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Abstract. For any α ∈ R, we denote by Dαs [ζ(s)] the α-th Grünwald-Letnikov
fractional derivative of the Riemann zeta function ζ(s). For these derivatives

we show:

Dαs [ζ(s)] 6= 0

inside the region |s − 1| < 1. This result, the first of its kind, is proved by

a careful analysis of integrals involving Bernoulli polynomials and bounds for
fractional Stieltjes constants.

1. Introduction

The Riemann zeta function ζ(s) and its derivatives ζ(k)(s) are given by

ζ(s) :=

∞∑
n=1

1

ns
and ζ(k)(s) := (−1)k

∞∑
n=2

(log n)k

ns
,

for all k ∈ N, everywhere in the half-plane <(s) > 1. Each of them can, by a process
of analytic continuation, be extended to a meromorphic function with a single pole
at s = 1.

In 2003, Skorokhodov [13] observed that discretely increasing k moves the non-
trivial zeros of ζ(k)(s), in a one-to-one fashion, to the right. Investigating the
zero-free regions of higher derivatives ζ(k)(s), in [2] the authors proved this phe-
nomenon for sufficiently large k, and have discovered that, for integers k ≥ 0, all
of these derivatives have identical zero counts in the region <(s) > 1/2. Unfortu-
nately, due to increasing densities of the zeros of derivatives of ζ(s) in the vertical
direction, this simple bijective idea is very difficult to state quantitatively (e.g. in
terms of counting functions such as Nk(T ) :=

∑
ζ(k)(ρ)=0,=(ρ)≤T 1). However, the

existence of a visible “flow” of the zeros suggests that perhaps an indepth study
of the fractional derivatives could provide a missing link needed to establish this
fascinating but currently little-understood property. Despite an incredible amount
of research concerning the theory of ζ(s) and its k-th derivatives (for integer values
of k), the problems of fractional derivatives have been largely neglected so far ([10],
[9], [3] being a few rare exceptions).

In this paper we will not try to prove the audacious one-to-one conjecture stated
above, but instead we will take a first step towards it by establishing a new general
zero-free region for (arbitrary) fractional derivatives of ζ(s), a result that should be
of an independent interest. In particular, we will show that no integral or fractional
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Function Zero Distance from 1

ζ s = −2 |s− 1| = 3
ζ ′ s ≈ −2.7173 |s− 1| < 3.7174

D
(1.4677)
s ζ(s) s ≈ −1.5249 + 2.6383i |s− 1| < 3.6519

ζ ′′ s ≈ −0.3551 + 3.5908i |s− 1| < 3.838

Figure 1. Zeros of selected derivatives of ζ close to s = 1.
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Figure 2. Zeros of integral and fractional derivatives Dα
s [ζ(s)] of

the Riemann zeta function ζ in the neighbourhood of our zero free
region |s− 1| < 1. Selected zeros of Dα

s [ζ(s)] are denoted by (α)•.

derivative of ζ(s) has a zero inside the disk |s − 1| < 1. And while the result is
not the sharpest possible, it is not too far removed from it. The Figure 1 above
gives the list of closest zeros to the pole at s = 1, and the Figure 2 depicts the
distribution (and the flow) of these zeros in the left half-plane. Here, as it was
noted in [5], the same phenomenon of translation of zeros continues; however, the
linear and periodic movement found in the right half-plane is deformed into curves
that terminate in the “trivial” zeros of derivatives of ζ(s) found on the negative
real axis.

The structure of the remainder of the paper is as follows. In Section 2 we begin
with the definition of the Grünwald-Letnikov fractional derivatives and state some of
their properties, then in Section 3 we recall some basic results concerning fractional
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Stieltjes constants needed in our proof. We derive bounds for these constants and
state a couple of other useful auxiliary results in Section 4. Finally, in Section 5,
we prove our main result.

2. Fractional Derivatives

Fractional derivative operators are natural generalizations of the standard dif-
ferentiation operator Dα to arbitrary (integer, rational, or complex) values of α.
We have found that, among the multitude of existing definitions of fractional
derivatives, the reverse Grünwald-Letnikov derivative works best for situations
dealing with ζ(s) and its derivatives. In fact, in [6] we have applied it success-
fully in a proof of a conjecture by Kreminski [10]. Here we follow suit: we write(
α
k

)
= Γ(α+1)

Γ(k+1)Γ(α−k+1) , and for any α ∈ C, recall the definition of the so-called

“reverse αth Grünwald-Letnikov derivative” of a function f(z) (see [8]):

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim
h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
,

whenever the limit exists. Thus defined, Dα
z [f(z)] coincide with the standard deriva-

tives for all α ∈ N. Furthermore, we have D0
z [f(z)] = f(z) and Dα

z

[
Dβ
z [f(z)]

]
=

Dα+β
z [f(z)].
In [11] it was shown that for z ∈ C one has Dα

z [e−az] = (−1)αaαe−az, and that
Dα
z [1] = 0. For the Riemann zeta function this implies that, if α > 0 and <(s) > 1,

then we can write

Dα
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

ns
. (1)

Note that the Grünwald-Letnikov derivative of the Riemann zeta function is defined
for all real α > 0, and Dα

s [ζ(s)] is analytic in s; and what matters to us most is
that analytic continuation will yield the Grünwald-Letnikov derivative for all s ∈ C
with <(s) ≤ 1.

3. Fractional Stieltjes Constants

We start by recalling some basics. First, note that ζ(s) can be extended to
a meromorphic function with a simple pole at s = 1, with residue 1, and has a
Laurent series expansion:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)nγn
n!

(s− 1)n, (2)

where γn are the Stieltjes constants [14]. The fractional Stieltjes constants γα, with
α ∈ R>0, were introduced by Kreminski [10] and can be defined as the coefficients
of the Laurent expansion of the α-th Grünwald-Letnikov fractional derivative of
ζ(s)− 1, for all s 6= 1:

Dα
s [ζ(s)] = (−1)−α

Γ(α+ 1)

(s− 1)α+1
+

∞∑
n=0

(−1)nγα+n

n!
(s− 1)n. (3)
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In [6] we have proved the following generalization of a result of Williams and
Zhang [15]: Let bxc denote the integer part of x. Then, for α > 0 and m ∈ N, we
have

γα =

m∑
k=1

logα(k + 1)

k + 1
− logα+1(k + 1)

α+ 1
− logα(m+ 1)

2(m+ 1)
+

∞∫
m

P1(x)f ′α(x)dx, (4)

where P1(x) = x − bxc − 1
2 and fα(x) =

logα x+ 1

x+ 1
. Integrating (4) by parts m

times yields∫ ∞
m

P1(x)f ′α(x)dx =

v∑
j=1

[
Pj(x)f (j−1)

α (x)
]∞
x=m

+ (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx

= −
v∑
j=1

Pj(m)f (j−1)
α (m) + (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx, (5)

where for k ∈ N, Pk(x) = Bk(x−bxc)
k! is the kth periodic Bernoulli polynomial and

Bk is the kth Bernoulli number. These ideas can also be used to obtain an upper
bound for the fractional Stieltjes constants: For any integer n, with 1 ≤ n < α, we
have (see [7]):

|γα| ≤
(3 + (−1)n+1)Γ(α+ 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
. (6)

The expression (3) for the fractional dertivatives of the Riemann zeta function
will be the starting point of our proof of their zero-free regions. In order to establish
the non-vanishing result, bounds on Stieltjes constants will be needed, plus a careful
estimation of the behavior of the periodic Bernoulli polynomials Pk(x), defined in
(5). This is done in the next section.

4. Four Auxiliary Lemmas

Lemma 4.1. Let 0 < α ≤ 1 and fα(x) = logα(x+1)
x+1 . Then

∣∣∣∣∞∫
1

P3(x)f ′′′α (x)

∣∣∣∣ < 0.013.

Proof. Ostrowski [12] observed that, for odd integers n > 1, one always has:
|Pn(x)| < 2

(2π)n . Combining this with the triangle inequality (and the change of

variables for the integral), we are able to write:∣∣∣∣∣∣
∞∫

1

P3(x)f ′′′α (x)

∣∣∣∣∣∣ < 2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
∞∫

1

logα−i(x+ 1)

(x+ 1)4
dx (7)

<
2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
3α−i+1

∞∫
3 log(2)

xα−ie−xdx.

In what follows, we will estimate each of the four summands on the right side of
this inequality separately. We start with i = 0. Since xα ≤ x in the interval
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[3 log(2),∞), we can write

|s(4, 1)(α)0|
3α+1

∞∫
3 log(2)

xαe−xdx ≤ 6

3α+1

∞∫
3 log(2)

xe−xdx (8)

=
1

4

3 log(2) + 1

3α
. (9)

For i = 1, in the interval [3 log(2),∞) we have xα−1 ≤ 3α−1 logα−1(2), for all
α ≤ 1; thus

|s(4, 2)(α)1|
3α

∞∫
3 log(2)

xα−1e−xdx ≤ 11α

3α
3α−1 logα−1(2)

∞∫
3 log(2)

e−xdx (10)

≤ 11 logα−1(2)

24
. (11)

Now, for the summand corresponding to i = 2 we have

|s(4, 3)(α)2|
3α−1

∞∫
3 log(2)

xα−2e−xdx =
6|α(α− 1)|

3α−1

∞∫
3 log(2)

xα−2e−xdx (12)

≤ 3

2

1

3α−1
3α−2 logα−2(2)

∞∫
3 log(2)

e−xdx

=
logα−2(2)

16
, (13)

since for 0 < α ≤ 1 we have |α(α − 1)| ≤ 1
4 and for x ∈ [3 log(2),∞): xα−2 ≤

3α−2 logα−2(2).
Finally, for i = 3 we can write

|s(4, 4)(α)3|
3α−2

∞∫
3 log(2)

xα−3e−xdx =
|α(α− 1)(α− 2)|

3α−2

∞∫
3 log(2)

xα−3e−xdx (14)

≤ 2
√

3

9

3α−3 logα−3(2)

3α−2

∞∫
3 log(2)

e−xdx

=

√
3 logα−3(2)

108
, (15)

since |α(α − 1)(α − 2)| ≤ 2
9

√
3 for α ∈ (0, 1] and xα−3 ≤ 3α−3 logα−3(2) for x ∈

[3 log(2),∞).
Combining these four bounds, we conclude:∣∣∣∣∞∫

1

P3(x)f ′′′α (x)

∣∣∣∣ < 2
(2π)3

[
1
4

3 log(2)+1
3α + 11 logα−1(2)

24 + logα−2(2)
16 +

√
3 logα−3(2)

108

]
< 0.013,

(16)

as desired. �
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Lemma 4.2. If 0 < α < 1, then |γα| < 0.436.

Proof. First, note that letting m = 1 in (4), we get

γα =
logα(2)

4
− logα+1(2)

α+ 1
+

∞∫
1

P1(x)f ′α(x)dx.

Second, observe that from (5) we also know

γα =
logα(2)

4
− logα+1(2)

α+ 1
− P2(1)f ′α(1) + P3(1)f ′′α(1) +

∞∫
1

P3(x)f ′′′α (x)dx.

Therefore, recalling that P2(1) = B2

2! = 1
12 and P3(1) = B3

3! = 0 and also noting

that f ′α(x) = α logα−1(2)
4 − logα(2)

4 , we obtain

γα =
logα(2)

4
− logα+1(2)

α+ 1
− 1

12

[
α

logα−1(2)

4
− logα(2)

4

]
+

∞∫
1

P3(x)f ′′′α (x)dx

=
13 logα(2)

48
− logα+1(2)

α+ 1
− α logα−1(2)

48
+

∞∫
1

P3(x)f ′′′α (x)dx.

Here, the maxima of the sum of the first three terms is attained when α = 0.
Combining this with the bound on the integral in Lemma 4.1, we get the wanted
bound: |γα| ≤ 0.436. �

Lemma 4.3. For all α > 0, we have

(i)
|γα|

Γ(α+ 1)
< 0.348 and (ii)

|γα+1|
Γ(α+ 1)

≤ 0.323.

Proof. Combining the bound for |γα| proved in Lemma 4.2 and the fact that

Γ(α+ 1) ≥ Γ(3/2) =
√

2π
2 , for 0 < α ≤ 1, we deduce that |γα|

Γ(α+1) <
0.436√

2π
2

< 0.348 in

the region 0 < α ≤ 1.
Now, in the complementary region α > 1, one can apply the bound (6), and for

all natural numbers n that satisfy 1 ≤ n < α one can compute

|γα|
Γ(α+ 1)

≤ 4

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!

≤ 4
√

2

(2π)n+1(n+ 1)α+1

(
4(n+ 1)

e

)n+1

=
4
√

2

(2π)n+1(n+ 1)α−n

(
4

e

)n+1

≤ 4
√

2

(
2

πe

)n+1

≤ 4
√

2

(
2

πe

)2

≤ 0.311,

which is an even sharper bound. Together, these two bounds prove (i) for all α > 0.
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Similarly, to justify (ii), note that since α + 1 > 1, the equation (6) with n = 1
yields

|γα+1|
Γ(α+ 1)

≤ 4Γ(α+ 2)4!

(2π)22α+22!Γ(α+ 1)
=

12(α+ 1)

(2π)22α
. (17)

As is easy to check, the maximum of g(α) = α+1
2α is attained at α = 1

log(2) − 1, and

this immediately yields the result (ii). �

We need one more technical lemma before we can prove our main theorem.

Lemma 4.4. For all α > 0 and n ∈ N ∪ {0},
Γ(α+ n+ 3)

Γ(α+ 1)(n+ 2)!2n(n+ 3)α
<

(α1 + 2)(α1 + 1)

3α12
< 1.036,

where

α1 =

√
5 log2(3) + 4

2 log(3)
+

1

log(3)
− 3

2
.

Proof. We proceed by induction on n. For n = 0 we have

Γ(α+ 3)

Γ(α+ 1)2!3α
=
α2 + 3α+ 2

3α2
.

The maximum of g(α) = α2+3α+2
3α2 = (α2+3α+2)e−α log(3)

2 is at α1 =

√
5 log2(3)+4

2 log(3) +
1

log(3) −
3
2 , with g(α1) = 1.0356. Now, let us assume that, for all integers j with

1 ≤ j ≤ n, we have

Γ(α+ j + 3)

Γ(α+ 1)(j + 2)!2j(j + 3)α
≤ (α1 + 2)(α1 + 1)

3α12
.

We will show the assertion is true for j = n+ 1. Applying the induction hypothesis
gives

Γ(α+ j + 3)

Γ(α+ 1)(j + 2)!2j(j + 3)α
=

Γ(α+ n+ 4)

Γ(α+ 1)(n+ 3)!2n+1(n+ 4)α

=
1

2

(
n+ 3

n+ 4

)α
α+ n+ 3

n+ 3

Γ(α+ n+ 3)

Γ(α+ 1)(n+ 2)!2n(n+ 3)α

≤ 1

2

(
n+ 3

n+ 4

)α
α+ n+ 3

n+ 3

(α1 + 2)(α1 + 1)

3α12
. (18)

Hence, all we need to show is that 1
2

(
n+3
n+4

)α
α+n+3
n+3 ≤ 1. However, notice that

the function g(α) = 1
2

(
n+3
n+4

)α
α+n+3
n+3 is positive for all α > 0; and taking the

logarithmic derivative we get

g′(α)

g(α)
= log

(
n+ 3

n+ 4

)
+

1

α+ n+ 3
≤ − 1

n+ 4
− 1

2

(
1

n+ 4

)2

+
1

α+ n+ 3
,

since (using Taylor expansion) we know that log(1 − x) ≤ −x − 1
2x

2, in the range

0 ≤ x < 1. Moreover, 1
α+n+3 ≤

1
n+4 , and since g(α) > 0, we can conclude that

g′(α) < 0. Therefore g(α) is decreasing in the interval [1,∞), with the maximum
at g(1) = 1

2 .
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On the other hand, if 0 < α < 1, the maximum of
(
n+3
n+4

)α
is attained at α = 0.

And since α+n+3
n+3 < n+4

n+3 = 1 + 1
n+3 ≤

4
3 , we have g(α) < 1

2
4
3 = 2

3 , for α ∈ (0, 1).

Combining these two results in (18), we deduce the bound for j = n + 1. This
completes the inductive proof. �

5. A Zero-Free Region

Now we are ready to prove our main result.

Theorem 5.1. For all α ≥ 0,

Dα
s [ζ(s)] 6= 0,

in the region |s− 1| < 1.

For a discussion of the special case α = 0, see Berndt [1].

Proof. We will deduce the result by showing (s−1)α+1

Γ(α+1) D
α
s [ζ(s)] 6= 0, in the region

|s− 1| < 1. Employing the expression (3), we start by writing:∣∣∣∣ (s− 1)α+1

Γ(α+ 1)
ζ(α)(s)

∣∣∣∣ =

∣∣∣∣∣1 +

∞∑
n=0

(−1)nγα+n(s− 1)α+n+1

Γ(α+ 1)n!

∣∣∣∣∣
≥ 1− |γα|

Γ(α+ 1)
− |γα+1|

Γ(α+ 1)
−
∞∑
n=2

|γα+n|
Γ(α+ 1)n!

,

and then, applying the bound from Lemma 4.3, we obtain:∣∣∣∣ (s− 1)α+1

Γ(α+ 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323−
∞∑
n=2

|γα+n|
Γ(α+ 1)n!

. (19)

Now it suffices to focus on finding an upper bound for
∞∑
n=2

|γα+n|
Γ(α+1)n! . Using (6) gives:

|γα+n|
Γ(α+ 1)n!

≤ 4Γ(α+ n+ 1)(2(n+ 1))!

(2π)n+1(n+ 1)α+n+1(n+ 1)α+n+1(n+ 1)!n!Γ(α+ 1)
,

while from Stirling’s formula it follows that (2n)!
n! ≤

√
2
(

4n
e

)n
for all integers n ≥ 1.

Therefore
∞∑
n=2

|γα+n|
Γ(α+ 1)n!

≤
∞∑
n=2

4Γ(α+ n+ 1)

(2π)n+1(n+ 1)α+n+1n!Γ(α+ 1)

√
2

(
4(n+ 1)

e

)n+1

=

∞∑
n=2

4
√

2Γ(α+ n+ 1)

(2π)n+1(n+ 1)αn!Γ(α+ 1)

(
4

e

)n+1

= 4
√

2

(
2

πe

)3 ∞∑
n=0

Γ(α+ n+ 3)

Γ(α+ 1)(n+ 2)!2n(n+ 3)α

(
4

πe

)n
≤ 4
√

2

(
2

πe

)3 ∞∑
n=0

(α1 + 2)(α1 + 1)

3α12

(
4

πe

)n
< 0.142,
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by Lemma 4.4. Inserting this upper bound back into the expression (19), we obtain∣∣∣∣ (s− 1)α+1

Γ(α+ 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323− 0.142 > 0,

which implies that Dα
s [ζ(s)] 6= 0, for all α > 0, in the region |s− 1| < 1. �
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