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Abstract. We prove that if a continuous function f in an open subset U ⊂ C is

analytic in U \X, where X ⊂ U is a Polish space having characteristic system
(k, n) ∈ N0 ×N, then the complex line integral of f along the boundary of any

triangle in U vanishes.

1. Introduction

In 1814 Augustin Louis Cauchy presented to the French Academy of Sciences
the document Mémoire sur les integrales définies, containing his contributions to
the development of the theory of complex functions [2]. In his memoirs, Cauchy
proved that if a complex function f is analytic within a closed curve γ and also on
the curve itself, then the complex line integral of f around that curve is equal to
zero. In [3, 4], Edouard Goursat proved that∫

γ

f(z)dz = 0,

that is the Cauchy Integral Theorem, this without assuming the continuity of the
derivative f ′(z) on the closed region U bounded by the curve of integration γ. For
a short summary of these works, refer to [1, p. 427–429]. In 1900 Eliakim Hastings
Moore wrote and published his proof of the Cauchy Integral Theorem [7]. One year
later, Alfred Pringsheim also wrote his version of the proof [9]. For more details
about of the historical development of its proof see [10].

Motivated by the Cauchy Integral Theorem, one might ask: What are the weakest
set of the assumptions for what the complex line integral of an analytic function
along a closed curve vanishes?

In the classical case, when U is an open subset of C, △(z1, z2, z3) ⊂ U is a closed
triangle with vertices z1, z2 and z3 (throughout this manuscript, it is assumed that
the points z1, z2 and z3 are not collinear), and if f is an analytic function in U ;
then the Cauchy Integral Theorem implies that∫

[z1,z2,z3,z1]

f(z)dz = 0,
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where [z1, z2, z3, z1] is the polygonal closed curve parameterizing ∂△(z1, z2, z3) the
boundary of △(z1, z2, z3). It is possible to replace the assumption on f to be
analytic in the whole U by a weaker one. More precisely,

Lemma 1.1 ([8, Chapter V, Lemma 1.2, p. 143]). If a function f is continuous
in an open subset U ⊂ C and analytic in U \ {w} for some point w of U , then∫

[z1,z2,z3,z1]

f(z)dz = 0,

for every triangle △(z1, z2, z3) ⊂ U .

We provide a more general form to the previous lemma when one removes a
Polish space. In this manuscript, we shall consider the sets N = {1, 2, . . .} and
N0 = N ∪ {0}. A Polish space is a separable completely metrizable topological
space. Given a Polish space X, the Cantor-Bendixson derivative of X is the set

X ′ := {x ∈ X : x is a limit point of X}.

For every k ∈ N0, the k-th Cantor-Bendixson derivative of X is defined as Xk :=
(Xk−1)′, where X0 = X (for details see [5, p. 34]). A countable Polish space
is said to have characteristic system (k, n) ∈ N0 × N if Xk ̸= ∅, Xk+1 = ∅ and
the cardinality of Xk is n. Any countable Polish space with characteristic system
(k, n) ∈ N0×N is homeomorphic to the ordinal number ωk+n, where ω is the least
infinite ordinal. In particular, every two countable Polish spaces with characteristic
system (k, n) ∈ N0 × N are homeomorphic. For further details, see [6].

Our main contribution states that the complex line integral also vanishes, when
f is analytic in U , removing a Polish space X having characteristic system (k, n) ∈
N0 × N. More precisely,

Theorem 1.2. If a function f is continuous in an open subset U ⊂ C and analytic
in U \ X, where X ⊂ U is a Polish space having characteristic system (k, n) ∈
N0 × N, then ∫

[z1,z2,z3,z1]

f(z)dz = 0, (1.1)

for every triangle △(z1, z2, z3) ⊂ U . Hence f is analytic on U .

We shall prove Theorem 1.2 by induction to k ∈ N0.

2. Proof of Theorem 1.2

The following lemma is required for the proof of the theorem.

Lemma 2.1. If a function f is continuous in an open subset U ⊂ C and analytic
in U \ X, where X ⊂ U is a Polish space having characteristic system (0, n) for
some n ∈ N, then ∫

[z1,z2,z3,z1]

f(z)dz = 0,

for every triangle △(z1, z2, z3) ⊂ U .
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Proof of Lemma 2.1. We assume f is a continuous map in the open subset U ⊂ C
and analytic in U \X, where X ⊂ U is a finite Polish space. We shall proceed by
induction on the cardinality of X.

The Polish space X has only one point. In other words, X has characteristic
system (0, 1). From Lemma 1.1 we obtain that the complex line integral of f along
the boundary of any triangle in U vanishes.

The Polish space X has cardinality n. It means, X has characteristic system
(0, n). Let w1, . . . , wn be the points of X. We shall prove that∫

[z1,z2,z3,z1]

f(z)dz = 0,

for any △(z1, z2, z3) ⊂ U . The induction hypothesis implies that the above com-
plex line integral vanishes, when at least one of the points of X lies outside of
△(z1, z2, z3). We now consider the case when all points of X are in △(z1, z2, z3).
Without loss of generality, we take the points w1 and w2, and draw the straight
line ℓ passing through them. Since the points z1, z2 and z3 are not collinear, we can
suppose without loss of generality that z1 is not in ℓ. Thus, we draw the straight
line ℓ′ passing through z1 and the middle point v of the straight line segment with
endpoints w1 and w2, see Figure 1.

w2 •

w1•

•
z1

•
v

•
w

ℓ

ℓ′

C C1

C2

Figure 1. Straight lines ℓ and ℓ′.

Remark 2.2. The straight line ℓ′ satisfies the following properties:
(a) It decomposes the complex plane C into two open connected subsets C1 and

C2, such that the vertex z2 belongs to one of these open connected, and the
vertex z3 belongs to the other open connected.

(b) If we choose a point vi ∈ Ci, with i ∈ {1, 2}, then the straight line segment
having endpoints v1 and v2, intersects the straight line ℓ′ in a unique point.
In particular, the points w1 and w2 do not belong to ℓ′.

The items (a) and (b) described above imply that ℓ′ must intersect the straight
line segment with endpoints z2 and z3, the unique common point is denoted by w.
We then decompose △(z1, z2, z3) into the triangles △(z1, z2, w) and △(z1, w, z3),
which satisfy the following properties:
(1) They have the straight line segment L with endpoints z1 and w in common.

Moreover, L ⊂ ℓ′.
(2) Each of the triangles △(z1, z2, w) and △(z1, w, z3) has less than n points of X.
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Therefore, we have the following equality between complex line integral∫
[z1,z2,z3,z1]

f(z)dz =

∫
[z1,z2,w,z1]

f(z)dz +

∫
[z1,w,z3,z1]

f(z)dz. (2.1)

By the property (2) and the induction hypothesis, one obtains∫
[z1,z2,w,z1]

f(z)dz =

∫
[z1,w,z3,z1]

f(z)dz = 0. (2.2)

Now, substituting (2.2) into (2.1), we conclude∫
[z1,z2,z3,z1]

f(z)dz = 0.

□

We now provide the proof of our Theorem 1.2. Let f be a continuous map in
the open subset U ⊂ C and analytic in U \X, such that X ⊂ U is a Polish space
having characteristic system (k, n) ∈ N0 ×N. We take a triangle △(z1, z2, z3) ⊂ U .
We shall proceed by induction on the k-th Cantor-Bendixson derivative Xk of X.

The base case k = 0 is Lemma 2.1.
Fix k ∈ N0 and suppose that the complex line integral in (1.1) vanishes, for any

X ⊂ U a Polish space such that Xk ̸= ∅ and Xk+1 = ∅. We now consider X ⊂ U a
Polish space such that Xk+1 ̸= ∅ and Xk+2 = ∅. In this instance, we will proceed
by induction on the cardinality of the set Xk+1.

The set Xk+1 has only one point. In other words, X has characteristic system
(k + 1, 1). Let w be the unique point of Xk+1. We must consider the following
cases.

Case 1. The point w lies outside of △(z1, z2, z3). There exists an open subset
V ⊂ U , such that △(z1, z2, z3) ⊂ V and the closure set V does not contain w. It

implies that the intersection X̃ := V ∩X is a Polish space such that X̃k ̸= ∅ and
X̃k+1 = ∅. Without loss of generality, we may assume that X̃ is a subset of U .
Applying the induction hypothesis on the open set U for the Polish space X̃, we
obtain the expected value for the complex line integral.

Case 2. The point w is a vertex of △(z1, z2, z3). Without loss of generality, we
may assume that w = z1. We now take the points w2(t) = (1 − t)z1 + tz2 and
w3(t) = (1 − t)z1 + tz3 for each t ∈ (0, 1) (see Figure 2-(a).) In this stage, we
obtain ∫

[z1,z2,z3,z1]

f(z)dz =

∫
[z1,w2(t),w3(t),z1]

f(z)dz +

∫
[w3(t),w2(t),z3,w3(t)]

f(z)dz

+

∫
[w2(t),z2,z3,w2(t)]

f(z)dz.



ON THE CAUCHY INTEGRAL THEOREM AND POLISH SPACES 49

We note that the last two complex line integrals vanish by the previous Case 1. We
now take the modulus of the complex line integral, and consider the upper bound∣∣∣∣∣∣∣

∫
[z1,z2,z3,z1]

f(z)dz

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

∫
[z1,w2(t),w3(t),z1]

f(z)dz

∣∣∣∣∣∣∣ ≤ mt(|z1−z2|+|z2−z3|+|z1−z3|),

where m = max{|f(w)| : w ∈ △(z1, z2, z3)}. As the above inequality is for each
t ∈ (0, 1), we conclude ∫

[z1,z2,z3,z1]

f(z)dz = 0.

Case 3. The point w is on an edge of △(z1, z2, z3). Without loss of generality, we
may assume that w is on the edge having endpoints z1 and z2. We consider the
triangles △(w, z2, z3) and △(w, z3, z1) as shown in Figure 2-(b).

w = z1
w2(t)
•

w3(t)•

z3

z2
w
•z1

z3

z2

w•
z1

z3

z2

(a) w is a vertex. (b) w is on an edge. (c) w is in the interior.

Figure 2. Triangle △(z1, z2, z3).

We then obtain∫
[z1,z2,z3,z1]

f(z)dz =

∫
[z1,w,z3,z1]

f(z)dz +

∫
[w,z2,z3,w]

f(z)dz.

Both complex line integrals of the right side vanish because they are of the form
described in the previous Case 2. This implies that∫

[z1,z2,z3,z1]

f(z)dz = 0.

Case 4. The point w is in the interior set of △(z1, z2, z3). We consider the straight
line segment such that one of its endpoints is z1 and the other endpoints are on the
opposite edge of this vertex. We note that this straight line segment passes through
the point w as shown in Figure 2-(c). We then decompose △(z1, z2, z3) into two
triangles, which are in the previous Case 3. Thus we conclude that the value of the
complex line integral described in (1.1) vanishes.

For a fixed n ∈ N with n ≥ 2 and for all 0 < l < n, suppose that the complex
line integral in (1.1) vanishes, for any X ⊂ U a Polish space having characteristic
system (k + 1, l).

The set Xk+1 has cardinality n. It means, X has characteristic system (k+1, n).
We must consider the following cases.
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Case 1. Suppose that at least a point w of Xk+1 that lies outside of △(z1, z2, z3).
There exists an open subset V ⊂ U , such that △(z1, z2, z3) ⊂ V and the closure

set V does not contain the point w. This implies that the intersection X̃ := V ∩X
is a Polish space having characteristic system (p, q) ∈ N0 × N such that p ≤ k + 1

and q < n. Without loss of generality, we may assume that X̃ is a subset of U .
Applying the induction hypothesis on the open set U for the Polish space X̃, we
obtain the expected value for the complex line integral.

Case 2. Otherwise, we now suppose that Xk+1 = {w1, . . . , wn} ⊂ △(z1, z2, z3). We
then take the straight line ℓ passing through two different points of Xk+1. We may
assume that these points are w1 and w2. One of the vertices of △(z1, z2, z3) is not
on ℓ. Without loss of generality, we may assume that such vertex is z1. We draw
the straight line ℓ′ passing through z1 and the middle point v of the straight line
segment with endpoints w1 and w2 as shown in Figure 3.

w1•

w2•

•
z1

•
v

•
w

ℓ

ℓ′

C C1

C2

Figure 3. Connected component C1 and C2.

We note that ℓ′ satisfies the properties described in Remark 2.2. According to
the paragraphs (a) and (b) in this remark, we have that ℓ′ must intersect the side
of △(z1, z2, z3) with endpoints z2 and z3, the unique common point is denoted by
w. In this stage, we obtain∫

[z1,z2,z3,z1]

f(z)dz =

∫
[z1,z2,w,z1]

f(z)dz +

∫
[z1,w,z3,z1]

f(z)dz.

Both complex line integrals of the right side vanish because they are of the form
described in the previous Case 1. This implies that∫

[z1,z2,z3,z1]

f(z)dz = 0.

□
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