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Abstract. We review recent results on the power domination problem of graph

products and establish improved results for some families of graph products,

namely, Cn × Cm, Pn × Cm, Pn � Pm, Pn � Cm and Cn � Cm. We also
characterize graphs G and H for which the power domination number of the

Cartesian product of G and H, which is denoted as γp(G 2 H), is 1.

1. Introduction

The notion of power domination in graphs originates from an optimization prob-
lem faced by the electrical power system industry. Electrical power companies need
to continually monitor their system’s state as defined by a set of variables, for ex-
ample, the voltage magnitude at loads and the machine phase angle at generators
[6, 10]. These variables can be monitored by placing phase measurement units
(PMUs) at selected locations in the system. Due to the high cost of a PMU, it is
desirable to monitor (observe) the entire system using the least possible number of
PMUs.

To model this optimization problem, we use a graph to represent an electrical
network. A vertex denotes a possible location where PMU can be placed, and an
edge denotes a current carrying wire. A PMU measures the state variable (voltage
and phase angle) for the vertex at which it is placed and its incident edges and
their ends. These vertices and edges are said to be observed by the PMU. We can
apply Ohm’s law and Kirchhoff’s current law to deduce the other three observation
rules:
(1) Any vertex that is incident to an observed edge is observed.
(2) Any edge joining two observed vertices is observed.
(3) For k ≥ 2, if a vertex is incident to k edges such that k − 1 of these edges are

observed, then all k of these edges are observed.
We consider only graphs without loops or multiple edges. Unless specified oth-

erwise in this paper, all graphs are connected. Let G =
(
V (G), E(G)

)
be a graph

with vertex set V (G) and edge set E(G). A trivial graph is a graph with one
vertex. A nontrivial graph is a graph that is not trivial. An induced subgraph F
of a graph G is a graph such that whenever u, v ∈ V (F ) and uv ∈ E(G), then
uv ∈ E(F ). The distance between u and v is the length of a shortest u − v path,
and is denoted by d(u, v). The neighborhood NG(v) of a vertex v ∈ V (G) is the set
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of all vertices adjacent to v. The subscript may be dropped if there is no confu-
sion about the vertex set that v belongs to. The degree of a vertex v, denoted by
deg(v), is the cardinality of the set N(v). The maximum degree of G is defined as
∆(G) = max{deg(v) | v ∈ V (G)}. We denote N [v] for the set N(v) ∪ {v}. For a
set S ⊆ V (G), we write N(S) =

⋃
v∈S N(v) and N [S] =

⋃
v∈S N [v].

A set S ⊆ V (G) is said to be a dominating set if every vertex in V (G)\S has
at least one neighbor in S. A dominating set of minimum cardinality is called a
minimum dominating set. The domination number γ(G) is the cardinality of a
minimum dominating set of G. If γ(G) = 1, then there exists a vertex in G that is
adjacent to all other vertices of G. Such a vertex is called a universal vertex. For
the power system monitoring problem, a set S is defined to be a power dominating
set (PDS) if every vertex and every edge in G are observed by S after applying the
observation rules. The power domination number γp(G) is the minimum cardinality
of a power dominating set of G. We will call a power dominating set with minimum
cardinality a γp(G)-set. The following algorithm is an alternative approach to the
observation rules.

Algorithm 1. [4] Let S ⊆ V (G) be the set of vertices where the PMUs are placed.
(1) (Domination)

Set M(S)← S ∪N(S).
(2) (Propagation)

As long as there exist v ∈ M(S) and w 6∈ M(S), such that N(v) ∩ (V (G) −
M(S)) = {w}, set M(S)←M(S) ∪ {w}.

It is easy to see that for any PDS, applying the three observation rules to deter-
mine the set of all observed vertices yields the same result as invoking Algorithm
1.

A zero forcing set for a graph G is a subset of vertices B such that when initially
the vertices in B are colored black and the vertices in V (G)\B are colored white,
all the vertices of G eventually become black by the repeated application of the
following color-change rule: “If u is a black vertex and exactly one neighbor w of
u is white, then change the color of w to black”. The zero forcing number of G,
denoted by Z(G), is the minimum cardinality of a zero forcing set of G. In [2], a
lower bound for the power domination number of G is determined in terms of Z(G)
and ∆(G).

Theorem 2. [2] Let G be a graph that may not be connected. If G has an edge,

then
⌈
Z(G)
∆(G)

⌉
≤ γp(G).

Let G?H be a graph product with vertex set V (G)×V (H) = {(g, h) | g ∈ V (G)
and h ∈ V (H)}. There are four standard graph products, namely, the Cartesian,
the strong, the direct, and the lexicographic product. Their respective graph prod-
ucts are denoted by 2, �, ×, and •. Two vertices (g1, h1) and (g2, h2) of G?H are
adjacent if and only if
(1) ? = 2, and either g1 = g2 and h1h2 ∈ E(H), or h1 = h2 and g1g2 ∈ E(G),
(2) ? = �, and either g1 = g2 and h1h2 ∈ E(H), or h1 = h2 and g1g2 ∈ E(G), or

g1g2 ∈ E(G) and h1h2 ∈ E(H),
(3) ? = ×, g1g2 ∈ E(G) and h1h2 ∈ E(H), or
(4) ? = •, and either g1g2 ∈ E(G), or g1 = g2 and h1h2 ∈ E(H).



POWER DOMINATION NUMBERS OF GRAPH PRODUCTS 43

The subgraph of G ? H induced by {g} × V (H) is called a H-fiber, which is
denoted by gH, and the subgraph induced by V (G)×{h} is called a G-fiber, which
is denoted by Gh. All the four graph products are associative. Except for the
lexicographic product, the other graph products are also commutative. When both
G and H are paths or cycles, we make the following definitions. A column is a set
of the form {k}×{1, 2, ...,m}, and a row is a set of the form {1, 2, ..., n}×{k}. We
say that a set S ⊆ V (G ? H) covers a column (or row) D if S ∩D 6= ∅.

A set S ⊆ V (G) is a total dominating set if each vertex in V (G) is adjacent
to at least one vertex of S. The total domination number of G, which is denoted
by γt(G), is the minimum cardinality of a total dominating set. In [4], the power
domination problem for any lexicographic product of two graphs is determined in
terms of the domination number and the total domination number of its factors.

Theorem 3. [4] Let G be a nontrivial graph without isolated vertices. Then for
any nontrivial graph H,

γp(G •H) =

{
γ(G) if γp(H) = 1,

γt(G) if γp(H) ≥ 2.

For each of the remaining three graph products of two graphs, the approach to
the power domination problem is to determine the power domination number for
each family of graphs. As such, the remainder of this paper is organized as follows.
In Sections 2 to 4, we give a brief survey of existing results involving the Cartesian
product, direct product and the strong product. Each new result is also presented
within its appropriate section.

2. Cartesian Product

Let Pn, Cn, Kn and Wn denote, respectively, the path, cycle, complete graph
and wheel of order n; K1,n denotes the star with n + 1 vertices such that n of
them are end-vertices. For the Cartesian product, the power domination number
was first studied in [5] for grid graphs Pn 2 Pm, and in [1] for cylinders Pn 2 Cm

and tori Cn 2 Cm. Koh and Soh [7] extended the study of the power domination
problem to the Cartesian product of any two of the following graphs: Pn, Cn, Kn,
Wn and K1,n. The study was completed in a subsequent paper and all the 15 exact
formulas are summarized in [8].

Let Qn denote the n-dimensional hypercube, which is defined as

P2 2 P2 2 ... 2 P2︸ ︷︷ ︸
n terms

.

Dean et al. [3] gave a lower bound and an upper bound of γp(Qn). Pai and
Chiu [11] evaluated the power domination numbers for Qn, where 1 ≤ n ≤ 7. We
present their results as follows.

Theorem 4. [3] For the n-dimensional hypercube,

2n−1

n
≤ γp(Qn) ≤ 2n−blog nc−1.
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Theorem 5. [11] For the n-dimensional hypercube,

γp(Qn) =


⌈
n
2

⌉
if n ∈ {1, 2, 3, 4},

4 if n = 5,

6 if n = 6,

10 if n = 7.

For the power domination problem that involves the Cartesian product of two
general graphs, we have the following results.

Theorem 6. [13] For any two nontrivial graphs G and H,

γp(G 2 H) ≤ min
{
γp(G)|V (H)|, γp(H)|V (G)|

}
.

Theorem 7. [13] Let G and H be two nontrivial graphs. If H has a universal
vertex, then γp(G 2 H) ≤ Z(G).

Theorem 8. [13] For n ≥ 2 and any nontrivial graph G, γp(Pn 2 G) ≤ γ(G).

We remark that the bounds in Theorems 6 - 8 can be sharp. For Theorem 6,
an example is G = P3 2 P3 and H = P3. It can be shown by exhaustion that
γp(P3 2 P3 2 P3) = 3 = γp(P3 2 P3)|V (P3)|. Examples for Theorems 7 and 8 are
given in [13].

We present a recent result on the Cartesian product of two general graphs that
has small power domination numbers.

Lemma 9. [13] For graphs G and H each with order at least four,

γp(G 2 H) = 1

if and only if one of the graphs is a path and the other has a universal vertex.

While a complete classification of graphs G for which γp(G) = 1 is not known
yet, we are able to do this for the Cartesian product of two graphs. Before we
give the result, we define a graph operation. The graph obtained from G and H by
amalgamating two vertices g ∈ V (G) and h ∈ V (H) has vertex set V (G)∪V (H)\{h}
such that the subgraphs induced by V (G) and

(
V (H)\{h}

)
∪{g} are G and H

respectively.

Theorem 10. Let G and H be two nontrivial graphs. Then γp(G 2 H) = 1 if and
only if either

(i) G and H each has order at least four, one of the graphs is a path and the other
has a universal vertex, or

(ii) one of the graphs is either P2 or P3 and the other can be obtained by amalga-
mating any vertex of a graph, say D, with γ(D) = 1 and an end vertex of Pn

with n ≥ 1, or
(iii) one of the graphs is C3 and the other is a path.

Proof. By Lemma 9, it remains to consider graphs G and H such that at least one
of them, say G, has order either two or three. In other words, G must be P2, P3 or
C3. For G = Pm with m ∈ {2, 3} and any graph H with γ(H) = 1, result holds by
Theorem 8. We therefore consider three cases for all the remaining possible graphs
G and H. To prove the necessary condition, we suppose that γp(G 2 H) = 1 and
{(g, h)} is a PDS of G 2 H.
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Case 1: P2 2 H with γ(H) ≥ 2.
Let g′ be the neighbor of g and A = {h′ ∈ NH(h) | NH [h′] 6⊆ NH [h]}. Since

γ(H) ≥ 2, A is nonempty. We claim that |A| = 1; for otherwise, propagation is
not possible from any vertex a ∈ A in the gH-fiber or the vertex (g′, h) to observe

(g′, a) in the g′
H-fiber. It follows from our claim that the set of vertices {(g′, b) |

b ∈ NH [h]\A} in the g′
H-fiber is observed after applying the first propagation step.

Since {(g′, a) | a ∈ A} is now the only neighbor of (g′, h) that is not observed, the
vertex (g′, a) is observed in the second propagation step. This in turn implies that
NH(a)\NH [h] is also a singleton. In fact, the subgraph induced by the remaining
unobserved vertices, if any, in each H-fiber must be a path in order for further
propagation to take place. Hence result follows from our construction of H.

Case 2: P3 2 H with γ(H) ≥ 2.
Let g, g′ and g′′ be the vertices of P3. If both g and h each have degree at least

two or both g and h are end vertices, then no more vertices get observed after the
domination step. If g has degree two and h has degree one, then by applying the
proof method presented in Case 1, H must be a path Pn with n ≥ 4. The remaining
possibility is g has degree one and h has degree at least two. We assume WLOG
that h has the largest degree. The proof method presented in Case 1 can be applied
successfully as long as d(h′) ≤ d(h) for all h′ ∈ NH(h), even though it takes more
propagation steps to get vertices (g′, a) and (g′′, a) observed.

Case 3: C3 2 H.
When H is a path, we have γ(C3 2 H) = 1 by [1]. Also by [8], γp(C3 2 Cn) 6= 1

for n ≥ 3. Therefore it remains to show that γp(C3 2 H) 6= 1 when H is any graph
that is not a path or cycle. In other words, H has a vertex, say h′ with degree at
least three. However this contradicts the fact that {(g, h)} is a PDS of G 2 H. This
is because if h = h′, then the propagation step cannot take place, and if h 6= h′,
propagation cannot proceed beyond h′ in each H-fiber.

To complete the proof for the sufficient condition, it can be seen easily that
{(g, h)} is a PDS of G 2 H, where g is an end vertex of G and h is a universal
vertex of D. �

In [7], it was conjectured that the Vizing-like inequality “γp(G)γp(H) ≤ γp(G 2 H)”
holds for any two graphs G and H. It was further shown that this inequality is true
when one of the graphs is a tree.

Theorem 11. [7] For any graph G and any tree T,

γp(G)γp(T ) ≤ γp(G 2 T ).

3. Direct Product

The power domination problem for the direct product of two graphs was first
studied in [4]. In that paper, they considered each component of Pn × Pm and
denoted the component containing the vertex (1, 1) as the even component. Other-
wise the component is called the odd component. Except for the odd component of
Pn×Pm, where both n and m are odd, the power domination numbers are exactly
determined.

Theorem 12. [4] For G = Pm × Pn, where n,m ≥ 2,
(i) if both n and m are even with n ≥ m, then γp(G) = 2

⌈
m
4

⌉
;
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(ii) if n is odd and m is even, then γp(G) = 2
⌈
m
4

⌉
;

(iii) if both n and m are odd with n ≥ m, then γp(E) = max
{⌈

n
4

⌉
,
⌈
m+n

6

⌉}
and

γp(O) ≤ max
{⌈

n−2
4

⌉
,
⌈
m+n−2

6

⌉}
, where E and O are the even and odd com-

ponents of G respectively.

In [9], the power domination problem for the direct product of two cycles is
studied. While the final result is correct in that paper, we point out that the authors
have erred in the proof of their lower bounds in Lemma 3. In particular and using
the definition of B(M) as presented in their proof, it was not shown whether the
resulting “maximum” |B(M)| can be attained after a vertex is removed from S. To
illustrate this, we consider a component of C4 × C6, which has power domination
number equal to 2. After we remove one vertex from S, it is easy to see that the
maximum |B(M)| is 4, which is less than m + n − 4. Subsequently the inequality
4(|S| − 1) ≥ (m+ n− 4) as given in Case 1 does not hold.

In what follows, we shall correct the proof for the lower bound of the power
domination number for Cn × Cm, where n,m ≥ 3.

Lemma 13. [9] Every three consecutive columns or rows of Cn × Cm contains at
least one vertex in a PDS, so that γp(Cn × Cm) ≥ max

{⌈
n
3

⌉
,
⌈
m
3

⌉}
.

We remark that if Cn × Cm is not connected, then Lemma 13 holds for each of
its connected component.

Lemma 14. If G = Cn × Cm, where n ≥ m ≥ 4 with n and m both even, then
γp(G) ≥ max

{
2
⌈
m+n−2

4

⌉
, 2
⌈
n
3

⌉}
.

Proof. Observe that G consists of two isomorphic connected components, so it
suffices to consider one of the components. Let S be a PDS of a component of
G. Suppose that we remove a vertex from S and denote the resulting set as S′.
By Lemma 13, |S| 6= 1 so that S′ is nonempty. Let M be a set of vertices that is
observed by S′, and let B(M) ⊆ M be the set of vertices on the boundary of M ,
that is, the set of vertices of M that has at least a neighbor not in M . We make
the following claims.
Claim 1: |B(M)| does not increase when any vertex is added to M during the
propagation step of Algorithm 1.
It is easy to see that if propagation occurs from vertex v to vertex w such that w is
added to M , then at most one vertex, w, may be added to B(M). However vertex
v and possibly other vertices are removed from B(M).
Claim 2: Up to symmetry, all vertices in the set {2, 3, ..., n− 1}× {2, 3, ...,m− 1}
are observed by S′.
Suppose on the contrary that such a set does not exist. Since the set of observed
vertices by S′ must be bounded by a rectangular region by the propagation step
of Algorithm 1 (see Figure 1(left)), we can find three consecutive rows and two
consecutive columns (here the words “rows” and “columns” can be interchanged in
this paragraph without affecting our proof) that is not observed by S′. Denote the
three rows as p − 1, p and p + 1. As there is no vertex in S′ that is in row p − 2
or p+ 2, by Lemma 13, we must have exactly one vertex in S that is in row p (see
Figure 1(right)). However, this vertex can only monitor some but not all of the
remaining vertices that are not observed by S′. Therefore S does not observe all
vertices in this component of G, which contradicts the fact that S is a PDS.
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Figure 1. Illustration of Claim 2 (left) and row p (right) on a
component of C8 × C6 in Lemma 14.

From Claim 2, |B(M)| = 2
(
m
2 − 1

)
+2
(
n
2 − 1

)
−2 = m + n − 6. Using Claim 1

and the fact that G is 4-regular, we have m + n − 6 ≤ 4
(
|S| − 1

)
. Since |S| must

be an integer, it follows that |S| ≥
⌈
m+n−2

4

⌉
. �

Lemma 15. If G = Cn × Cm, where n is odd and m is even, then γp(G) ≥
max

{⌈
m+2n−2

4

⌉
,
⌈

2n
3

⌉
,
⌈
m
3

⌉}
.

Proof. Result follows from Lemma 14 after we observe that G is isomorphic to a
component of C2n × Cm. �

In the proof of the following lemma, we shall denote the vertices of Cn × Cm

as (i, j). If i > n (or respectively, j > m), then i (or respectively, j) is taken
modulo n (or respectively, m). Let Vodd and Veven be the vertex sets such that
Vodd = {(i, j) | i+j ≡ 1(mod 2)} and Veven = {(i, j) | i+j ≡ 0(mod 2)} respectively
(see Figure 2). Observe that when either n or m is odd, then there are vertices
in Veven that are adjacent to some vertices in Vodd. For any two vertices in S, we
denote |∆i| and |∆j| to be the difference in the row positions and column positions
respectively. Note that the word “position” should not be replaced with the word
“number”. To illustrate this, we note that the difference in the row positions of
two vertices, one in row 1 and the other in row n, is equal to one (because vertices
in row n are adjacent to vertices in row 1), even though the difference in their row
numbers is n− 1.

Lemma 16. If G = Cn × Cm, where n ≥ m ≥ 3 with n and m both odd, then
γp(G) ≥ max

{⌈
m+n

4

⌉
,
⌈
n
3

⌉}
.

Proof. Let S be a PDS of G. WLOG, let u = (2, 2) ∈ S∩Veven. Since the smallest
possible graph G, which is C3 ×C3, has power domination number equal to 2, it is
clear that |S| ≥ 2. We initialize S′ = {u}. For the propagation step in Algorithm
1 to take place, there must be another vertex v = (i, j) ∈ S such that i, j > 2 (up
to symmetry), d(u, v) ≤ 3 and |∆i| + |∆j| ≤ 4. We then update S′ ← S′ ∪ {v}.
If N [v] ⊂ Veven, then vertices in Vodd are not observed by S′. Therefore we can
apply the above steps for a finite number of times and add more vertices with
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Figure 2. Vertices in Veven ⊂ V (C9 × C5) are colored black.

non-decreasing row and column numbers to S′ until there exists w = (a, b) ∈ S′
such that a > n, b > m and at least two vertices in N [w] belongs to Vodd. Since
S′ ⊆ S, it follows that m+ n ≤

∑(
|∆i|+ |∆j|

)
≤ 4|S′| ≤ 4|S|. Therefore we have

|S| ≥
⌈
m+n

4

⌉
. �

By Lemmas 14 to 16 and the constructions of PDS in [9], we present the power
domination numbers of Cn × Cm in the following theorem.

Theorem 17. For G = Cn × Cm, where n,m ≥ 3,
(i) if n and m are both even, n ≥ m and m ≤ 1

3 (n+ 6), then γp(G) = 2
⌈
n
3

⌉
;

(ii) if n and m are both even, n ≥ m and m > 1
3 (n+ 6), then γp(G) = 2

⌊
m+n

4

⌋
if

n+m 6≡ 6 (mod 8), and 2
⌊
m+n

4

⌋
≤ γp(G) ≤ 2

⌈
m+n

4

⌉
if n+m ≡ 6 (mod 8);

(iii) if n is odd, m is even and m ≤ 1
3 (2n+ 6), then γp(G) =

⌈
2n
3

⌉
;

(iv) if n is odd, m is even and m ≥ 6n− 6, then γp(G) =
⌈
m
3

⌉
;

(v) if n is odd, m is even and 1
3 (2n + 6) < m < 6n − 6, then γp(G) =

⌊
m+2n

4

⌋
if

2n+m 6≡ 6 (mod 8), and
⌊
m+2n

4

⌋
≤ γp(G) ≤

⌈
m+2n

4

⌉
if 2n+m ≡ 6 (mod 8);

(vi) if n and m are both odd, n ≥ m and m ≤ 1
3 (n+ 5), then γp(G) =

⌈
n
3

⌉
;

(vii) if n and m are both odd, n ≥ m and m > 1
3 (n+ 5), then γp(G) =

⌈
m+n

4

⌉
.

In [12], the power domination number for the direct product of a path Pn and a
cycle Cm, was established for an even integer n. In what follows, we present their
results and proceed to partially solve the power domination problem for Pn × Cm

when n is odd.

Lemma 18. [12] Let G be a connected component of Pn×Cm. Then γp(G) ≥
⌈
n
3

⌉
.

Theorem 19. [12] Let G = Pn × Cm, where n is even and m ≥ 3. Then

γp(G) =

{
2
⌈
n
3

⌉
if m is even,⌈

n
3

⌉
if m is odd.

Lemma 20. Let G be a connected component of Pn × Cm, where n is odd and m
is an even integer greater than or equal to 4. Then γp(G) ≥

⌈
m
4

⌉
.

Proof. Let S be a PDS of G, and let U be the vertices of any four consecutive
columns of G. We label these four columns sequentially from 1 to 4, and WLOG
suppose that columns 1 and 3 each has more vertices than that of column 2 or 4. We
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claim that S ∩ U 6= ∅; for otherwise, vertices in column 3 are not observed during
the domination step of Algorithm 1. Furthermore, propagation cannot proceed
from any vertex in column 2 or 4 to vertices in column 3. This contradicts our
assumption that S is a PDS. Therefore we have S ≥ m

4 . �

Theorem 21. Suppose that n,m ≥ 3 with n odd. If m is even, then

2 max
{⌈n

3

⌉
,
⌈m

4

⌉}
≤ γp(Pn × Cm) ≤ 2 max

{⌈n
3

⌉
,
⌈3n+m− 4

10

⌉
,
⌈m

4

⌉}
.

Otherwise m is odd, and we have

max
{⌈n

3

⌉
,
⌈m

2

⌉}
≤ γp(Pn × Cm) ≤ max

{⌈n
3

⌉
,
⌈3n+ 2m− 4

10

⌉
,
⌈m

2

⌉}
.

Proof. We denote the vertices of Pn × Cm as (i, j) with i and j taken modulo
n and m respectively. If m is even, then we observe that Pn × Cm comprises of
two isomorphic connected components. Let G be the component that contains
the vertex (0, 0). By Lemmas 18 and 20, γp(G) ≥ max

{⌈
n
3

⌉
,
⌈
m
4

⌉}
. To prove the

upper bound, we need to construct a PDS of G. When m ≤ 2n − 4, we denote
α = max

{⌈
n
3

⌉
,
⌈

3n+m−4
10

⌉}
and let S =

{
(3k − 2, k) | k = 1, 2, ..., n − 2α

}
∪
{

(3n −
6α − 2 + 2k, n − 2α + 4k) | k = 1, 2, ..., 3α − n

}
. When m ≥ 2n − 2, we let

S =
{(

min{2k− 1, n− 2}, 4k− 3
)
| k = 1, 2, ...,

⌈
m
4

⌉}
. It can be verified that the set

S is a PDS of G. Finally for the case where m is odd, result follows after observing
that Pn × Cm is isomorphic to a connected component of Pn × C2m. �

Figure 3. A PDS on a component of P9 × C8 (left) and
P15 × C10 (right).

We believe that the upper bounds in Theorem 21 are optimal. However we are
not able to show that γp(Pn × Cm) ≥

⌈
3n+m−4

10

⌉
for odd n and even m.

Theorem 22. [12] For m,n ≥ 2,

γp(Kn ×Km) =

{
2 if m+ n ≥ 6 or m+ n = 4,

1 otherwise.
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Theorem 23. [12] For n ≥ 3 and m ≥ 4,

γp(Kn × Cm) =

{⌈
m+1

2

⌉
if m ≡ 2 (mod 4),⌈

m
2

⌉
otherwise.

For Theorem 22, we include the condition “m + n = 4”, which was missing in
[12]. We also remark that Theorem 23 holds when m = 3, that is, γp(Kn×C3) = 2
for n ≥ 3.

Theorem 24. [12] If G and H each has at least two universal vertices, then γp(G×
H) ≤ 2.

4. Strong Product

The authors in [4] studied the set of observed vertices of Pn � Pm during a
propagation step of Algorithm 1 and subsequently obtained its power domination
number.

Theorem 25. [4] Let n ≥ m ≥ 2. Then

γp(Pn � Pm) = max
{⌈

n
3

⌉
,
⌈
n+m−2

4

⌉}
unless 3m− n− 6 ≡ 4 (mod 8), in which case

max
{⌈

n
3

⌉
,
⌈
n+m−2

4

⌉}
≤ γp(Pn � Pm) ≤ max

{⌈
n
3

⌉
,
⌈
n+m−2

4

⌉
+1
}

.

In what follows, we shall prove equality for the last remaining case in Theorem
25.

Theorem 26. For n ≥ m ≥ 2,

γp(Pn � Pm) =

{
max

{⌈
n
3

⌉
,
⌈
n+m−2

4

⌉
+1
}

if 3m− n ≡ 2 (mod 8),

max
{⌈

n
3

⌉
,
⌈
n+m−2

4

⌉}
otherwise.

Proof. It remains to prove that γp(Pn � Pm) ≥
⌈
n+m−2

4

⌉
+1 when 3m − n ≡

2 (mod 8). Let S be a PDS of Pn � Pm. As in [4], we let M be the set of
observed vertices of Pn � Pm during a propagation step of Algorithm 1, and let
B(M) be the set of vertices of M that have less than eight neighbors in M . It was
shown in that paper that |B(M)| is non-increasing during the propagation step,
and 2(m+ n− 2) ≤ B(M) ≤ 8|S|.

Suppose on the contrary that |S| =
⌈
n+m−2

4

⌉
. Notice that m and n must both

be either odd or even, so that 4(n − m) is a multiple of 8. Then 3n − m =
(3m− n) + 4(n−m) ≡ 2 (mod 8) and m+ n = 1

2

[
(3m− n) + (3n−m)

]
≡ 2 (mod

4), so that |S| = n+m−2
4 . It follows that 2(m + n − 2) = B(M) = 8|S|, which

implies that N(S) = 8|S| and B(M) remains the same during a propagation step.
We claim that both m and n must therefore satisfy the following conditions:

m = 3 + p+ 3q, n = 3 + 3p+ q,
p and q are non-negative integers that satisfies p+ q = |S| − 1.

We prove this claim using induction on |S|. For the base case when |S| = 1,
m = n = 3 in order to have B(M) = N(S) = 8. Notice that the vertices in N [S]
are confined in a rectangular region. To prove the inductive step, we assume for
some integer k that when |S| = k, both m = mk and n = nk satisfy the conditions,
and the vertices in N [S] are confined in a rectangular region. We also assume
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WLOG that there exists a vertex u ∈ S that belongs to row nk − 1 and column
mk − 1. If a vertex v is added to S such that |S| = k + 1, then v lies in or beyond
either row nk + 2 or column mk + 2 so that the domination step of Algorithm 1
adds eight vertices, excluding v. Then for propagation to take place such that S
is a PDS of Pn � Pm and B(M) remains the same, it can be verified that v must
belong to either (a) row nk + 2 and column mk, which increases only the value of
p by one, or (b) row nk and column mk + 2, which increases only the value of q by
one (see Figure 4). It follows from cases (a) and (b) that both m and n satisfy the
required conditions.

Figure 4. Illustration of the inductive step when k is increased
from 2 to 3.

Finally, we substitute q = |S| − 1− p = n+m−6
4 − p into either m = 3 + p+ 3q or

n = 3 + 3p+ q to obtain the contradiction that 3n−m = 6 + 8p 6≡ 2 (mod 8). �

Lemma 27. For n ≥ m ≥ 3, γp(Cn � Cm) ≥
⌈
n
3

⌉
.

Proof. Proof is identical to that of [4] (Lemma 3.2) and is therefore omitted. �

Lemma 28. For n ≥ m ≥ 3, γp(Cn � Cm) ≥
⌈
n+m−2

4

⌉
.

Proof. Let S be a PDS of Cn�Cm. It is easy to see that |S| = 1 when n = m = 3.
When n ≥ 4, we have |S| ≥ 2, so the set S′ obtained by removing a vertex from S is
nonempty. By following the proof similar to that of Lemma 14, it can be shown that
up to symmetry, all vertices in either one of the sets {1, 2, ..., n−3}×{1, 2, ...,m−1}
or {1, 2, ..., n−1}×{1, 2, ...,m−3} are observed by S′. We then obtain the inequality
2n+ 2m− 12 ≤ |B(M)| ≤ 8

(
|S| − 1

)
, and result follows. �

We remark that for the PDS constructed in [4] for Pn � Pm, the propagation
step in Algorithm 1 is not affected when edges are added to connect vertices in row
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1 to vertices in row n. The same can also be said for vertices in columns 1 and m.
Hence the construction for the PDS of Pn � Pm is valid for Cn � Cm. Finally by
following the proof for Theorem 26 for the case when 3m−n ≡ 2 (mod 8), we have
the following result.

Theorem 29. For n ≥ m ≥ 3,

γp(Cn � Cm) =

{
max

{⌈
n
3

⌉
,
⌈
n+m−2

4

⌉
+1
}

if 3m− n ≡ 2 (mod 8),

max
{⌈

n
3

⌉
,
⌈
n+m−2

4

⌉}
otherwise.

The result for the power domination problem of the strong product of a path
and a cycle can similarly be shown by following the proof of γp(Cn � Cm) closely.

Theorem 30. Let G be the graph Pn � Cm for n ≥ 2 and m ≥ 3, or the graph
Cn � Pm for n ≥ 3 and m ≥ 2. If n ≥ m, then

γp(G) =

{
max

{⌈
n
3

⌉
,
⌈
n+m−2

4

⌉
+1
}

if 3m− n ≡ 2 (mod 8),

max
{⌈

n
3

⌉
,
⌈
n+m−2

4

⌉}
otherwise.
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