal. For example, the harmonic frame

Φ = Φ{0,1} = {v0, v1, v2} =
{(1

1

)
,

(
1
ω

)
,

(
1
ω2

)}
, ω = e

2π
3 ,

for C2 is not similar to real frame, but is projectively similar to a real frame, since

Gram(Φ) =

 2 1 + ω 1 + ω2

1 + ω2 2 1 + ω
1 + ω 1 + ω2 2

 , 〈v0, v1〉〈v1, v2〉〈v2, v0〉 = (1+ω2)3 = −1.

The classes of projectively equivalent cyclic harmonic frames (up to reordering) were
calculated in [9]. For those with projectively distinct vectors, we used our algorithm
to calculate the projective symmetry group and the extended projective symmetry
group (in the case it was projectively complex). The results for d = 2, . . . , 7 are
summarised in the tables of the Appendix. We observe that for projectively complex
cyclic harmonic frames the conjugation map gives an anti projective symmetry
σ : k 7→ −k, since

vk = (ωkj1 , . . . , ωkjd) = (ω−kj1 , . . . , ω−kjd) = v−k, k ∈ Zn.

Here SymP (Φ) is an index 2 subgroup of SymEP (Φ) (and so is normal), but in all
the examples considered (including Example 5.2), SymEP (Φ) is not isomorphic to
the direct product SymP (Φ)× Z2. We conclude with some examples of interest.

Example 7.1. (Four vectors in C2). There are two projective equivalence classes,
given by {0, 1} and {1, 3}. The first has projectively distinct vectors, is projectively
real, and requires the 4–products to calculate its projective symmetry group <8,3>.
The second does not have vectors which are projectively distinct.

Example 7.2. (Six vectors in C3). There are three projective equivalence classes.
The first {1, 3, 5} does not have projectively distinct vectors, and the second {1, 2, 3}
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has projectively distinct vectors, is projectively real, and requires the 4–products to
calculate its projective symmetry group <12,4>, The third {0, 1, 4} is projectively
complex, with projectively distinct vectors, none of which are orthogonal. Its pro-
jective and extended projective symmetry groups are symmetry groups <18,3> and
<36,10>. This is the first example of a projectively complex cyclic harmonic frame.
For d = 3, they also exist for n = 7, 8, 9, 10, 11, 12.

Example 7.3. (Eight vectors in C3). The harmonic frame Φ = ΦJ of eight vectors
for C3 given by J = {0, 1, 4} is projectively complex, with

SymP (Φ) = <32,11>, SymEP (Φ) = <64,134>.

The projective symmetry group has transitive subgroups of order eight isomorphic
to Z8, Z4 × Z2, D4 (dihedral group), Q8 (quaternian group), and so Φ is a group
frame for each of these groups. The only other group of order eight is Z2×Z2×Z2,
which occurs as a transitive subgroup of SymEP (Φ).

Example 7.4. (Projectively real frames) In 2 dimensions all cyclic harmonic
frames of n vectors are projectively real. This follows by showing for all n > 4,
they are determined by their m–products, m ≤ 3, and then showing the 3–products
are all real by direct computation. For d ≥ 3, it appears there always exist pro-
jectively complex cyclic harmonic frames of n projectively distinct vectors, with the
smallest n being n = d+ 3.

Example 7.5. (Erasures) The erasures of a frame Φ of n vectors for Cd is the
number of vectors that can be removed from Φ so that those remaining still span Cd.
Frames with a large number of erasures are useful for robust data transmission [13],
[12]. For the cyclic harmonic frame given by J = {0, 1, 2, . . . , d − 1} the number
of erasures is n− d. Our calculations show this is not true in general, e.g., for six
vectors in C2 the erasures of a cyclic harmonic frame can be 2, 3, 4. It does seem
however, that for n a prime the erasures are always n− d.

8. Appendix

The tables here summarise our calculation of the projective symmetry groups of
the cyclic harmonic frames Φ = ΦJ of n vectors for Cd, d = 2, . . . , 7. The columns
are as follows:
(1) d – the dimension Cd.
(2) n – the number of vectors in Φ.
(3) real – whether Φ is projectively real.
(4) orth – whether any vectors in Φ are orthogonal.
(5) reps – whether the vectors in Φ projectively repeated, i.e., are not projectively

distinct.
(6) SymP (Φ) – the projective symmetry group of Φ, when the vectors of Φ are

projectively distinct.
(7) SymEP (Φ) – the extended projective symmetry group of Φ, when Φ is projec-

tively complex with projectively distinct vectors.
(8) J – a subset of Zn giving ΦJ (up to projective equivalence and reordering).
(9) 4-cycle – whether 4–cycles were needed to define the projective equivalence

class.
(10) erasures – the number of vectors that can be removed from Φ so that those

remaining still span Cd.
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
2 2 yes y <2,1> {0, 1} 0
2 3 y <6,1> {0, 1} 1
2 4 y y <8,3> {0, 1} y 2

y y y {1, 3} 1
2 5 y <10,1> {0, 1} 3
2 6 y y {1, 3} 3

y y <12,4> {1, 2} 4
y y y {1, 4} 2

2 7 y <14,1> {1, 4} 5
2 8 y y <16,7> {1, 6} 6

y y y {1, 3} 5
y y y {1, 5} 3

2 9 y <18,1> {1, 3} 7
y y {1, 4} 5

2 10 y y {1, 5} 7
y y <20,4> {1, 4} 8
y y y {1, 6} 4

2 11 y <22,1> {1, 10} 9
2 12 y y y {1, 10} 8

y y <24,6> {1, 8} 10
y y {1, 9} 7
y y y {1, 7} 5
y y y {1, 3} 9

2 13 y <26,1> {1, 4} 11
2 14 y y <28,3> {1, 2} 12

y y {1, 5} 11
y y y {1, 8} 6

2 15 y <30,3> {0, 1} 13
y y {1, 10} 11
y y {1, 6} 9
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
3 3 y y <6,1> {0, 1, 2} 0
3 4 y <24,12> {1, 2, 3} 1
3 5 y <10,1> {0, 1, 3} 2
3 6 <18,3> <36,10> {0, 1, 4} 2

y y <12,4> {1, 2, 3} y 3
y y y {1, 3, 5} 1

3 7 <21,1> <42,1> {1, 2, 6} 4
y <14,1> {1, 3, 5} 4

3 8 <16,8> <32,43> {1, 3, 4} 5
<32,11> <64,134> {0, 1, 4} 3

y <16,7> {0, 1, 2} 5
y y {1, 3, 5} 3

3 9 <9,1> <18,1> {1, 4, 6} 5
y y <18,1> {0, 1, 2} 6
y y y {1, 4, 7} 2

3 10 <50,3> <100,13> {0, 1, 5} 4
y <20,4> {0, 1, 9} 7

<10,2> <20,4> {0, 1, 8} 7
y y {1, 5, 7} 5

3 11 <11,1> <22,1> {0, 1, 3} 8
y <22,1> {1, 2, 3} 8

3 12 <12,2> <24,6> {1, 2, 11} 8
y y <24,6> {1, 2, 3} 9
y y {1, 4, 10} 5

<12,2> <24,6> {0, 3, 4} 7
y {1, 5, 7} 5

y <24,5> <48,38> {0, 1, 8} 7
y y y {1, 3, 5} 7

<72,30> <144,154> {2, 3, 8} 5
y y y {1, 5, 9} 3

3 13 y <26,1> {0, 1, 12} 10
<13,1> <26,1> {0, 1, 3} 10
<39,1> <78,1> {1, 2, 11} 10
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
4 4 y y <24,12> {0, 1, 2, 3} 0
4 5 y <120,34> {0, 1, 2, 3} 1
4 6 y y <12,4> {1, 2, 3, 4} 2

y <48,48> {1, 2, 3, 5} 1
y y <72,40> {0, 1, 3, 4} 1

4 7 <21,1> <42,1> {0, 1, 2, 4} 3
y <14,1> {1, 2, 3, 4} 3

4 8 y y <16,7> {1, 2, 4, 7} y 4
<8,1> <16,7> {1, 2, 3, 5} 3

y y <128,928> {0, 1, 4, 5} y 2
y y <32,43> {0, 1, 3, 4} 3
y y y {1, 3, 5, 7} 1

4 9 <9,1> <18,1> {1, 2, 3, 8} 5
<162,10> <324,39> {0, 1, 4, 7} 2

y <18,1> {1, 2, 4, 5} 4
y <18,1> {0, 1, 2, 3} 5

4 10 <10,2> <20,4> {0, 1, 3, 7} 5
y y <20,4> {1, 2, 4, 9} 4
y y <20,4> {0, 1, 2, 3} 6
y y <40,12> {0, 1, 3, 4} 5

<10,2> <20,4> {1, 2, 4, 6} 4
<10,2> <20,4> {0, 1, 5, 8} 4

y <20,4> {0, 2, 5, 8} 4
y y <200,43> {1, 2, 6, 7} 3
y y {1, 3, 5, 7} 3

4 11 y <22,1> {1, 2, 5, 9} 7
<11,1> <22,1> {0, 1, 2, 7} 7
<11,1> <22,1> {0, 1, 2, 8} 7

y <22,1> {1, 3, 7, 8} 7
4 12 <12,2> <24,6> {1, 3, 6, 9} 5

<384,5557> <768,1088009> {1, 2, 6, 10} 3
<24,5> <48,38> {3, 4, 6, 8} 7

y y <48,38> {2, 3, 9, 10} 5
y y <24,6> {1, 4, 8, 9} 6

<12,2> <24,6> {0, 1, 2, 8} 5
<36,6> <72,23> {0, 2, 3, 8} 5

y y <24,6> {1, 4, 8, 11} 7
y y <24,6> {1, 4, 6, 11} 8
y <12,2> <24,6> {1, 3, 6, 11} 7

y <24,10> <48,38> {2, 3, 6, 9} 5
y <12,2> <24,6> {0, 1, 4, 11} 7
y <72,42> <144,183> {1, 2, 8, 11} 5

y y <48,38> {0, 1, 4, 9} 5
y y <48,38> {1, 2, 4, 11} 6
y y <48,38> {0, 1, 6, 11} 5
y y y {1, 4, 7, 10} 2
y y y {1, 5, 7, 11} 3
y y y {1, 3, 7, 11} 3
y y <288,889> {0, 1, 6, 7} 4
y y y {1, 3, 5, 7} 5
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
5 5 y y <120,34> {0, 1, 2, 3, 4} 0
5 6 y <720,763> {0, 1, 2, 3, 4} 1
5 7 y <14,1> {0, 1, 2, 3, 5} 2
5 8 <32,11> <64, 134> {1, 2, 3, 5, 6} 2

y <16,7> {0, 1, 2, 6, 7} 3
<16,8> <32,43> {0, 1, 2, 3, 6} 3

y <384,5602> {1, 2, 3, 5, 7} 1
5 9 <9,1> <18,1> {0, 1, 2, 3, 7} 4

<162,10> <324,39> {0, 1, 3, 4, 7} 2
y <18,1> {0, 1, 2, 3, 8} 4
y <18,1> {1, 2, 3, 4, 7} 2

5 10 <10,2> <20,4> {1, 2, 5, 6, 9} 4
<10,2> <20,4> {1, 2, 4, 8, 9} 4

y y <20,4> {1, 2, 4, 5, 8} y 5
y <200,43> {1, 2, 3, 6, 8} 3

<10,2> <204,> {1, 3, 4, 5, 8} 4
<50,3> <100,13> {1, 2, 3, 7, 8} 3
<10,2> <20,4> {0, 1, 3, 5, 9} 3

y y <240,189> {0, 1, 2, 4, 8} 3
y y y {1, 3, 5, 7, 9} 1

5 11 <11,1> <22,1> {0, 1, 2, 4, 5} 6
<11,1> <22,1> {0, 1, 2, 5, 9} 6
<55,1> <110,1> {1, 2, 3, 5, 8} 6
<11,1> <22,1> {1, 2, 3, 4, 10} 6

y <22,1> {0, 1, 2, 3, 10} 6
y <22,1> {0, 1, 2, 4, 9} 6
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
6 6 y y <720,763> {0, 1, 2, 3, 4, 5} 0
6 7 y 5040 {0, 1, 2, 3, 4, 5} 1
6 8 y y <16,7> {0, 1, 2, 3, 5, 6}

y y <128,928> {0, 1, 2, 4, 6, 7}
y y 1152 {0, 1, 2, 4, 5, 6}

6 9 <9,1> <18,1> {0, 1, 2, 3, 4, 6}
y y <18,1> {0, 1, 2, 3, 4, 8}
y y <1296,3490> {0, 1, 3, 4, 6, 7}

6 10 <10,2> <20,4> {0, 1, 2, 5, 7, 9}
y <10,2> <20,4> {0, 1, 3, 4, 5, 8}

y 3840 {1, 2, 3, 5, 7, 9}
y y <20,4> {0, 1, 2, 3, 6, 7}

<10,2> <20,4> {1, 2, 3, 4, 5, 9}
y y <200,43> {0, 1, 4, 5, 6, 9}
y y <20,4> {0, 1, 3, 4, 7, 8}
y y <40,12> {0, 1, 2, 5, 8, 9}
y <20,4> {1, 2, 3, 5, 6, 7}

6 11 <11,1> <22,1> {1, 2, 3, 4, 5, 9}
<11,1> <22,1> {0, 1, 2, 3, 5, 10}

y <22,1> {0, 1, 2, 8, 9, 10}
y <22,1> {1, 2, 3, 8, 9, 10}

<11,1> <22,1> {1, 2, 3, 5, 6, 10}
<55,1> <110,1> {0, 1, 3, 4, 5, 9}
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d n real orth reps SymP (Φ) SymEP (Φ) J 4-cycle erasures
7 7 y y 5040 {0, 1, 2, 3, 4, 5, 6} 0
7 8 y 40320 {0, 1, 2, 3, 4, 5, 7} 1
7 9 y <1296,3490> {0, 1, 2, 4, 5, 7, 8}

y <18,1> {0, 1, 2, 3, 5, 7, 8}
7 10 <10,2> <20,4> {1, 2, 3, 4, 5, 6, 8}

<50,3> <100,13> {0, 1, 2, 5, 6, 7, 8}
y <320,1636> {1, 2, 3, 5, 6, 7, 9}
y <20,4> {1, 2, 4, 5, 6, 8, 9}

11 <11,1> <22,1> {0, 1, 2, 3, 5, 6, 9}
<11,1> <22,1> {0, 1, 2, 6, 7, 8, 9}

y <22,1> {1, 2, 3, 4, 5, 6, 8, 10}
y <22,1> {1, 2, 3, 4, 5, 8, 9}

7 12 y y <24,6> {0, 1, 2, 4, 8, 10, 11}
<12,2> <24,6> {1, 2, 3, 4, 6, 7, 10}
<72,30> <144,154> {1, 2, 3, 4, 7, 8, 10}
<12,2> <24,6> {1, 3, 4, 5, 7, 8, 9}
<12,2> <24,6> {0, 1, 2, 4, 6, 10, 11}
<12,2> <24,6> {0, 1, 2, 3, 6, 10, 11}
<12,2> <24,6> {0, 1, 2, 3, 4, 8, 9}
<12,2> <24,6> {1, 2, 3, 4, 5, 6, 11}

y <24,6> {0, 1, 2, 3, 4, 10, 11}
<12,2> <24,6> {1, 2, 3, 4, 6, 8, 9}

y <96,187> {0, 1, 2, 4, 5, 6, 9}
<72,30> <144,154> {1, 2, 3, 5, 8, 9, 11}
<12,2> <24,6> {1, 2, 4, 5, 6, 10, 11}
<72,30> <144,154> {1, 2, 3, 7, 8, 9, 10}
<12,2> <24,6> {1, 2, 3, 4, 5, 7, 10}
<24,10> <48,38> {1, 2, 3, 4, 6, 7, 9}
<12,2> <24,6> {0, 1, 2, 3, 5, 6, 11}

y <144,183> {0, 1, 2, 3, 4, 7, 9}
y 46080 {1, 3, 4, 5, 7, 9, 11}

<24,5> <48,38> {1, 2, 3, 4, 6, 7, 11}
y <24,5> <48,38> {1, 2, 3, 5, 7, 10, 11}

y <288,889> {1, 2, 3, 5, 7, 8, 9}
<384,5557> <768, 1088009> {1, 2, 3, 6, 7, 10, 11}

y y <192, 1472> {0, 1, 3, 4, 7, 8, 9} y
<1944,3876> 3888 {0, 1, 3, 4, 6, 7, 9}
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