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Abstract. We use the index formula for fibered boundaries to compute the
L2-index of the Dirac operator twisted by an Anti-Self-Dual instanton defined

on X × S1, where X is a complete asymptotically conical three-manifold. As

a particular case of this calculation, we get another derivation of the index
formula for the Dirac operator twisted by a caloron on R3 × S1.

Introduction

Given a complete orientable, Riemannian four-manifoldM and a complex vector
bundle E → M, a unitary connection A on E is called instanton if its curvature
FA is square integrable and Anti-Self-Dual with respect to the chosen orientation.
Understanding the moduli space of instantons on M is an important problem in
gauge theory. One powerful technique to study this moduli space is called Nahm
Transform. This is a map, defined using index theory of Dirac operators, that
relates instantons on M to solutions of a system of algebraic equations defined on
a different space M̂. A recent example of Nahm transform is the series of papers
[4], [5] and [6], where it is proved that the moduli space of instantons on Multi-
Taub-NUT spaces is isometric to the moduli space of Bow Representations [3].

One important intermediate step in the Nahm transform is the computation of
the index of the Dirac operator twisted by the instanton. This index has been
computed, depending on the base space M, by several different methods. In this
paper we illustrate how the index formula for twisted Dirac operators on manifolds
with fibered boundaries [8] can be used on certain open four-manifolds which are
circle fibrations near infinity.

More concretely, we consider instantons on X × S1, where X is an almost coni-
cal three-manifold (see definition 4). These spaces are generalizations of R3 × S1.
Instantons over R3 × S1 are called calorons in the physics literature. The original
computation of the index for calorons was given in [9]. Here, the authors conjec-
tured a relation between this index and the adiabatic limit of the η-invariant of the
Dirac operator on the boundary1. The index formula of [8] proves that, since the
adiabatic limit of η is related to the η̂-form of [2], their conjectured relation was
correct.

The motivation to study calorons on X×S1 is that, at least for SU(2)-calorons,
there are explicit nontrivial examples. These examples come from [10], where
monopoles on X are constructed. The asymptotic conditions that we impose on
calorons are the ones that most known examples satisfy.

2010 Mathematics Subject Classification 58J20, 53C07.
Key words and phrases: Index theory, Eta form, Caloron, monopole.
1This relation appears in a preprint version of [9] but not in the published version.
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Our main result (theorem 11) is

Theorem. Let A be a generic unitary AC-caloron connection with curvature F (see
definition 7) then the index of the twisted Dirac operator D+

A is given by

IndL2(D+) =

∫
X×S1

(Rank(E)

192π2
TrRg ∧Rg−

1

8π2
TrF∧F

)
−

n∑
j=1

(1/2−{λj})mj . (1)

This paper starts with a review of the material required to state the index for-
mula of [8]. In section 2, we define the instantons on X × S1, called generic
AC-calorons, that we consider and calculate the index of the corresponding twisted
Dirac operator.

1. Index Theory on Spaces with Fibered Boundaries

We start reviewing the index theorem in [8]. This statement writes the index
of a twisted Dirac operator as a sum of two terms. The first one, called the bulk
term, is the classical Atiyah-Singer integrand and the other one is an integral over
the boundary at infinity of an expression involving the η̂-form defined by Bismut-
Cheeger [2].

1.1. The Bismut-Cheeger η̂-form. Let π : M → B be a locally trivial fibration
of closed spin manifolds with fibers isomorphic to a manifold Z. We assume there
is a connection on the fibration that induces a splitting TM = THM ⊕ TM/B
into horizontal and vertical tangent vectors, such that π∗TB can be identified with
THM . Let gM = π∗gB ⊕ gM/B be a Riemannian submersion metric, where gB is
a metric on TB pulled back to THM , and gM/B denotes a metric on the vertical
fibers. We use {fα}, {fα} to denote a frame on TB and T ∗B respectively. Also,
{ej}, {ej} denote frames on TM/B and T ∗M/B respectively.

Let E → M be a complex vector bundle with unitary connection ∇E and cur-
vature FE . The bundle E induces an infinite rank bundle π∗E → B with fibers
given by Γ(Mx, Ex), where Mx, Ex denote the fibers over x ∈ B. The connection
∇E induces a connection on π∗E denoted by ∇π∗E [1, Chap 10].

Let (SM/B ,∇M/B) be the vertical spinor bundle together with its induced spin
connection coming from the metric gM/B . We denote by cj the Clifford product

c(ej) in SM/B . We use ∇SM/B⊗E = ∇M/B ⊗ 1 + 1⊗∇E and the Clifford module
structure on SM/B⊗E, with respect to the Clifford algebra of TM/B, to construct

a family of vertical Dirac operators denoted by DM/B = cM/B ◦ ∇SM/B⊗E . Here,
c = cM/B denotes the Clifford product by elements of T ∗M/B.

Definition 1. [1, prop. 10.15] Let u be a positive parameter, the Bismut supercon-
nection, acting on Γ(M,SM/B ⊗ E) = Γ(B, π∗(SM/B ⊗ E)), is defined by

Au = ∇π∗(SM/B⊗E) +
√
uDM/B − c(T )

4
√
u
, (2)

where T is the torsion form of the fibration M → B.
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Definition 2. The Bismut-Cheeger Eta form of the vertical family of Dirac oper-
ators DM/B is defined according to the dimension of the base manifold B.

• If dim(B) is even then

η̂(DM/B) =
1√
π

∫ ∞
0

Trev
(
(DM/B +

c(T )

4u
)e−A

2
u
) du

2
√
u
, (3)

where Trev denotes the operator trace on the even form part of η̂.
• If dim(B) is odd then

η̂(DM/B) =
1√
π

∫ ∞
0

Trs
(
(DM/B +

c(T )

4u
)e−A

2
u
) du

2
√
u
, (4)

where Trs denotes the supertrace.

1.2. The index formula. Consider a Riemannian manifold (M, gM) such that
its boundary M = ∂M is the total space of a fibration π : M → B like the one
considered in section 1.1.

We assume that on a tubular neighborhood of the boundary (a,∞)y ×M , the
metric takes the form

gM = dy2 + π∗gB + e−2ygM/B . (5)

In the terminology of [8], this is an exact d-metric with boundary defining func-
tion x = e−y.

Let

D =

(
0 D−
D+ 0

)
(6)

be a Dirac type operator (for example a twisted Dirac operator) on S ⊗ E → M
(here S = S+⊕S− denotes the spin bundle), such that its boundary family DM/B ,
acting on SM/B ⊗ (E|M ) = SM/B ⊗ E, satisfies the technical assumption

Spec(D
M/B
b ) ∩ (−δ, δ) = ∅, (7)

for some δ > 0 and for every b ∈ B.
We can now state the index theorem that we will use in this work.

Theorem 3. [8] If DM/B satisfies assumption (7) then

IndL2(D+) =

∫
M
Â(M, gM) ∧ Ch(E)− 1

2πi

∫
∂M

Â(B, gB) ∧ η̂(DM/B), (8)

where Â denotes the A-hat genus of M.The η̂-form is computed with respect to the
submersion metric π∗gB + gM/B.

The 2πi factor does not appear explicitly in the original formula due to the use
of different normalizations. See [7].

1.3. An important identity. Let z be an auxiliary variable such that z2 = 0. In
this paper, we will only encounter manifolds whose fibered boundaries are trivial
fibrations M = B × Z → B, where Z is a closed manifold with vanishing scalar
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curvature. The following identity will play a crucial role in the calculations of
section 2.

A2
u − z

√
uDM/B = −u

∑
j

(
∇ej +

zcj

2
√
u

)2
+
u

2
cicjF

E(ei, ej)

+
√
ucjFE(fα, ej)f

α +
1

2
FE(fα, fβ)fα ∧ fβ . (9)

Notice that the last three terms of the first line are forms on B. This is a particular
case of [2, (4.68)-(4.70)].

2. Almost Conical Calorons

Here we review results of [10] that prove existence of solutions to Bogomolny
equations over almost conical three manifolds. These existence results imply that
the corresponding space of calorons is nonempty.

2.1. Monopoles. We begin reviewing some properties of the metrics on almost
conical three-manifolds.

Definition 4. [10] A complete, orientable three-manifold X is said to be almost-
conical or AC with one end if it admits a metric gAC such that there is a compact
set K in X for which X \K is isometric to a cylinder (r0,∞) × Σ. Here, Σ is a
closed Riemann surface and r0 > 0. The metric on the cylinder is g = dr2 + r2gΣ,
where gΣ is a metric on Σ.

We only consider one cylindrical end to simplify notation. The case of multiple
cylindrical ends can be analyzed similarly. The flat metric on R3 in polar coordi-
nates is an example of an AC-manifold with Σ = S2. Notice that AC-metrics have
cubic volume growth. From now on, (X, gAC) denotes an AC-three manifold with
one end.

Definition 5. [10] Let E → X be a unitary bundle over an AC-three manifold
X. A monopole on E is a pair (A,Φ) of a unitary connection on E and a section
Φ ∈ Γ(X,End(E)) such that FA = −?3dAΦ. This is called the Bogomolny equation.
Also, FA and dAΦ should be L2.

The following result establishes the existence of SU(2)−monopoles on X satis-
fying explicit asymptotic conditions.

Theorem 6. [10] There are SU(2)-monopoles (A,Φ) on X, such that

|Φ| = λ+
m

r
+O(r−2), (10)

where λ is a real number and m is an integer.

Actually, the results of [10] are much stronger and include a characterization
of the moduli space of SU(2)-monopoles. Here we only need this basic existence
statement.

Note: In this paper, whenever we say that a function satisfies f = O(r−2), it is
also assumed that the derivatives of f also satisfy this bound.
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2.2. Generic AC-calorons. Given a monopole (A,Φ) on X, we can construct
an ASD instanton on X × S1 by A = A + Φ dτ , where τ parametrizes S1 and is
2π-periodic. Instantons on X×S1 are called almost conical calorons (AC-calorons).
The theorem above also proves that the space of SU(2) AC-calorons is not empty.

In [9], the authors study more general U(n)-calorons on R3 × S1 imposing the
asymptotic conditions

Φ = −iDiag(λj +
mj

r
) +O(r−2), (11)

where λj ∈ R and mj ∈ Z. This implies that the bundle E decomposes, near
infinity, as a sum of line bundles with First Chern classes mj , over the sphere at
infinity Σ = S2

∞, pulled back to S2
∞ × S1. It is a consequence of the results in

[4], that generic calorons, as well as generic instantons over any ALF-space with
Riemannian curvature decaying faster than quadratically, have the asymptotic form
(11).

Here we study U(n)-instantons on X × S1 with similar asymptotics.

Definition 7. Given a complex bundle E → X × S1, a unitary connection A is a
generic AC-caloron if its curvature FA is ASD and square integrable. Furthermore,
we assume that there is a frame of E, defined outside a compact set K ⊂ X×S1, such
that A = A + Φ dτ +O(r−2), where (A,Φ) are τ−independent, satisfy Bogomolny
equation and Φ has the same asymptotics as (11). We assume that the λj are real
numbers, pairwise distinct and not integer valued.

This last restriction is called Maximal Symmetry Breaking. Notice that the
mj ∈ Z are now the Chern numbers of line bundles over a more general Riemann
surface Σ at infinity. We assume X × S1 is a spin manifold with a fixed spin
structure. The following lemmas prove several important properties of the twisted
Dirac operator DA.

We start by analyzing the decay rate of the Riemannian curvature tensor of the
metric.

Lemma 8. The curvature of the metric g = gAC + dτ2 = d2r + r2gΣ + d2τ , on
X × S1, decays quadratically.

Proof. Let {f2, f3} an orthonormal coframe on Σ with respect to gΣ. Notice that
df2 = βf2 ∧ f3 and df3 = γf2 ∧ f3, where β and γ are functions that only depend
on the coordinates on Σ.

Define an orthonormal coframe of X × S1 by θ1 = dr, θ2 = rf2, θ3 = rf3 and
θ4 = dτ.

It follows that df2 = r−2βθ2 ∧ θ3 = O(r−2) and df3 = r−2γθ2 ∧ θ3 = O(r−2) in
the metric gAC. Notice that β, γ = O(1) since they are independent of r.

Let θ be the vector of one-forms with components θj . From Cartan’s structural
equations dθ = −ω ∧ θ it follows that the matrix of one forms ω equals

ω =


0 −θ2/r −θ3/r 0

θ2/r 0 −βf2 − γf3 0
θ3/r βf2 + γf3 0 0

0 0 0 0

 .
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Every component of ω is O(r−1), hence products of components lie in O(r−2).
Also, the derivative of each component is in O(r−2). It follows that the curvature
dω + ω ∧ ω is O(r−2). �

An important consequence of this lemma is that the scalar curvature of gAC also
decays quadratically.

Now we establish the decay rate of the curvature of a generic AC-caloron.

Lemma 9. Let A = A+Φ dτ+O(r−2) be a generic AC-caloron defined on a bundle
E → X × S1 then its curvature F decays quadratically.

Proof. We have that

F = FA + dAΦ ∧ dτ +O(r−2). (12)

From (11) it follows that dAΦ = idiag(mj/r
2)+O(r−2) = O(r−2). The Bogomolny

equation FA = − ?3 dAΦ implies that FA = O(r−2). Since dτ = O(1), the result
follows. �

Using these decay rates, we can establish important properties of Dirac operators
twisted by generic AC-calorons.

Lemma 10. The twisted Dirac operator DA is Fredholm and the L2-solutions of
DAψ = 0 decay exponentially.

Proof. The lemma is a particular case of [4, Lemma 23, Prop. 24].
Denote by s the scalar curvature of gAC. The Lichnerowicz formula implies that

for h ∈ L2(S ⊗ E) one has

‖DAh‖2L2 = ‖∇Ah‖2L2 + 〈h, (s
4

+ c(F))h〉, (13)

where c(F) denotes Clifford product by the curvature F. The condition (11) and
the quadratic decay of s and F imply that for a compact set K large enough there
is α > 0 such that

‖∇Ah‖2L2 + 〈h, (s
4

+ c(F))h〉 > α2‖h‖2L2 ,

for every h with compact support such that supp(h) ⊂ Kc. This implies that DA

is Fredholm.
Let ψ ∈ L2(S ⊗ E) solve DAψ = 0. Consider a compactly supported function

ηn equal to ebr for r ≤ n. The constant b > 0 will be determined later. Again,
Lichnerowicz formula gives for some ε > 0 (this ε should be smaller than all the |λj |
from condition (11). Remember that the λj are not integer valued so they can’t
equal zero.)

0 = ‖DA(ηnψ)‖2L2 − ‖c(dηn)ψ‖2L2 ≥ ‖∇A(ηnψ)‖2L2 − b2‖ηnψ‖2L2 − C1‖r−1ηnψ‖2L2

≥ (ε2 − b2)‖ηnψ‖2L2 − C2‖r−1ηnψ‖2L2 .

We used (11) in the last inequality. Taking 0 < b < ε implies that ηnψ ∈ L2(S⊗E).
Dominated convergence gives ebrψ ∈ L2(S ⊗ E). The L∞ bound on ebrψ follows
from Moser iteration [4, Prop. 2]. �
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3. The Index Computation

This section contains the proof of the main result of this paper: an index formula
for Dirac operators on X × S1 twisted by generic AC-calorons.

Theorem 11. The index of D+
A is given by

IndL2(D+) =

∫
X×S1

(Rank(E)

192π2
TrRg∧Rg−

1

8π2
TrF∧F

)
−

n∑
j=1

(1/2−{λj})mj , (14)

where Rg is the curvature of the Riemannian metric g.

Proof. We start with a conformal change to gAC. Take a function u such that
e2u = r−2 for r large on the cylindrical end X × S1 \K, and e2u equal to 1 on K.
Changing variables r = ey, on the cylindrical end, the new metric g′ = e2ug has
the form

g′ = d2y + gΣ + e−2yd2τ. (15)

This is an exact d-metric in the terminology of [8]. The boundary fibration is
a trivial circle fibration Σ × S1 → Σ. The exponential decay of the solutions to
DAψ = 0 and the transformation formula for Dirac operators under conformal
changes of the metric [4, Prop. 30], imply that the index remains the same if we

use the new metric g′. Notice also that the fiberwise Dirac operators DS1

satisfy
condition (7) since the λj are not integers and they are also pairwise distinct.
Actually, setting c(dτ) = c(e) = −i we get

DS1

= ⊕nj=1(−i)(∂τ − iλj), (16)

which is invertible if λj /∈ Z for all j. Since the boundary fibration is trivial, there
is no torsion form T .

The η̂-form in this case is

η̂(DS1

) =
1√
π

∫ ∞
0

Trev
(
DS1

e−A
2
u
) du

2
√
u
, (17)

The bundle E decomposes at y =∞ as a direct sum of n line bundles, originally
defined over Σ and pulled back to Σ×S1, where the mj are the first Chern classes
of each bundle. This implies that the identity (9) becomes in this case

−u
(
∇∂τ −

zi

2
√
u

)2
+ FE(f2, f3)f2 ∧ f3 = A2

u − z
√
uDS1

. (18)

In what follows, we denote FE(f2, f3)f2 ∧ f3 by F .
Let Trz(a + bz) = Tr b, where a, b do not contain z, then exponentiating both

sides of (18) we get [2, (4.73)]

TrevDS1

e−A
2
u =

1√
u

Trz exp{u(∇∂τ −
zi

2
√
u

)2 − F}. (19)

Let Λ = Diag(λj) be the asymptotic matrix of A(∂τ ) over Σ∞ × S1. We expand in
Fourier series with respect to τ . Then the right hand side of (19) equals

1√
u

Trz
∑
k∈Z

exp{−u(k − Λ− z

2
√
u

)2 − F}. (20)
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This in turn equals

TrE
∑
k∈Z

e−F (k − Λ)e−u(k−Λ)2 . (21)

The Poisson summation formula transforms (21) into

−TrEe−F
∑
p≥1

2p(sin 2πpΛ)
π3/2

u3/2
e−

π2p2

u . (22)

Therefore,

η̂(DS1

) =
−1√
π

∫ ∞
0

TrEe−F
∑
p≥1

πp(sin 2πpΛ)e−
π2p2

u
du

u2

= −TrEe−F
∑
p≥1

sin 2πpΛ

πp

= −TrEe−F (1/2− {Λ}).

(23)

Here {Λ} denotes the diagonal matrix whose entries are the fractional parts of the
diagonal entries of Λ. For the last line above we used the Fourier series expansion
of Bernoulli polynomials.

The index formula gives

IndL2(D+) =

∫
X×S1

(Rank(E)

192π2
TrRg∧Rg−

1

8π2
TrF∧F

)
+

1

2πi

∫
Σ

TrE(1/2−{Λ})e−F .

(24)
Computing the last boundary integral we obtain

IndL2(D+) =

∫
X×S1

(Rank(E)

192π2
TrRg∧Rg−

1

8π2
TrF∧F

)
−

n∑
j=1

(1/2−{λj})mj . (25)

�

As a simple application of theorem 11, notice that for X = R3, the first summand
above vanishes and we recover, with equivalent notation, the index theorem of [9].
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