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Abstract. We provide elliptic extensions of elementary identities such as the
sum of the first n odd or even numbers, the geometric sum and the sum of

the first n cubes. Many such identities, and their q-analogues, are indefinite

sums, and can be obtained from telescoping. So we used telescoping in our
study to find elliptic extensions of these identities. In the course of our study,

we obtained an identity with many parameters, which appears to be new even

in the q-case. In addition, we recover some q-identities due to Warnaar.

1. Introduction

The geometric sum is a staple of high school algebra. It can be written as

n−1∑
k=0

qk =
1− qn

1− q
=: [n]q, (1.1)

where [n]q denotes the q-number of n. This notation is justified because the limit
as q → 1 is

n−1∑
k=0

1 = n.

More generally, we can define [z]q := (1− qz)/(1− q) for any complex z, where q is
a complex number with q ̸= 0, and observe that limq→1[z]q = z. Thus, we call [z]q
the q-analogue of z.

The objective of this paper is to extend several classical and elementary iden-
tities to the so-called elliptic numbers—which are even more general than the q-
numbers—defined in [25]. Rather surprisingly, these lead to new identities even in
the q-case.

To be able to define an elliptic number, we need some notation. The modified
Jacobi theta function of the complex number a with (fixed) nome p is defined
as

θ(a; p) :=

∞∏
j=0

(1− apj)(1− pj+1/a),

where a ̸= 0 and |p| < 1. When the nome p = 0, the modified theta function θ(a; p)
reduces to (1− a). We use the shorthand notation

θ(a1, a2, . . . , ar; p) := θ(a1; p) θ(a2; p) · · · θ(ar; p) .
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An elliptic analogue of a complex number z is defined by [25] as

[z]a,b;q,p :=
θ(qz, aqz, bq2, a/b; p)

θ(q, aq, bqz+1, aqz−1/b; p)
. (1.2a)

This has additional (complex) parameters a and b, in addition to the base q and
nome p. Note that [0]a,b;q,p = 0 and [1]a,b;q,p = 1. Let the elliptic weight be defined
by

Wa,b;q,p(k) :=
θ(aq2k+1, bq, bq2, aq−1/b, a/b; p)

θ(aq, bqk+1, bqk+2, aqk−1/b, aqk/b; p)
qk, (1.2b)

for any k. By the Weierstraß addition formula for theta functions (see (1.6b), below)
we have

[x+ y]a,b;q,p = [x]a,b;q,p +Wa,b;q,p(x)[y]aq2x,bqx;q,p. (1.2c)

Note that if we set p = 0 and subsequently take a = 0 and then b = 0, the elliptic
weight in (1.2b) reduces to qk. In this case (1.2c) reduces to the recurrence relation

[x+ y]q = [x]q + qx[y]q.

This, along with the initial conditions [0]q = 0 and [1]q = 1, is used to define the
q-number for integers. Thus, the elliptic number in (1.2a) is indeed an extension of
the q-number [z]q for any complex z.

The analogue of the geometric sum (1.1)—obtained by iterating (1.2c)—is as
follows. (Here n is assumed to be a non-negative integer.)

1 +Wa,b;q,p(1) +Wa,b;q,p(2) + · · ·+Wa,b;q,p(n− 1) = [n]a,b;q,p. (1.3)

The present work is in the context of elliptic hypergeometric series. Among
the first results in this area were by Frenkel and Turaev [10]. Subsequently, War-
naar [33] obtained many results, and proposed several conjectures. Further sum-
mation and transformation formulas appear in [7, 8, 13, 15, 17, 26, 32, 34, 36].
In addition, there are results for multiple series over root systems; see [18]. Gasper
and Rahman treat elliptic hypergeometric series identities in Chapter 11 of the
second edition of [12].

By contrast, the results in this paper are elliptic extensions of more elementary
identities. We study identities which appear often in enumeration, such as the
geometric sum, the sum of the first n natural numbers, and the sum of the first odd
numbers, or squares, or cubes. Many results of this nature (even in the q = 1 case)
are examples of indefinite sums, and can be proved by a telescoping method going
back to Euler (see Bhatnagar [4]). This motivates the study of elliptic extensions
of these identities using this technique. In doing so, we naturally came across the
following identity, which is somewhat esoteric, but appears to be new even in the
q-case.

At this point, we would like to emphasize that the parameters in our identi-
ties should be chosen to avoid not-removable singularities and poles, so that the
identities make sense.
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Theorem 1.1. For any non-negative integer n and complex numbers c, d, g and
h, we have the following identity:

n∑
k=0

([
2(gk + c)(hk + d)

]
a,b;q,p

[
2ghk + ch+ dg

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p[

2cd
]
a,b;q,p

[
ch+ dg

]
aq2(c−g)d,bq(c−g)d;q,p

×
k−1∏
j=0

[
(gj + g + c)(hj + d)

]
aq2(gj−g+c)(hj+d),bq(gj−g+c)(hj+d);q,p[

(gj + g + c)(hj + d)
]
aq2(gj+g+c)(hj+2h+d),bq(gj+g+c)(hj+2h+d);q,p

×
k−1∏
j=0

Waq2(gj+c)(hj+h+d),bq(gj+c)(hj+h+d);q,p

(
2ghj + 2gh+ ch+ dg

)−1

)

=

[
(gn+ c)(hn+ h+ d)

]
a,b;q,p

[
(g + c)d

]
aq2(c−g)d,bq(c−g)d;q,p[

2cd
]
a,b;q,p

[
ch+ dg

]
aq2(c−g)d,bq(c−g)d;q,p

×
n∏

j=1

[
(gj + g + c)(hj + d)

]
aq2(gj−g+c)(hj+d),bq(gj−g+c)(hj+d);q,p[

(gj + c)(hj − h+ d)
]
aq2(gj+c)(hj+h+d),bq(gj+c)(hj+h+d);q,p

×
n∏

j=1

Waq2(gj−g+c)(hj+d),bq(gj−g+c)(hj+d);q,p

(
2ghj + ch+ dg

)−1

−

[
(c− g)d

]
a,b;q,p

[
c(d− h)

]
aq2c(h+d),bqc(h+d);q,p[

2cd
]
a,b;q,p

[
ch+ dg

]
aq2(c−g)d,bq(c−g)d;q,p

Waq2(c−g)d,bq(c−g)d;q,p

(
ch+ dg

)
.

(1.4)

The “hypergeometric version” of (1.4) is given by

n∑
k=0

(gk + c)(hk + d)(2ghk + ch+ dg)

cd(ch+ dg)

=
(gn+ c)(hn+ h+ d)(gn+ g + c)(hn+ d)

2cd(ch+ dg)
− (d− h)(c− g)

2(ch+ dg)
.

Note that this extends the well-known formula for the sum of the first n cubes.
Multiply both sides by cd(ch + dg)/2 and then take c = d = 0, and h = g = 1 to
obtain

n∑
k=0

k3 =

(
n(n+ 1)

2

)2

.

This is indeed an elementary identity, but its extension given in (1.4) involves some
rather unusual factors. For example, the product

k−1∏
j=0

[
(gj + g + c)(hj + d)

]
aq2(gj−g+c)(hj+d),bq(gj−g+c)(hj+d);q,p

appearing with index k in the sum. The associated q-product (obtained by first
letting p → 0, followed by a → 0 and b → 0)

t(k) :=

k−1∏
j=0

[
(gj + g + c)(hj + d)

]
q
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is rather unusual as it is not a q-hypergeometric term. In particular, the ratio t(k+
1)/t(k) of this product, that is, [(gk+g+c)(hk+d)]q = (1−q(gk+g+c)(hk+d))/(1−q),

is not a rational function in qk; it is a rational function in qk
2

and qk, and contains
quadratic powers of q.

Nevertheless, (1.4) contains various extensions of well-known elementary identi-
ties. The following identities appear as special cases.

n∑
k=1

qn−k [2k]q
[2]q

=

[
n+ 1
2

]
q

; (1.5a)

n∑
k=1

qn
2−k2+n−k [2k

2]q[2k]q
[2]2q

=

(
[n(n+ 1)]q

[2]q

)2

. (1.5b)

Here we have used the notation[
n+ 1
2

]
q

=
[n]q[n+ 1]q

[2]q
.

The first of these is a q-analogue of the sum of the first n natural numbers; the
second is a q-analogue of the sum of the first n cubes, which is equivalent to a
formula of Cigler [9, Theorem 1, q 7→ q2].

We now provide some background information and list some notation used in
this paper.

Background information.
(1) Two important properties of the modified theta function are [12, (11.2.42)]

θ(a; p) = θ(p/a; p) = −aθ(1/a; p) , (1.6a)

and [37, p. 451, Example 5]

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p) . (1.6b)

This last formula is called the Weierstraß addition formula. It is used exten-
sively in this paper.

(2) The following general theorem serves as a justification of referring to [z]a,b;q,p,
defined in (1.2a), as an “elliptic number”.

Proposition 1.2 ([16, Theorem 1.3.3]). Let g(x) be an elliptic function, that
is, a doubly periodic meromorphic function of the complex variable x. Then
g(x) is of the form:

g(x) =
θ(a1q

x, a2q
x, . . . , arq

x; p)

θ(b1qx, b2qx, . . . , brqx; p)
c,

where c is a constant, and

a1a2 · · · ar = b1b2 · · · br.

This last condition is the elliptic balancing condition. If we write q = e2πiσ,
p = e2πiτ , with complex σ, τ , then g(x) is indeed doubly periodic in x with
periods σ−1 and τσ−1.

(3) Using Proposition 1.2, it is easy to see that the elliptic number [z]a,b;q,p is
elliptic in z, and also elliptic in logq a and logq b.
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(4) Similarly, the elliptic weight function Wa,b;q,p(k) is elliptic in logq a, logq b
and k (regarded as a complex variable).

(5) The following useful properties readily follow from the definitions.
(i) For any k and l, Wa,b;q,p(k + l) = Wa,b;q,p(k)Waq2k,bqk;q,p(l).

(ii) Wa,b;q,p(0) = 1, and for any k, Wa,b;q,p(−k) = Waq−2k,bq−k;q,p(k)
−1.

(iii) For any x,

[−x]a,b;q,p = −Wa,b;q,p(−x)[x]aq−2x,bq−x;q,p

= −Waq−2x,bq−x;q,p(x)
−1[x]aq−2x,bq−x;q,p.

(iv) For any x and y, [xy]a,b;q,p = [x]a,b;q,p[y]a,bq1−x;qx,p.
(v) For any r, x and y,

[x]a,b;q,p[y]aq2r+2x−2y,bqr+x−y ;q,p − [x+ r]a,b;q,p[y − r]aq2r+2x−2y,bqr+x−y ;q,p

= [r + x− y]a,b;q,p[r]aq2x,bqx;q,pWaq2r+2x−2y,bqr+x−y ;q,p(y − r). (1.7)

The property (1.7) is a consequence of the Weierstraß addition formula in
(1.6b).

(6) Elliptic weights (perhaps different from the ones considered here) have ap-
peared in combinatorial contexts, in the work of Schlosser, Yoo and oth-
ers [1, 2, 3, 5, 6, 14, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31].

(7) In §3, we require the notation of q-rising factorials and their elliptic analogues.
We define the q-shifted factorials, for k = 0, 1, 2, . . . , as

(a; q)k :=

k−1∏
j=0

(
1− aqj

)
,

and for |q| < 1,

(a; q)∞ :=

∞∏
j=0

(
1− aqj

)
.

The parameter q is called the base. With this definition, we can write the
modified Jacobi theta function as

θ(a; p) = (a; p)∞(p/a; p)∞,

where a ̸= 0 and |p| < 1. We define the q, p-shifted factorials (or theta shifted
factorials), for k an integer, as

(a; q, p)k :=

k−1∏
j=0

θ
(
aqj ; p

)
.

When the nome p = 0, (a; q, p)k reduces to (a; q)k.
We use the shorthand notations

(a1, a2, . . . , ar; q, p)k := (a1; q, p)k(a2; q, p)k · · · (ar; q, p)k,
(a1, a2, . . . , ar; q)k := (a1; q)k(a2; q)k · · · (ar; q)k.

(8) Most of the proofs of the theorems in this paper use the following technique,
explained in detail in [4, Theorem 3.3].
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Lemma 1.3 (Euler’s telescoping lemma). Let uk, vk and tk be three se-
quences, such that

tk = uk − vk.

Then we have:
n∑

k=0

tk
t0

u0u1 · · ·uk−1

v1v2 · · · vk
=

u0

t0

(
u1u2 · · ·un

v1v2 · · · vn
− v0

u0

)
, (1.8)

provided none of the denominators in (1.8) are zero.

Some important specializations of the elliptic numbers and weights. It is
helpful to explicitly write out some important special cases of the elliptic numbers
and the elliptic weights. These cases correspond to p = 0 (the “a, b; q-case”); p = 0
and b → 0 (the “a; q-case”); and, p = 0 and a → 0 (the “(b; q)-case”).

The three special cases of the elliptic numbers are

[z]a,b;q =
(1− qz)(1− aqz)(1− bq2)(1− a/b)

(1− q)(1− aq)(1− bqz+1)(1− aqz−1/b)
; (1.9a)

[z]a;q =
(1− qz)(1− aqz)

(1− q)(1− aq)
q1−z; (1.9b)

[z](b;q) =
(1− qz)(1− bq2)

(1− q)(1− bqz+1)
, (1.9c)

and called a, b; q-numbers, a; q-numbers, and (b; q)-numbers, respectively. We place
parentheses in “(b; q)-numbers” but none in “a; q-numbers”, to avoid confusion
between the two special cases. This follows the notation used in [23].

The corresponding special cases for the elliptic weight Wa,b;q,p(k) are as follows:

Wa,b;q(k) =
(1− aq2k+1)(1− bq)(1− bq2)(1− aq−1/b)(1− a/b)

(1− aq)(1− bqk+1)(1− bqk+2)(1− aqk−1/b)(1− aqk/b)
qk; (1.10a)

Wa;q(k) =
(1− aq2k+1)

(1− aq)
q−k; (1.10b)

W(b;q)(k) =
(1− bq)(1− bq2)

(1− bqk+1)(1− bqk+2)
qk. (1.10c)

Remark 1.4. The are many feasible elliptic extensions of z. There are already
several q-extensions of z. For example, other than (1.1), which appears frequently
in combinatorial contexts, the following symmetric extension is used in the context
of quantum groups:

⟨z⟩q :=
qz − q−z

q − q−1
.

Both of these are contained in [z]a,b;q,p. In (1.9b), letting a → ∞ gives [z]q, while
taking a = −1 gives ⟨z⟩q.

This paper is organized as follows. In Section 2, we use Euler’s telescoping
lemma to find elliptic extensions of three elementary identities and discuss some
interesting special cases. In Section 3, we consider elliptic extensions of several
elementary identities that are obtained in an analogous way to the q-identities
previously obtained by one of us in [19]. Finally, in Section 4, we give the proof
of Theorem 1.1 (achieved by combining Lemma 1.3 with the difference equation
(1.7)), and explicitly state a few noteworthy special cases.
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2. Elementary Examples

The purpose of this section is to extend three elementary identities to corre-
sponding identities containing elliptic numbers. For each of these elliptic identities,
we give some special cases for illustration. The three identities are:

n−1∑
k=0

(2k + 1) = n2; (2.1a)

n∑
k=1

k(k + 1) · · · (k +m− 1) =
1

m+ 1
(n(n+ 1) · · · (n+m)) ; (2.1b)

n∑
k=1

1

k(k + 1) · · · (k +m)
=

1

m

(
1

m!
− 1

(n+ 1)(n+ 2) · · · (n+m)

)
, (2.1c)

where m = 1, 2, 3, . . . .
First, we give an elliptic extension of the sum of the first n odd integers.

Theorem 2.1. For n a non-negative integer, we have

n∑
k=0

Wa,b;q,p(k)
(
[k + 1]a,b;q,p[2]aq2k,bqk;q,p − 1

)
= Wa,b;q,p(1)[n+ 1]a,b;q,p[n+ 1]aq2,bq;q,p. (2.2)

Proof. We apply Lemma 1.3 and take

uk = [k + 1]a,b;q,p[k + 1]aq2,bq;q,p;

vk = uk−1 = [k]a,b;q,p[k]aq2,bq;q,p = [k + 1]a,b;q,p[k − 1]aq2,bq;q,p +Waq2,bq;q,p(k − 1).

The last equality follows from the (x, y, r) 7→ (k, k, 1) case of equation (1.7). Thus

tk = uk − vk = Waq2,bq;q,p(k − 1)
(
[k + 1]a,b;q,p[2]aq2k,bqk;q,p − 1

)
and t0 = u0 − v0 = 1.

We thus obtain (1.8) with these choices of uk, vk and tk. Multiplication of both
sides of the identity by Wa,b;q,p(1) gives the result. □

Remark 2.2. The elliptic analogue of n, namely, [n]a,b;q,p contains extensions of

n2 and of
(
n+1
2

)
, besides other extensions. Take z = n in (1.9b), the a; q-number

of n. For a → ∞ this reduces to [n]q, for a = 1 to ([n]q)
2q1−n, and for a = q

to q1−n[n]q[n + 1]q/[2]q. That is, the telescoping sum over odd elliptic numbers
also extends a sum over odd squares, and to a sum over binomial coefficients. The
examples in this section illustrate some of the possibilities to obtain interesting
identities by specialization.

Special cases of (2.2).
(1) Three immediate specializations of (2.2) are as follows.

(i) For the a, b; q-analogue, take p = 0.

n∑
k=0

Wa,b;q(k)([k+ 1]a,b;q[2]aq2k,bqk;q − 1) = Wa,b;q(1)[n+ 1]a,b;q[n+ 1]aq2,bq;q. (2.3)

This identity has two parameters, a and b, in addition to the base q.
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(ii) For the a; q-analogue, take b → 0 or b → ∞ in (2.3). This gives

n∑
k=0

Wa;q(k)([k + 1]a;q[2]aq2k;q − 1) = Wa;q(1)[n+ 1]a;q[n+ 1]aq2;q. (2.4)

(iii) For the (b; q)-analogue, take a → 0 or a → ∞ in (2.3). This gives

n∑
k=0

W(b;q)(k)([k + 1](b;q)[2](bqk;q) − 1) = W(b;q)(1)[n+ 1](b;q)[n+ 1](bq;q). (2.5)

(2) We further specialize a and b to obtain two new q-analogues of (2.1a).
(i) Take a → ∞ in (2.4), or b → 0 in (2.5), to get

n∑
k=0

qk−1([2]q[k + 1]q − 1) = [n+ 1]2q.

(ii) When a → 0 in (2.4), or b → ∞ in (2.5), to obtain

n∑
k=0

q2n−2k([2]q[k + 1]q − qk+1) = [n+ 1]2q.

(3) Take a → 1 in (2.4), respectively, b → 1 in (2.5), to obtain the following pair
of identities:

n∑
k=0

q2n−2k

(
[2]q[k + 1]2q[2k + 2]q − qk+1[2k + 1]q

)
= [n+ 1]3q[n+ 3]q;

n∑
k=0

qk−1

[k + 1]q[k + 2]q

(
[k + 1]q[2]

2
q

[k + 3]q
− 1

)
=

[n+ 1]2q
[n+ 2]q[n+ 3]q

.

(4) Next, take a → q in (2.4), respectively, b → q in (2.5), to obtain the following
pair of identities:

n∑
k=0

q2n−2k

(
[k + 1]q[k + 2]q[2k + 3]q − qk+1[2k + 2]q

)
=

[n+ 1]2q[n+ 2]q[n+ 4]q

[2]q
;

n∑
k=0

qk−1

[k + 2]q[k + 3]q

(
[k + 1]q[2]q[3]q

[k + 4]q
− 1

)
=

[n+ 1]2q
[n+ 3]q[n+ 4]q

.

Next, we give an elliptic extension of (2.1b).

Theorem 2.3. For n,m non-negative integers, we have

n∑
k=0

Wa,b;q,p(k)[m+ 1]aq2k,bqk;q,p

(
[k + 1]a,b;q,p[k + 2]a,b;q,p . . . [k +m]a,b;q,p

)
= [n+ 1]a,b;q,p[n+ 2]a,b;q,p . . . [n+m+ 1]a,b;q,p. (2.6)

Proof. We apply Lemma 1.3 and take

uk = [k + 1]a,b;q,p[k + 2]a,b;q,p . . . [k +m+ 1]a,b;q,p;

vk = uk−1 = [k]a,b;q,p[k + 1]a,b;q,p . . . [k +m]a,b;q,p,
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so that,

tk = Wa,b;q,p(k)[m+ 1]aq2k,bqk;q,p

(
[k + 1]a,b;q,p[k + 2]a,b;q,p . . . [k +m]a,b;q,p

)
.

Here, (1.6b) is used for computing tk according to tk = uk − vk. With these
substitutions, we have (1.8) which immediately gives us (2.6). □

We take m = 1 and shift the index k 7→ k− 1 and replace n by n− 1 in (2.6), to
get the elliptic analogue of the sum of first n even integers.

n∑
k=1

Wa,b;q,p(k − 1)[2]aq2k−2,bqk−1;q,p[k]a,b;q,p = [n]a,b;q,p[n+ 1]a,b;q,p. (2.7)

This can be regarded to be an elliptic extension of the formula for the sum of the
first n natural numbers:

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
. (2.8)

We list further special cases of the elliptic analogue of this elementary identity
below.

Special cases of (2.7).
(1) For the a, b; q-analogue, take p = 0.

n∑
k=1

Wa,b;q(k − 1)[2]aq2k−2,bqk−1;q[k]a,b;q = [n]a,b;q[n+ 1]a,b;q. (2.9)

(2) For the a; q-analogue, take b → 0 or b → ∞ in (2.9). This gives
n∑

k=1

Wa;q(k − 1)[2]aq2k−2;q[k]a;q = [n]a;q[n+ 1]a;q. (2.10)

(3) For the (b; q)-analogue, take a → 0 or a → ∞ in (2.9). This gives
n∑

k=1

W(b;q)(k − 1)[2](bqk−1;q)[k](b;q) = [n](b;q)[n+ 1](b;q). (2.11)

(4) Two q-analogues of (2.8)
(i) Take the limit a → ∞ in (2.10), or b → 0 in (2.11):

n∑
k=1

qk−1[k]q =

[
n+ 1
2

]
q

.

(ii) A q-analogue due to Warnaar [35, Eq. 2]: take the limit a → 0 in (2.10),
or b → ∞ in (2.11).

n∑
k=1

q2n−2k[k]q =

[
n+ 1
2

]
q

.

(5) Some assorted q-analogues.
(i) A q-analogue of the formula for the sum of cubes due to Warnaar [35,

Eq. 2]: take a → 1 in (2.10).
n∑

k=1

q2n−2k
[k]2q[2k]q

[2]q
=

[
n+ 1
2

]2
q

. (2.12)
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(ii) Take b → 1 in (2.11).

n∑
k=1

qk−1 [2]q
[k + 1]q[k + 2]q

=
[n]q

[n+ 2]q
.

(iii) Take a → q in (2.10).

n∑
k=1

q2n−2k[k]q[k + 1]q[2k + 1]q =
[n]q[n+ 1]2q[n+ 2]q

[2]q
.

(iv) Take b → q in (2.11).

n∑
k=1

qk−1
[2]2q[k]q

[k + 1]q[k + 2]q[k + 3]q
=

[n]q[n+ 1]q
[n+ 2]q[n+ 3]q

.

Remark 2.4. There is another q-analogue of the sum of the first n cubes given by
Garrett and Hummel [11, Eq. 2]. This can also be obtained by telescoping (take
uk = (1 − qk+2) and vk = −(1 − qk) in Lemma 1.3). Their elliptic extensions are
immediate and are not included here. Further such q-analogues are obtained by
Cigler [9], again, by telescoping.

Now, instead of taking m = 1 in (2.6), we take m = 2, shift the index k 7→ k− 1
in (2.6) and replace n by n− 1. We then obtain

n∑
k=1

Wa,b;q,p(k − 1)[3]aq2k−2,bqk−1;q,p[k]a,b;q,p[k + 1]a,b;q,p

= [n]a,b;q,p[n+ 1]a,b;q,p[n+ 2]a,b;q,p. (2.13)

Some special cases of (2.13). We note some special cases of the a; q-special case
of (2.13) (which is obtained by first letting p → 0, followed by letting b → 0 in
(2.13)), i.e.,

n∑
k=1

Wa;q(k − 1)[3]aq2k−2;q[k]a;q[k + 1]a;q = [n]a;q[n+ 1]a;q[n+ 2]a;q. (2.14)

(1) Take a → 0 in (2.14) to obtain

n∑
k=1

q3n−3k[k]q[k + 1]q =
[n]q[n+ 1]q[n+ 2]q

[3]q
.

(2) Take a → 1 in (2.14) to obtain

n∑
k=1

q3n−3k([k]q[k + 1]q)
2[2k + 1]q =

([n]q[n+ 1]q[n+ 2]q)
2

[3]q
.

(3) Next, take a → q in (2.14) to obtain

n∑
k=1

q3n−3k[k]q[k + 1]2q[k + 2]q[2k + 2]q =
[n]q[n+ 1]2q[n+ 2]2q[n+ 3]q

[3]q
.
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(4) The following pair of identities is obtained by first replacing q by q2 and then
letting a → q, respectively, a → q−1:

n∑
k=1

q6n−6k[2k]q[2k + 1]q[2k + 2]q[2k + 3]q[4k + 3]q

=
[2n]q[2n+ 1]q[2n+ 2]q[2n+ 3]q[2n+ 4]q[2n+ 5]q

[6]q
.

n∑
k=1

q6n−6k[2k − 1]q[2k]q[2k + 1]q[2k + 2]q[4k + 1]q

=
[2n− 1]q[2n]q[2n+ 1]q[2n+ 2]q[2n+ 3]q[2n+ 5]q

[6]q
.

Finally, before closing this section, we note the elliptic extension of (2.1c).

Theorem 2.5. For n,m non-negative integers, we have,
n∑

k=1

Wa,b;q,p(k) [m]aq2k,bqk;q,p
[k]a,b;q,p[k + 1]a,b;q,p . . . [k +m]a,b;q,p

=

(
1

[m]a,b;q,p!
− 1

[n+ 1]a,b;q,p[n+ 2]a,b;q,p . . . [n+m]a,b;q,p

)
, (2.15)

where [m]a,b;q,p! := [m]a,b;q,p[m − 1]a,b;q,p · · · [1]a,b;q,p is an elliptic analogue of the
factorial of m.

Proof. We apply Lemma 1.3 and take

uk =
1

[k + 2]a,b;q,p[k + 3]a,b;q,p . . . [k +m+ 1]a,b;q,p
,

vk = uk−1 =
1

[k + 1]a,b;q,p[k + 2]a,b;q,p . . . [k +m]a,b;q,p
;

so that, by virtue of (1.6b),

tk =
−Wa,b;q,p(k + 1)[m]aq2k+2,bqk+1;q,p

[k + 1]a,b;q,p[k + 2]a,b;q,p . . . [k +m+ 1]a,b;q,p

and

t0 =
−Wa,b;q,p(1)[m]aq2,bq;q,p

[m+ 1]a,b;q,p!
.

With these substitutions, we have (1.8), and after replacing n by n − 1 and
shifting the index of the sum (such that k runs from 1 to n, instead of from 0 to
n− 1) we readily obtain (2.15). □

3. Special Cases of Elliptic and Multibasic Hypergeometric Series
Identities

In [19], the indefinite summation formula
n∑

k=0

(1− aq2k)

(1− a)

(a, b; q)k
(q, aq/b; q)k

bn−k =
(aq, bq; q)n
(q, aq/b; q)n

(3.1)
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is used to obtain q-analogues of several elementary sums. This includes Warnaar’s
[35] q-analogue of the sum of the first n cubes. In this section, we use the same
idea, but use the following elliptic analogue of (3.1):

n∑
k=0

θ(aq2k; p2)

θ(a; p2)

(
a, b, cp; q; p2

)
k

(q, aq/b, bcpq; q, p2)k

(
bcp/a; q−1, p2

)
k

(cp/aq; q−1, p2)k
bn−k

=

(
aq, bq, cpq; q, p2

)
n

(q, aq/b, bcpq; q, p2)n

(
bcp/aq; q−1, p2

)
n

(cp/aq; q−1, p2)n
. (3.2)

We first give some remarks before the proof. Clearly, (3.2) reduces to (3.1) when
p = 0. We cannot take c = 0 in (3.2) while keeping the nome p2, as c = 0 appears
as an essential singularity on each side of (3.2). The extra parameter c ensures that
the elliptic balancing condition holds for the terms appearing in (3.1). The way the
q-series identity (3.1) is extended to the elliptic identity in (3.2) is analogous to the
way the of the q-Saalschütz summation is extended to the elliptic case as described
in [12, Sec. 11.4, p. 323]. Notice that the indefinite summation (3.2) can also be
obtained by telescoping (just as (3.1)).

Proof of (3.2). A direct way to obtain (3.2) is to deduce it from the Frenkel and
Turaev 10V9 summation [12, (11.4.1)], which is an elliptic analogue of Jackson’s
very-well-poised 8ϕ7 summation. Specifically, taking e → aqn+1 in [12, (11.4.1)] we
obtain

n∑
k=0

θ(aq2k; p)

θ(a; p)

(a, b, c, a/bc; q, p)k
(q, aq/b, aq/c, bcq; q, p)k

qk =
(aq, bq, cq, aq/bc; q, p)n
(q, aq/b, aq/c, bcq; q, p)n

.

Now replace p by p2 and subsequently replace c by cp and use(
a/bcp; q, p2

)
k

(aq/cp; q, p2)k
=

1

bkqk

(
bcp/a; q−1, p2

)
k

(cp/aq; q−1, p2)k
.

This immediately gives (3.2). □

It is easy to use (3.2) to obtain elliptic extensions of results from [19]. However,
these results necessarily have the additional parameter c, which cannot be special-
ized to 0 or ∞ before letting p = 0. As an example, we give another extension of
Warnaar’s result in [35, (2)], which is a q-analogue of the sum of cubes.

Replace n by n− 1, shift the index of summation k → k− 1, and set a = b = q2

in (3.2) to obtain:

n∑
k=1

θ(q2k; p2)

θ(q2; p2)

(
q2, q2, cp; q; p2

)
k−1

(q, q, cpq3; q, p2)k−1

(
cp; q−1, p2

)
k−1

(cp/q3; q−1, p2)k−1

q2(n−k)

=

(
q3, q3, cpq; q, p2

)
n−1

(q, q, cpq3; q, p2)n−1

(
cp/q; q−1, p2

)
n−1

(cp/q3; q−1, p2)n−1

.

When p = 0, this reduces to (2.12).
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Remark 3.1. A special case of (3.1) is the following q-analogue of the formula for
the sum of the first n odd numbers (cf. [19, (3.9)]):

n−1∑
k=0

[2k + 1]qq
−k = [n]2qq

1−n. (3.3)

An extension of (3.3) to cubic basic hypergeometric series can be given as follows:

n−1∑
k=0

q−k (aq; q3)k
(aq5; q3)k

(1− q2k+1)

1− q

(1− aq2k+1)2

(1− aq)2

=
(1− qn)2(1− aqn)

(1− q)2(1− aq)

(
aq4; q3

)
n−1

(aq5; q3)n−1

q1−n. (3.4)

For a → 0 this reduces to (3.3). It is easy to verify that this sum telescopes.

Remark 3.2. Another general indefinite elliptic summation that can be specialized
to obtain various extensions of classical results is the following special case of a
multibasic theta function identity by Gasper and Schlosser [13, (3.19), t = q]:

n∑
k=0

θ(ad(rs)k, brk/dqk, csk/dqk; p)

θ(ad, b/d, c/d; p)

× (ad2/bc; q, p)k(b; r, p)k(c; s, p)k(a; rs/q, p)k
(dq; q, p)k(adr/c; r, p)k(ads/b; s, p)k(bcrs/dq; rs/q, p)k

qk

=
θ(a, b, c, ad2/bc; p)

d θ(ad, b/d, c/d, ad/bc; p)

× (ad2q/bc; q, p)n(br; r, p)n(cs; s, p)n(ars/q; rs/q, p)n
(dq; q, p)n(adr/c; r, p)n(ads/b; s, p)n(bcrs/dq; rs/q, p)n

− θ(d, ad/b, ad/c, bc/d; p)

d θ(ad, b/d, c/d, ad/bc; p)
. (3.5)

4. The proof of Theorem 1.1 and Some Special Cases

We have seen that telescoping leads to several elementary identities. All the
telescoping identities are special cases of Euler’s telescoping lemma, Lemma 1.3. In
order to apply the telescoping lemma, we would like to use sequences uk, vk such
that tk = uk − vk can be simplified.

We now turn to the proof of Theorem 1.1. The motivation behind this theorem
is to use (1.7) so that tk = uk − vk becomes an analogue of a factorized product of
linear factors in k.

Proof of Theorem 1.1. We combine Lemma 1.3 with a special instance of the the
difference equation (1.7). Let

x = (gk − g + c)(hk + d),

y = −(gk + c)(hk − h+ d),

r = 2ghk + ch+ dg.
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With this assignment of variables, we have x + r = (gk + c)(hk + h + d), y − r =
−(gk+ g+ c)(hk+ d), and r+x− y = 2(gk+ c)(hk+ d). Substituting these values
into (1.7), we have[
(gk − g + c)(hk + d)

]
a,b;q,p

[
− (gk + c)(hk − h+ d)

]
aq4(gk+c)(hk+d),bq2gk+c)(hk+d);q,p

−
[
(gk + c)(hk + h+ d)

]
a,b;q,p

×
[
− (gk + g + c)(hk + d)

]
aq4(gk+c)(hk+d),bq2(gk+c)(hk+d);q,p

=
[
2(gk + c)(hk + d)

]
a,b;q,p

[
2ghk + ch+ dg

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

×Waq4(gk+c)(hk+d),bq2(gk+c)(hk+d);q,p

(
− (gk + g + c)(hk + d)

)
,

which is equivalent to

−
[
(gk − g + c)(hk + d)

]
a,b;q,p

×
[
(gk + c)(hk − h+ d)

]
aq2(gk+c)(hk+h+d),bq(gk+c)(hk+h+d);q,p

×Waq2(gk+c)(hk+h+d),bq(gk+c)(hk+h+d);q,p

(
(gk + c)(hk − h+ d)

)−1

+
[
(gk + c)(hk + h+ d)

]
a,b;q,p

×
[
(gk + g + c)(hk + d)

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

×Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
(gk + g + c)(hk + d)

)−1

=
[
2(gk + c)(hk + d)

]
a,b;q,p

×
[
2ghk + ch+ dg

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

×Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
(gk + g + c)(hk + d)

)−1
.

Multiplication of both sides of this relation by the factor

Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
(gk + g + c)(hk + d)

)
and application of the reduction

Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
(gk + g + c)(hk + d)

)
Waq2(gk+c)(hk+h+d),bq(gk+c)(hk+h+d);q,p

(
(gk + c)(hk − h+ d)

)
= Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
2ghk + ch+ dg

)
gives the identity[

(gk + c)(hk + h+ d)
]
a,b;q,p

×
[
(gk + g + c)(hk + d)

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

−
[
(gk − g + c)(hk + d)

]
a,b;q,p

×
[
(gk + c)(hk − h+ d)

]
aq2(gk+c)(hk+h+d),bq(gk+c)(hk+h+d);q,p

×Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
2ghk + ch+ dg

)
=
[
2(gk + c)(hk + d)

]
a,b;q,p

×
[
2ghk + ch+ dg

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

. (4.1)
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Thus, in order to apply Lemma 1.3, we let

tk =
[
2(gk + c)(hk + d)

]
a,b;q,p

×
[
2ghk + ch+ dg

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

,

uk =
[
(gk + c)(hk + h+ d)

]
a,b;q,p

×
[
(gk + g + c)(hk + d)

]
aq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

,

vk =
[
(gk − g + c)(hk + d)

]
a,b;q,p

×
[
(gk + c)(hk − h+ d)

]
aq2(gk+c)(hk+h+d),bq(gk+c)(hk+h+d);q,p

×Waq2(gk−g+c)(hk+d),bq(gk−g+c)(hk+d);q,p

(
2ghk + ch+ dg

)
.

Now by (4.1) we have tk = uk − vk, and (1.8) gives the desired result. □

Some special cases of (1.4).
(1) An a; q-analogue: take p → 0 and b → 0.

n∑
k=0

(
[2(gk + c)(hk + d)]a;q[2ghk + ch+ dg]aq2(gk−g+c)(hk+d);q

[2cd]a;q[ch+ dg]aq2(c−g)d;q

×
k−1∏
j=0

[(gj + g + c)(hj + d)]aq2(gj−g+c)(hj+d);q

[(gj + g + c)(hj + d)]aq2(gj+g+c)(hj+2h+d);q

×
k−1∏
j=0

Waq2(gj+c)(hj+h+d);q(2ghj + 2gh+ ch+ dg)−1

)

=
[(gn+ c)(hn+ h+ d)]a;q[(g + c)d]aq2(c−g)d;q

[2cd]a;q[ch+ dg]aq2(c−g)d;q

×
n∏

j=1

[(gj + g + c)(hj + d)]aq2(gj−g+c)(hj+d);q

[(gj + c)(hj − h+ d)]aq2(gj+c)(hj+h+d);q

Waq2(gj−g+c)(hj+d);q(2ghj + ch+ dg)−1

−
[(c− g)d]a;q[c(d− h)]aq2c(h+d);q

[2cd]a;q[ch+ dg]aq2(c−g)d;q

Waq2(c−g)d;q(ch+ dg). (4.2)

(2) A q-analogue: take a → 0 in (4.2).

n∑
k=0

(
[2(gk + c)(hk + d)]q[2ghk + ch+ dg]q

[2cd]q[ch+ dg]q
q−
(
ghk2+(ch+dg+gh)k

))
=

[(gn+ c)(hn+ h+ d)]q[(gn+ g + c)(hn+ d)]q
[2cd]q[ch+ dg]q

q−
(
ghn2+(ch+dg+gh)n

)
− [c(d− h)]q[(c− g)d]q

[2cd]q[ch+ dg]q
qch+dg. (4.3)

(3) We can further specialize c, d, g and h in (4.3) to obtain more q-analogues,
highlighted in §1. In particular, we have the following:

(i) Take c, d, g → 1 and h → 0, shift the index to run from k = 1 to n+1,
and replace n+ 1 by n to obtain (1.5a).

(ii) Take c, d, g, h → 1 to get (1.5b).
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