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Abstract. For k ∈ N, we introduce the notion of k-rational homotopy fixed

points and we prove, under a certain assumption, that if X is a rational elliptic
space of formal dimension n, then X admits an (n−1)-rational homotopy fixed

point.

1. Introduction

In this paper, by a space we mean a rational simply connected CW-complex X
of finite type, i.e., dimHn(X;Z) <∞ for all n.

A space X is called elliptic if both the graded vector spaces H∗(X;Z) and π∗(X)
are finite dimensional. Let us call n = max{i : Hi(X,Z) ̸= 0} the formal dimension
of X.

Let E∗(X) denote the group of self-homotopy equivalences of a space X inducing
the identity on the homology groups (see [1, 3]).

A space X is said to have a k-rational homotopy fixed point if there exist [α] ∈
E∗(Xk) and a non-zero homotopy class x ∈ πk(X

k) such that α ̸≃ id and πk(α)(x) =
x, where Xk is the k-skeleton of X.

The aim of this paper is to establish the existence of a k-rational homotopy fixed
point for an elliptic space under a certain condition. More precisely, we use the
Quillen model to construct a homomorphism of groups ψ : πn(X

n) ↣ E∗(Xn) and
we prove the following main result.

Theorem 1. Let X be an elliptic space of formal dimension n. If ψ is not surjec-
tive, then X has an (n− 1)-homotopy fixed point.

The paper is organised as follows. In section 2, we recall the basic properties of
the Quillen model in rational homotopy theory as well as some results regarding
the group E∗(X). In section 3, we formulate and prove the main theorem in an
algebraic setting and then we give a mere transcription of the above result in the
topological context.

2. Quillen Model in Rational Homotopy Theory

We briefly recall Quillen’s differential graded Lie algebras (DGL for short) frame-
works for rational homotopy theory. All the materials can be founded in [6]. Also
we mention some results regarding the group E∗(X), and based on them we shall
prove the main theorems in this paper.
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Indeed, if X is a space, then there exists a DGL (L(W ), δ) called the Quillen
model of X, unique up to isomorphism, which determines completely the homotopy
type of the space X. Also in this setting, there is a concept of “homotopy” be-
tween differential graded Lie algebra morphisms, analogous in many respects to the
topological notion of homotopy (see [6, pp.321]). Thus, let E∗(L(W )) denote the
group of the homotopy self-equivalences of (L(W ), δ) inducing the identity on the
graded vector space of the indecomposables W (see [2, 4]). By virtue of the prop-
erties of the model of Quillen, we can recover the homotopy data via the following
identifications

π∗(X) ∼= H∗−1(L(W )), H∗(X,Z) ∼=W∗−1, E∗(X) ∼= E∗(L(W )). (1)

Furthermore, for every n, the DGL (L(W≤n), δ) can be considered as the Quillen
model of Xn+1 implying that

E∗(Xn+1) ∼= E∗(L(W≤n)) and π∗(X
n+1) ∼= H∗−1(L(W≤n)). (2)

Thus, if [α] ∈ E∗(X), then [α] induces an element [β] ∈ E∗(L(W )) such that the
following diagram commutes.

π∗(X) - π∗(X)

∼= ∼=

? ?

π∗(α)

H∗(β)H∗(L(W )) - H∗(L(W ))

(3)

2.1. A certain short exact sequence. (see [5] for more details)

Definition 2.1. Let (L(Wq ⊕W≤k), δ) be a DGL, where q > k and let bq :Wq →
Hq−1(L(W≤k)) be the linear map defined by setting

bq(v) = [δ(v)], v ∈Wq. (4)

Here [δ(v)] denotes the homology class of δ(v) ∈ Lq−1(W≤k).

Let Rq
k be the subgroup of E∗(L(W≤k)) consisting of the elements [γ] making

the following diagram commute.

Wq

bq bq

?

PPPPPPPPPPPPPPqHq−1(γ)Hq−1(L(W≤k)) - Hq−1(L(W≤k))

(5)

Theorem 2.2 ([5], Theorem 2.6). Let (L(Wq ⊕W≤k), δ) be a DGL, where q > k.
There is a short exact sequence of groups

Hom
(
Wq, Hq(L(W≤k))

)
↣ E∗(L(Wq ⊕W≤k)) ↠ Rq

k. (6)
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2.2. Elliptic rational spaces. As was stated in the introduction, a space X
is called elliptic if both the graded vector spaces H∗(X;Z) and π∗(X) are finite
dimensional. Notice that the integer n = max{i : Hi(X,Z) ̸= 0} is called the
formal dimension of X. The following theorem mentions some important properties
of elliptic spaces.

Theorem 2.3. ([6], § 32, pp. 434). If X is elliptic of formal dimension n, then we
have the following facts.
(1) Hn(X;Z) ∼= Q and Hi(X;Z) = 0 for all i ≥ n+ 1.
(2) πi(X) = 0, for i ≥ 2n.
(3) πi(X) = 0, for i > n and i is even.
(4) For i > n, there exists at most one vector space πi(X) ̸= 0. In this case, i

must be odd and dimπi(X) = 1.
(5)

∑
i≥1(2i+ 1) dimπ2i+1(X) ≤ 2n− 1.

(6)
∑

i≥1(2i) dimπ2i(X) ≤ n.

Translating the above properties into the DGL’s framework by using the identi-
fications (1), we derive that the Quillen model of X has the following properties.

Proposition 2.4. If (L(W ), δ) is the Quillen model of an elliptic space of formal
dimension n, then we have
(1) dimWn−1 = 1 and Wi = 0 for all i ≥ n.
(2) Hi−1(L(W )) = 0, for i ≥ 2n.
(3) Hi−1(L(W )) = 0, for i > n and i is even.
(4) There is only one non-trivial vector space. Hi−1(L(W )), for i > n − 1 and i

must be odd. Necessary, we have dimHi−1(L(W )) = 1.
(5)

∑
i≥1(2i+ 1) dimH2i(L(W )) ≤ 2n− 1.

(6)
∑

i≥1(2i) dimH2i−1(L(W )) ≤ n.

The following crucial result is needed subsequently.

Theorem 2.5. Let (L(W ), δ) be the Quillen model of an elliptic space X of formal
dimension n. If the linear map bn−1, given in the diagram (5), is nil, then X is
homotopic to a sphere.

Proof. Since (L(W ), δ) is the Quillen model of an elliptic space of formal dimension
n, by the relation (1) of Proposition 2.4, we can write Wn−1 = ⟨w⟩. Now if we
assume that bn−1 is null, then bn−1(w) = 0 and going back to (4), we derive
that there exists q ∈ Ln−1(W≤n−2) such that δ(w + q) = 0, providing a non-zero
homology class in Hn−1(L(W )). Now let us distinguish the following two cases.

Case 1: Assume n is odd. If Wn−1 is not the only non-zero vector space which
form the graded vector space W , then we must have w′ such that |w′| = k < n− 1
and δ(w′) = 0. As a result the bracket [w′, w + q] is a cycle defining a non-zero
homology class lying in Hn−1+k(L(W )) due to the relation (1) of Proposition 2.4.
Therefore, Hn−1+k(L(W )) ̸= 0.
Now if k is odd, then n − 1 + k is also odd which contradicts the relation (6) of
Proposition 2.4.
If k is even, then n − 1 + k is also even which contradicts the relation (5) of
Proposition 2.4, taking into account that Hn−1(L(W )) ̸= 0 and n− 1 is even.
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Case 2: Assume n is even. Since Hn−1+k(L(W )) ̸= 0, by applying the relation
(6) of Proposition 2.4, we deduce that

Hi(L(W )) = 0, for every i < n− 1 and i is odd. (7)

Likewise, if Wn−1 is not the only non-zero vector space which form the graded
vector space W , then we must have a generator w′ ∈W such that δ(w′) = 0, where
|w′| = k must be even according to (7). As a result the bracket [w′, w+ q] is a cycle
defining a non-zero homology class in Hn−1+k(L(W )) ̸= 0 by the relation (1) of
Proposition 2.4. Since n− 1 + k is odd we obtain a contradiction with the relation
(6) of Proposition 2.4.

Consequently, in both cases, (L(W ), δ) has the form (L(w), 0) with |w| = n− 1
which is the Quillen model of the sphere Sn. □

Corollary 2.6. Let (L(W ), δ) be the Quillen model of an elliptic space X of formal
dimension n. If the linear map bn−1 is null, then E∗(L(W )) is trivial.

Proof. By Theorem 2.5 the DGL (L(W ), δ) has the form (L(w), 0) with |w| = n−1
and easy to see that E∗(L(W )) = E∗(L(w)) = 1. □

3. Main Results

3.1. Rational homotopy fixed points.

Definition 3.1. A space X is said to have a k-rational homotopy fixed point if
there exist [α] ∈ E∗(Xk) and a non-zero homotopy class x ∈ πk(X

k) such that
α ̸≃ id and πk(α)(x) = x, where Xk denotes the kth skeleton of the space X.

Remark 3.2. Let X be an elliptic space. From definition 3.1, it is clear that if the
group E∗(Xk) is trivial, then X does not have a k-rational homotopy fixed point.

Lemma 3.3. If (L(W ), δ) is the Quillen model of an elliptic space X of formal
dimension n, then we have the following short exact sequence

Hn−1(L(W≤n−1))
ϕ
↠ E∗(L(W≤n−1)) ↠ Rn−1

n−2. (8)

Proof. It suffices to apply the short exact sequence (6), given in Theorem 2.2,
for q = n − 1, k = n − 2 and taking into consideration that as X is elliptic of
formal dimension n, its Quillen model has the form (L(W≤n−1), δ) with Wn−1

∼= Q
according the relation (1) of Proposition 2.4. □

Remark 3.4. Using the identifications (2), the homomorphism ϕ induces a homo-
morphism of groups ψ : πn(X

n) ↣ E∗(Xn).

Now we are ready to state the main theorem of this paper.

Theorem 3.5. Let X be an elliptic space X of formal dimension n. If ψ is not
surjective, then X has an (n− 1)-rational homotopy fixed point.

Proof. Recall that as X has formal dimension n, its Quillen model has the form
(L(W≤n−1), δ) with Wn−1

∼= Q. Now let us consider the short exact sequence (8).
By hypothesis ϕ is not surjective, it follows that the two groups E∗(L(W≤n−1)) and
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Rn−1
n−2 are not trivial. Recall that Rn−1

n−2 is the subgroup of E(L(W≤n−2)) consisting
of the all the elements [γ] making the following diagram commute.

Wn−1
∼= Q

bn−1 bn−1

?

PPPPPPPPPPPPPPqHn−2(γ)Hn−2(L(W≤n−2)) - Hn−2(L(W≤n−2))

(9)

It is worth mentioning that from Corollary 2.6, we know that bn−1(w) ̸= 0 as
E∗(L(W≤n−1)) is not trivial. Consequently, if we write Wn−1 = ⟨w⟩, then by virtue
of the commutativity of the diagram (9) we obtain Hn−2(γ) ◦ bn−1(w) = bn−1(w).

Summarizing, if we set bn−1(w) = x, then there exist [γ] ∈ E(L(W≤n−2)) and
x ∈ Hn−2(L(W≤n−2)) such that

Hn−2(γ)(x) = x.

A mere transcription of the above result in the topological context by using
the identifications (2) and the diagram (3), allows us to write that there exist
[γ] ∈ E∗(Xn−1) and a non-zero homotopy class x ∈ πn−1(X

n−1) such that

πn−1(γ)(x) = x.

Thus, the space X has a (n− 1)-rational homotopy fixed point. □
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