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Abstract. In this paper, we generalize an elementary real-analysis result to a
class of topological vector spaces. We also give an example of a topological
vector space to which the result cannot be generalized.

1. Introduction

This paper draws its inspiration from the following result, which appears to be
a popular real-analysis exam problem (see [3], for example):

Let (2n),cy be a sequence in R. If lim (22,41 — 2,,) = @ for some x € R, then
n—oo
lim z,, = x.
n—oo

An expedient proof can be given using the Stolz-Cesaro Theorem as follows:
Proof. Define sequences (a,), oy and (b,), ¢y in R by
Vn € N : an af 2"z, and by, & on,
Then (b,),,cy is strictly increasing and diverges to oo, and as

1
li Un4+1 — An o 2n+ Tn+1 — 2n$n

n—oo bn+1 — bn T nsoo on+l _ 9n
O e A
n—o00 on
= lim (2 —
32, (2n41 = En)
= x,
a
the Stolz-Cesaro Theorem immediately tells us that lim z, = lim — = z. O
n—o0 n—00 bn

A natural question to ask is: Is this result still valid if R is replaced by another
topological vector space? The answer happens to be affirmative for a wide class of
topological vector spaces that includes all the locally convex ones.

We will also exhibit a topological vector space for which the result is not valid,
which indicates that it is rather badly behaved.

In this paper, we adopt the following conventions:

o N denotes the set of all positive integers, and for each n € N, let [n] d N<j.
e All vector spaces are over the field K € {R,C}.
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2. Good Topological Vector Spaces

Recall that a topological vector space is an ordered pair (V, 7), where:

e V is a vector space, and

e 7 is a topology on V, under which vector addition and scalar multiplication are
continuous operations.

Definition 2.1. Let (V,7) be a topological vector space, and (xx)yc, a net in V.
Then z € V is called a 7-limit for (z)),c, — which we write as (z)),cy — ¢ —
if and only if for each 7-neighborhood U of x, there is a Ay € A such that x) € U
for all A € Asy,.

Remark 2.2. We do not assume that 7 is a Hausdorff topology on V.

Definition 2.3. A topological vector space (V,7) is said to be good if and only if
any sequence (o), oy in V has a 7-limit whenever (2x,1 — =) has a 7-limit.
A topological vector space that is not good is said to be bad.

neN

Proposition 2.4. Let (V,7) be a topological vector space, and (xy,), oy @ sequence
in'V such that (22,41 — Tp) s x for some x € V. Then either

o (Z1),eny — T also, or

® (Tn),cy has no T-limit.

neN

Proof. If (x,),cy
Next, suppose that (x,,)

has no 7-limit, then we are done.

neN T y for some y € V. Then

(241 — Tn)peny — 20 — Y =,

so y is a 7-limit for (2,41 — ), ¢y in addition to z. It follows that

(OV)pen = (22pt1 — @n) = (2Tn41 — Tn)) pen > a—y,
which yields
(y)neN = (OV + y)neN L> (.13 — y) +y ==

-
neNy —— T O

Proposition 2.4] tells us: To prove that a topological vector space (V, 1) is good,

it suffices to prove that for each sequence (), oy in V, if (22,41 — 25) T

Therefore, any 7-neighborhood of z also contains y, giving us ()

neN

for some = € V, then (z,) 5 x also.

neN

Definition 2.5. Let p € (0,1]. A p-homogeneous seminorm on a vector space V is
then a function o : V' — R> with the following properties:

(1) The Triangle Inequality: o(z + y) < o(z) + o(y) for all z,y € V.

(2) p-Homogeneity: o(kz) = |k|[’o(x) for all k € K and z € V.

Remark 2.6. e By letting k£ = 0 and & = Oy in (2), we find that o(0y) = 0.

e A 1-homogeneous seminorm is the same as a seminorm in the ordinary sense.

e No extra generality is gained by postulating that o(kz) < |k|o(z) for all k € K
and z € V. If k € K\ {0}, then replacing k by z gives us the reverse inequality,
which leads to equality; if £ = 0, then equality automatically holds.
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e We do not consider p € (2,00) because

VeeV: 2Po(x)=o0(2x) (By p-homogeneity.)
=o(x +x)
< 20(x), (By the Triangle Inequality.)

so if o is non-trivial, then 2P < 2, which implies that p € (0,1] if p € Rsg.

Let V be a vector space, and S a collection of p-homogeneous seminorms on V'
where p € (0, 1] may not be fixed. Define a function U : V x S x Rsg — P(V) by
Ve eV, Vo €S, Ve €Rog: Upoe Z{yeV |o(y—z)<el.

Then let 75 denote the topology on V that is generated by the sub-base
{Upoe €P(V) | (z,0,€) € V xS xRso}.

Proposition 2.7. The following statements about 7s hold:
(1) 7s is a vector-space topology on V.
(2) Let (xx)ycp be a net in V. Then for each x € V', we have

TS . .
(TX)yer —> T = llerrll\a(x)\ x) =0 forallo € S.

Proof. One only has to imitate the proof in the case of locally convex topological
vector spaces that the initial topology generated by a collection of seminorms is a
vector-space topology. We refer the reader to Chapter 1 of [2] for details. O

Proposition 2.8. (V,7s) is a good topological vector space.
Proof. Let (2,,),cy be a sequence in V. Suppose that (22,41 — 2n),cy 5 g for
some x € V. Then without loss of generality, we may assume that x = 0y . To see
why, define a new sequence (yy),cyn in V by y, & x, — x for all n € N, so that
VneN: 2y, —yn=2(Tpe1 —2) — (2 — )
=22, — 22—+
= (2zp41 —xn) — T
Hence,
(2Yn+1 = Yn)pen = (2041 — n) = &),en —> & — 2 = Oy,

so if we can prove that (yn), ey — Ov, then (z,,), oy —> @ as desired.
Let o € S and € > 0, and suppose that o is p-homogeneous for some p € (0, 1].
Then by (2) of there is an IV € N such that
VneNsy: 02xpt1 —2n) = 0((2Tp41 — xn) — O0y) < (2P — 1e.
By p-homogeneity, we thus have
Vk e N: 0’(2k.’EN+k - 2k_1$N+k,1) = U(Zk_1(2$N+k — $N+k,1))
=20 VPo (22 — TN fim1)
< 2(h=DP(2P _ 1)e,

Next, a telescoping sum in conjunction with the Triangle Inequality yields

VYm € N : O’(2ml‘N+m - LL'N) = 0(2(2k$]\7+k - 2k_1£L'N+k1)>
k=1
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NE

< 0(2k$N+k - 2k_1$N+k—1)
k=1

<y 2tmr(or —1)e
k=1

= (2™ — 1)e.

Then by p-homogeneity again,
1 1
VYm e N: U(:L"N+m - 2mzN) = U(W(meN+m - a:N)>
1

= %U(Zml']v_;'_m — ZEN)

1

Applying the Triangle Inequality and p-homogeneity once more, we get
Vim e N - 1 Lo L), 1 L1
meN: o(@nim) <o om TN +{1- omp €= 271)0(3:1\1) +({1—- omp )€

Consequently,
. . . 1 1
hrrLIl—>S<>1<l>p o(x,) = h;bn_il)lopa(xNer) < h;nj;lop 2Tpa(mN) +(1- o €| =€

As e > 0 is arbitrary, we obtain

gy, 0 (on = Ov) = limg o(wa) =0

Finally, as o € S is arbitrary, (2) of |[Proposition 2.7|says that (), cy 0y, O
By the class of good topological vector spaces includes:

e All locally convex topological vector spaces.
e All LP-gpaces for p € (0, 1), which are generally not locally convex.
In the next section, we will give an example of a bad topological vector space.

3. A Bad Topological Vector Space from Probability Theory

Before we present the example, let us first fix some probabilistic terminology.

Definition 3.1. Let (2, X, P) be a probability space.

e A measurable function from (€2, %) to (R, Z(R)) is called a random variableﬂ

e The R-vector space of random variables on (€2, X)) is denoted by RV(£2, X).

e Let (X))ycp be amnet in RV(Q, %), and let X € RV(Q,X). Then (Xx),c, is said
to converge in probability to X (for P) if and only if for each € > 0, we have

lim P({w € Q| [Xa(@) - X(@)] > }) =0,

. : . P
in which case, we write (Xx),cy — X.

The following theorem says that convergence in probability is convergence with
respect to a vector-space topology on the vector space of random variables.

1%(]&) denotes the Borel o-algebra generated by the standard topology on R.
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Theorem 3.2. Let (2,3, P) be a probability space, and define a pseudo-metric pp
on RV(Q, %) by

VX,Y €RV(Q,3):  pp(X,Y) d:f/ X =Yl p,

Ql+]X -Y|
Then the topology Tp on RV(Q),X) generated by pp has the following properties:

e Tp is a vector-space topology.
o Let (Xa)ycp be a net in RV(Q,X). Then for each X € RV(Q,X), we have
P T}
(Xa)per — X = (X2)rer — X.
Proof. Please refer to Problems 6, 10 and 14 in Section 5.2 of [1J. O
Now, for each k € N, define a probability measure ¢, on ([k], P([k])) by
Card(A
VAC[E: cp(A) % ”T()

and let (2, X%, P) denote the product probability space H([k], P([k]), ck). Define a
k=1

v(n) = 1}.

1
Then P(S,) = — for all n € N, and the S,,’s form mutually-independent events.
n
Next, define a sequence (Y},), oy in RV(Q, %) by

sequence (Sp),,cy in X by

VneN: Snd:f{ve H[k]
k=1

Vn € N: YndeQ"XS

where g, denotes the indicator function of S,,. Then we get for each € > 0 that

. 1 i 1
Jim P({fwe Q| [Yaw)| > €}) = lim P(S,) = lim = =0.

The first equality is obtained because, for each € > 0, we have 2™ > € for all n € N

large enough. Consequently, (Y7,), o N IJON -
Define a new sequence (X,,), .y in RV(Q, ) by

Ok ifn=1;
df J n—1
VvneN: X, = 1 .
Z mYk if n 2 2.
k=1
Then 2X5; — X7 =2X5 =Y7, and
n 1 n—1 1
VnENZQ 2Xn+17Xn:22 WYk*ZWYk
k=1 k=1
n 1 n—1 1
= Z 2nflcYk B Z 2n7kYk
k=1 k=1
=Y,.
It follows that (2Xn11 — Xn),en = (Vo) e — 0o
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Gathering what we have thus far, observe that

2n 1

Vn € N: X2n+]_ = Z WYk
k=1
2n

1
- Z 92nt1—k (2°xs.)
k=1
2n

— Z 22k_2n_1XSk

k=1
2n

2k—2n—1
> Y 2Ry,
k=n-+1

2n
> Z XSi

k=n+1
Z Xu2n

hent1 Sk

As the Si’s are mutually independent, their complements are as well, so

Wn e N P({wGQ‘|X2n+1(w)|>;}) 2P< G Sk>

k=n-+1

e\ )

:1_.»(?3 Q\sk>

k=n-+1

2n
—1- [ P@\sy)

k=n-+1

2n 1
= 1 —_— I
I ()
k=n-+1
2n

kE—1
=1- II ==

Hence, (X;), oy does not converge to Og_,g in probability. By [Theorem 3.2

Proposition 3.3. (RV(Q,X), ) is therefore a bad topological vector space.

By [Proposition 2.4} (X,,),cy does not, in fact, converge in probability at all.
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