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Abstract. In this paper we express two new mock theta functions with one

parameter as the Appell-Lerch sums using the Bailey mechanism. Meanwhile,

we also obtain some Hecke-type double sums for some new q-series. In addi-
tion, we establish the relationships between the mock theta functions and the

classical sixth and eighth order mock theta functions. Furthermore, we give

the Hecke-type double sums for the second order mock theta function D5(q).

1. Introduction

Throughout this paper, let q denote a complex number with |q| < 1. Here and in
what follows, we adopt the standard q-series notation [6]. For any positive integer
n,

(a; q)0 := 1, (a; q)n :=

n−1∏
k=0

(1− aqk), (a; q)∞ :=

∞∏
k=0

(1− aqk),

(a1, a2, a3, · · · , am; q)n := (a1; q)n(a2; q)n(a3; q)n · · · (am; q)n,

(a1, a2, a3, · · · , am; q)∞ := (a1; q)∞(a2; q)∞(a3; q)∞ · · · (am; q)∞.

For convenience, we use (a)n to denote (a; q)n.
The Jacobi’s triple product identity can be stated as follows.

j(x; q) := (x)∞(q/x)∞(q)∞ =

∞∑
n=−∞

(−1)nq(
n
2)xn. (1.1)

From the definition of j(x; q), we have

j(x; q) = j(q/x; q) (1.2)

and

j(qnx; q) = (−1)nq−(
n
2)x−nj(x; q), n ∈ Z. (1.3)

Let m and a be integers with m positive. Define

Ja,m := j(qa; qm), Ja,m := j(−qa; qm),

Jm :=
∏
i≥1

(1− qmi), Jm :=
∏
i≥1

(1 + qmi), and

j(b1, b2, · · · , bm; q) := j(b1; q)j(b2; q) · · · j(bm; q).
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Mock theta functions have been studied deeply by many scholars. They were
introduced by Ramanujan in his last letter to G.H. Hardy on January 12, 1920.
In that letter, Ramanujan listed seventeen mock theta functions and divided them
into four classes, one class of third order, two of fifth order, and one of seventh
order. However, Ramanujan neither rigorously defined a mock theta function nor
the order of a mock theta function.

Motivated by Ramanujan’s work, mock theta functions have received a great deal
of attention as in [1, 17, 18]. Until 2002, it was not known how these functions
fit into the theory of modular forms. A new chapter in the study of mock theta
functions was opened due to the work of Zwegers [20] and Bringmann and Ono [4,
5]. Hickerson and Mortenson [9] defined Appell-Lerch sums as follows.

Definition 1.1. Let x and z be generic complex numbers with z ̸= 0, with neither
z nor xz an integer power of q. Then

m(x, q, z) :=
−z

j(z; q)

∞∑
r=−∞

(−1)rq(
r+1
2 )zr

1− qrxz
.

Notice that m(0, q, z) = 1.
Following [9], the term “generic” means that the parameters do not cause poles

in the Appell-Lerch sums or in the quotients of theta functions.
Specializations of the Appell-Lerch sums are perhaps the most important class of

mock theta functions. In other words, for any function f(z), if we can express f(z)
as Appell-Lerch sums up to the addition of a weakly holomorphic modular form,
then the function f(z) is a mock theta function. Hickerson and Mortenson [9]
studied the properties of Appell-Lerch sums and established the representations of
mock theta functions in terms of Appell-Lerch sums.

In q-series, the Hecke-type double sum has played an important role and received
a lot of attention. It was defined by Hickerson and Mortenson [9].

Definition 1.2. Let x, y ∈ C∗ and define sg(r) := 1 for r ≥ 0 and sg(r) := −1 for
r < 0. Then

fa,b,c(x, y, q) :=
∑

sg(r)=sg(s)

sg(r)(−1)r+sxrysqa(
r
2)+brs+c(s2).

It is clear that fa,b,a(x, y, q) = fa,b,a(y, x, q).
Recently, using Bailey’s lemma and Bailey pairs, many scholars established mock

theta functions and gave their different forms in the modern sense. We can refer
to [7, 8, 13, 14, 15, 16, 19]. Inspired by those works, we present two new Eulerian
series and determine their Hecke-type double sum forms and Appell-Lerch sums by
applying Bailey pairs.

Define

R1(x, q) : =

∞∑
n=0

qn(−xq)n(−x−1)n
(q)2n

, (1.4)

R2(x, q) : =

∞∑
n=0

xqn+1(−xq)n(−x−1)n
(q2; q2)n

. (1.5)
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Then by means of the Bailey pairs, we can express the above two Eulerian
series as Appell-Lerch sums as follows. Based on the modern sense of mock theta
functions, we find two new mock theta functions with one parameter.

Theorem 1.3. We have

R1(x, q) =
1

J2
1

f1,2,1(q,−xq2, q)

=
j(−xq2; q)

J2
1

m(x−2q−1, q3,−1)− qJ3
3 j(xq; q)j(−xq5; q3)

J2
1 J̄0,3j(x

−1q,−x2q4; q3)
, (1.6)

R2(x, q) =
1

J2
1

f2,2,1(q
2,−xq2, q)

=
xqj(−xq2; q)

J1J2
m(1/(x2q), q2,−1)− 2J2

2 j(xq, xq
2; q2)

J1J̄0,1J̄0,2j(−x2q3; q2)
. (1.7)

The two sixth order mock theta functions appeared in [3] are as follows.

ϕ(q) : =

∞∑
n=0

(−1)nqn
2

(q; q2)n
(−q)2n

,

µ(q) : =
1

2
+

1

2

∞∑
n=0

(−1)nqn+1(1 + qn)(q; q2)n
(−q)n+1

.

In 2014, Hickerson and Mortenson [9] provided the Appell-Lerch sums for them.

ϕ(q) = 2m(q, q3,−1), (1.8)

µ(q) = 2m(q2, q6,−1)− J1,2J1,3

2J1,4

. (1.9)

Then, we get the following relationships.

Theorem 1.4. We have

R1(q
−1, q) =

J
2

1

J1
ϕ(q),

R1(q
−2, q2)− J

2

2

J2
µ(q) =

J
2

2J1,2J1,3

2J2J1,4

.

Applying the Bailey pairs, we obtain some Hecke-type double sums for the pa-
rameterized q-series.

Theorem 1.5. We have
∞∑

n=0

qn(−xq)n(−x−1)n
(q)n

=
1

(q)2∞

(
f6,3,1(−q5,−xq2, q)− qf6,3,1(−q7,−xq3, q)

)
,

(1.10)
∞∑

n=0

qn(−xq)n(−x−1)n
(q; q2)n

=(
f2,2,1(q,−xq2, q) + qf2,2,1(q

3,−xq2, q)

)
1

(q; q2)∞(q)∞(1 + q)
,

(1.11)
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∞∑
n=0

qn(−xq)n(−x−1)n =
1

(q)∞
f3,2,1(q

3,−xq2, q), (1.12)

∞∑
n=0

qn(−xq)n(−x−1)n
(−q; q2)n+1

=
1

(−q; q2)∞(q)∞
f4,2,1(q

4,−xq2, q). (1.13)

In 2006, Hikami [10] introduced the second order mock theta functions and gave
a transformation formula in [11] as follows.

D5(q) =

∞∑
n=0

(−q)nq
n

(q; q2)n+1
=

1

(q; q2)2∞

∞∑
n=0

(q; q2)2nq
2n. (1.14)

Letting q → q2 and x = −q−1 in (1.12), we establish the Hecke-type double sums
for D5(q).

Theorem 1.6. We have

D5(q) =
1

j(q; q2)
f3,2,1(q

6, q3, q2).

The paper is organized as follows. In Section 2, we first state some lemmas which
are used to prove the main results. In Section 3, we prove the main theorems.

2. Preparations

In this section, we recall some definitions and known results to prove our theo-
rems.

The pair of sequences (αn, βn) is called a Bailey pair relative to (a, q) if

βn =

n∑
r=0

αr

(q)n−r(aq)n+r
.

Lemma 2.1. [2, Lemma 3] The (αn, βn) is a Bailey pair relative to (1, q), where

αn =

{
1, n = 0,

q(
n
2)(xnqn + x−n), n ≥ 1.

βn =
(−xq)n(−x−1)n

(q)2n
.

(2.1)

Lemma 2.2. [12, Theorem 1.1 (parts 1,5,6,12), Corollary 1.3 (parts 1,2)]
1.If (αn, βn) is a Bailey pair relative to (a, q), then∑

n≥0

qnβn =
1

(aq, q)∞

∑
r,n≥0

(−a)nq(
n+1
2 )+(2n+1)rαr. (2.2)

2.If (αn, βn) is a Bailey pair relative to (a, q), then∑
n≥0

(aq; q2)nq
nβn =

1

(aq2; q2)∞(q)∞

∑
r,n≥0

(−a)nqn
2+2rn+r+nαr. (2.3)

3.If (αn, βn) is a Bailey pair relative to (a2, q), then∑
n≥0

(a2q)2nq
n

(aq)n
βn =

1

(aq, q)∞

∑
r,n≥0

a3nq3n
2+2n+3rn+r(1− aq2n+r+1)αr. (2.4)
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4.If (αn, βn) is a Bailey pair relative to (a, q), then∑
n≥0

(aq2; q2)nq
nβn =

1

(aq; q2)∞(q)∞(1 + q)

∑
r,n≥0

(−a)nqn
2+2rn+r(1 + q2n+1)αr.

(2.5)
5.If (αn, βn) is a Bailey pair relative to (a, q), then∑

n≥0

(aq)2nq
nβn =

1

(q)∞

∑
r,n≥0

(−a)nq3n(n+1)/2+(2n+1)rαr. (2.6)

6.If (αn, βn) is a Bailey pair relative to (a, q), then∑
n≥0

(aq)2nq
n

(−aq; q2)n+1
βn =

1

(−aq; q2)∞(q)∞

∑
r,n≥0

(−a)nq2n
2+2n+2rn+rαr. (2.7)

In fact, there exist rich relationships between the Appell-Lerch sums and the
Hecke-type double sums. They were stated as follows.

Theorem 2.3. Let a, b, c be positive integers with ac < b2 and b divisible by a, c.
Then

fa,b,c(x, y, q) = ha,b,c(x, y, q,−1,−1)− 1

J̄0,b2/a−cJ̄0,b2/c−a

· θa,b,c(x, y, q),

where

ha,b,c(x, y, q, z1, z0) :=j(x; qa)m(−qa(
b/a+1

2 )−c(−y)(−x)−b/a, qb
2/a−c, z1)

+ j(y; qc)m(−qc(
b/c+1

2 )−a(−x)(−y)−b/c, qb
2/c−a, z0)

and

θa,b,c(x, y, q) :=

b/c−1∑
d=0

b/a−1∑
e=0

b/a−1∑
f=0

q(b
2/a−c)(d+1

2 )+(b2/c−a)(e+f+1
2 )+a(f2)j(q(b

2/a−c)(d+1)+bfy; qb
2/a)×

(−x)f j(qb(b
2/(ac)−1)(e+f+1)−(b2/a−c)(d+1)+b3(b−a)/(2a2c)(−x)b/ay−1; q(b

2/a)(b2/(ac)−1))×

J3
b(b2/(ac)−1)j(q

(b2/c−a)(e+1)+(b2/a−c)(d+1)−c(b/c2 )−a(b/a2 )(−x)1−b/a(−y)1−b/c; qb(b
2/(ac)−1))

j(q(b
2/c−a)(e+1)−c(b/c2 )(−x)(−y)−b/c, q(b

2/a−c)(d+1)−a(b/a2 )(−x)−b/a(−y); qb(b2/(ac)−1))
.

Lemma 2.4. [9, (1.7)] We have

f1,2,1(x, y, q) = j(x; q)m(q2y/x2, q3,−1) + j(y; q)m(q2x/y2, q3,−1)

− yJ3
3 j(−x/y; q)j(q2xy; q3)

J0,3j(−qy2/x,−qx2/y; q3)
. (2.8)

3. Proofs of the Main Results

In this section, we mainly prove the results by the Bailey pairs, the properties
for the Hecke-type double sums and Appell-Lerch sums.
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Proof of Theorem 1.3. Substituting the Bailey pair (2.1) into (2.2) with a = 1,
we deduce

∞∑
n=0

qn(−xq)n(−x−1)n
(q)2n

=
1

J2
1

 ∑
r≥1,n≥0

(−1)nq(
n+1
2 )+(2n+1)r+(r2)(xrqr + x−r) +

∑
n≥0

(−1)nq(
n+1
2 )


=

1

J2
1

 ∑
r,n≥0

(−1)nq(
n+1
2 )+(2n+2)r+(r2)xr +

∑
r≥1,n≥0

(−1)nq(
n+1
2 )+(2n+1)r+(r2)x−r


=

1

J2
1

( ∑
r,n≥0

(−1)nq(
n
2)+2nr+(r2)+n+2rxr

+
∑

r,n≤−1

(−1)−n−1q(
−n
2 )+(−2n−1)(−r)+(−r

2 )xr

)

=
1

J2
1

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)nq(
n
2)+2nr+(r2)+n+2rxr

=
1

J2
1

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq(
n
2)+2nr+(r2)qn(−xq2)r

=
1

J2
1

f1,2,1(q,−xq2, q).

Applying (2.8), we have

f1,2,1(q,−xq2, q) = j(−xq2; q)m(x−2q−1, q3,−1)− qJ3
3 j(xq; q)j(−xq5; q3)

J̄0,3j(x−1q,−x2q4; q3)
,

which implies (1.6).
For (1.7), substituting the Bailey pair (2.1) into (2.3) with a = 1, we have

∞∑
n=0

qn(−xq)n(−x−1)n
(q2; q2)n

=
1

J1J2

 ∑
r≥1,n≥0

(−1)nqn
2+2rn+r+n+(r2)(xrqr + x−r) +

∑
n≥0

(−1)nqn
2+n


=

1

J1J2

( ∑
r,n≥0

(−1)nqn
2+2rn+2r+n+(r2)xr +

∑
r≥1,n≥0

(−1)nqn
2+2rn+r+n+(r2)x−r

)

=
1

J1J2

( ∑
r,n≥0

(−1)nqn
2+2rn+2r+n+(r2)xr

+
∑
r,n≥1

(−1)n−1q(n−1)2+2r(n−1)+r+(n−1)+(r2)x−r

)
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=
1

J1J2

( ∑
r,n≥0

(−1)nqn
2+2rn+(r2)+n+2rxr

+
∑

r,n≤−1

(−1)−n−1qn
2+2rn+(r2)+n+2rxr

)

=
1

J1J2

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq2(
n
2)+2rn+(r2)q2n(−xq2)r

=
1

J1J2
f2,2,1(q

2,−xq2, q).

Based on Theorem 2.3, we have

f2,2,1(q
2,−xq2, q) =h2,2,1(q

2,−xq2, q,−1,−1)− 1

J̄0,1J̄0,2
θ2,2,1(q

2,−xq2, q)

=j(−xq2; q)m(1/(x2q), q2,−1)− J3
2

J̄0,1J̄0,2
×(

j(−xq3, xq, x−1; q2)

j(−x−2q−1,−xq; q2)
+

qj(−xq4, x−1, x−1q; q2)

j(−x−2q−1,−xq2; q2)

)
=j(−xq2; q)m(1/(x2q), q2,−1)− J3

2

J̄0,1J̄0,2
×

j(x−1q, x−1; q2)
(
j(−xq3,−xq2; q2) + qj(−xq4,−xq; q2)

)
j(−x2q3,−xq,−xq2; q2)

.

(3.1)

On the other hand, we have

j(−xq; q2) = xqj(−xq3; q2),

j(−xq4; q2) =
1

xq2
j(−xq2; q2).

Combining (3.1) and the above identities, we arrive at

f2,2,1(q
2,−xq2, q) =j(−xq2; q)m(1/(x2q), q2,−1)− J3

2

J̄0,1J̄0,2
×

2j(x−1q, x−1; q2)j(−xq3,−xq2; q2)

j(−x2q3,−xq,−xq2; q2)

=j(−xq2; q)m(1/(x2q), q2,−1)− J3
2

J̄0,1J̄0,2

2j(xq, xq2; q2)

xqj(−x2q3; q2)
,

which yields (1.7). □
Proof of Theorem 1.4. Based on (1.6), we have

R1(q
−1, q) = 2

J
2

1

J1
m(q, q3,−1),

R1(q
−2, q2) = 2

J
2

2

J2
m(q2, q6,−1).
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Combining (1.8) and (1.9) with the above identities, we arrive at Theorem 1.4 by
simplifying. This completes the proof. □
Proof of Theorem 1.5. Substituting the Bailey pair (2.1) into (2.4) with a = 1,
we have∑

n≥0

qn(−xq)n(−x−1)n
(q)n

=
1

J2
1

( ∑
r≥1,n≥0

q3n
2+2n+3rn+r(1− q2n+r+1)q(

r
2)(xrqr + x−r)

+
∑
n≥0

q3n
2+2n(1− q2n+1)

)

=
1

J2
1

( ∑
r,n≥0

q3n
2+2n+3rn+2r+(r2)(1− q2n+r+1)xr

+
∑
r,n≥1

q3n
2+3rn+(r2)−4n−2r+1(1− q2n+r−1)x−r

)
=

1

J2
1

( ∑
r,n≥0

q3n
2+3rn+(r2)+2n+2rxr −

∑
r,n≥0

q3n
2+3rn+(r2)+4n+3r+1xr

−
∑

r,n≤−1

q3n
2+3rn+(r2)+2n+2rxr +

∑
r,n≤−1

q3n
2+3rn+(r2)+4n+3r+1xr

)

=
1

J2
1

( ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq6(
n
2)+3nr+(r2)(−q5)n(−xq2)r

− q

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq6(
n
2)+3nr+(r2)(−q7)n(−xq3)r

)

=
1

J2
1

(
f6,3,1(−q5,−xq2, q)− qf6,3,1(−q7,−xq3, q)

)
,

which is (1.10).
Substituting the Bailey pair (2.1) into (2.5) with a = 1, we get∑

n≥0

qn(−xq)n(−x−1)n
(q; q2)n

=
1

(q; q2)∞(q)∞(1 + q)
×
( ∑

r≥1,n≥0

(−1)nqn
2+2rn+r+(r2)(1 + q2n+1)(xrqr + x−r)

+
∑
n≥0

(−1)nqn
2

(1 + q2n+1)

)
.

For the sums of the right-hand side of the above identity, we have∑
r≥1,n≥0

(−1)nqn
2+2rn+r+(r2)(1 + q2n+1)(xrqr + x−r) +

∑
n≥0

(−1)nqn
2

(1 + q2n+1)
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=
∑
r,n≥0

(−1)nqn
2+2rn+2r+(r2)(1 + q2n+1)xr

+
∑

r≥1,n≥0

(−1)nqn
2+2rn+r+(r2)(1 + q2n+1)x−r

=
∑
r,n≥0

(−1)nqn
2+2rn+(r2)+2r(1 + q2n+1)xr

+
∑

r.n≤−1

(−1)−n−1qn
2+2rn+(r2)+2n+2r+1(1 + q−2n−1)xr

=

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq2(
n
2)+2rn+(r2)qn(−xq2)r

+ q

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq2(
n
2)+2rn+(r2)q3n(−xq2)r

= f2,2,1(q,−xq2, q) + qf2,2,1(q
3,−xq2, q),

which is (1.11).
Substituting the Bailey pair (2.1) into (2.6) with a = 1, we obtain

∞∑
n=0

qn(−xq)n(−x−1)n

=
1

J1

( ∑
r≥1,n≥0

(−1)nq3n(n+1)/2+(2n+1)r+(r2)(xrqr + x−r)

+
∑
n≥0

(−1)nq3n(n+1)/2

)

=
1

J1

( ∑
r,n≥0

(−1)nq3n(n+1)/2+(2n+2)r+(r2)xr

+
∑

r≥1,n≥0

(−1)nq3n(n+1)/2+(2n+1)r+(r2)x−r

)

=
1

J1

( ∑
r,n≥0

(−1)nq
3n2

2 + 3n
2 +2nr+(r2)+2rxr

+
∑

r,n≤−1

(−1)−n−1q
3n2

2 + 3n
2 +2nr+(r2)+2rxr

)

=
1

J1

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq3(
n
2)+2nr+(r2)q3n(−xq2)r

=
1

J1
f3,2,1(q

3,−xq2, q),

which is (1.12).
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Substituting the Bailey pair (2.1) into (2.7) with a = 1, we deduce

∞∑
n=0

qn(−xq)n(−x−1)n
(−q; q2)n+1

=
1

(−q; q2)∞(q)∞

( ∑
r≥1,n≥0

(−1)nq2n
2+2n+2rn+r+(r2)(xrqr + x−r)

+
∑
n≥0

(−1)nq2n
2+2n

)

=
1

(−q; q2)∞(q)∞

( ∑
r,n≥0

(−1)nq2n
2+2nr+(r2)+2n+2rxr

+
∑

r≥1,n≥0

(−1)nq2n
2+2nr+(r2)+2n+rx−r

)

=
1

(−q; q2)∞(q)∞

 ∑
r,n≥0

−
∑

r,n≤−1

 (−1)n+rq4(
n
2)+2nr+(r2)q4n(−xq2)r

=
1

(−q; q2)∞(q)∞
f4,2,1(q

4,−xq2, q),

which is (1.13). This completes the proofs. □
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