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Abstract. In [5], Berezin and Karpelevich gave, without a proof, an explicit
formula for spherical functions on complex Grassmannian manifolds. A first
attempt to give a proof of Berezin-Karpelevich formula was taken, in [16],
by Takahashi. His proof contained a gap, which was fixed later, in [10], by
Hoogenboom. The aim of this paper is to generalize Berezin-Karpelevich for-
mula to the case of x-spherical functions on complex Grassmannian manifolds
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1. Introduction

Spherical functions lie at the heart of harmonic analysis on Gelfand pairs. Recall
that for G a locally compact group, K a compact subgroup, the pair (G, K) is
called a Gelfand pair if L' (K\ G /K) is commutative under convolution. In the
case where G is a connected Lie group and K a compact subroup, it is known from
[17] that (G, K) is a Gelfand pair if and only if the algebra D (G/K) of G-invariant
differential operators on G/K is commutative.

In this context, spherical functions are normalized joint eigenfunctions of the
commutative algebras D (G/K) and they are in one to one correspondence with
irreducible unitary representations of G with a K-invariant vector.

Spherical functions appear also in the Peter-Weyl Theorem on L? (K\G /K)
and in the Placherel Theorem for spherical transform, which is a generalization of
the Fourier transform to Gelfand pairs.

Given a Gelfand pair (G, K), to find explicitly the corresponding spherical func-
tions is a very difficult problem, which is widely open. In some special cases such as
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complex Grassmannians and their noncompact duals, an explicit formula is given
(see [5], [16] and [10]).

In the case where G/K is a symmetric space of noncompact type, Harish-
Chandra gave an integral representation for spherical functions on the pair (G, K).

Our main motivation for studying spherical functions came from the study of
convolution of orbital measures on symmetric spaces. In a series of papers, [3],
[4], [1], and [2], an explicit formula for spherical functions, or some estimates of
those functions, was crucial in the study of the regularity of the Radon-Nikodym
derivative of convolutions of orbital measures on symmetric spaces.

For a character xy : K — C, a notion of x-spherical functions on (G, K) is
defined, and reduces to the usual notion of spherical functions in the case of a
trivial character. For more details see Section 2 of this paper, [15], or [7].

The aim of this paper is to extend Hoogenboom’s work, [10], to the case of x-
spherical functions. To state our main result, let us fix some notations. Consider the
non-compact symmetric space G/K, where G = SU(p,q), K = S(U(p) x U(q)),
p,q are integers such that, 1 < ¢ < p, and let g (resp. £) be the Lie algebra of the
Lie group G (resp. K), g = €@ p a Cartan decomposition of g, u =€ @ /—1p be a
compact real form of gc¢, the complexification of g, a a maximal abelian subspace of
p, and a* its dual. For an integer [, let x; : K — C be a character of K defined as
in section 2. Let U be the group with lie algebra u, then U = SU(p+¢q). Let AZJr be
the set of highest restricted weights of y;-spherical representations of U. By fixing
a basis of a we can identify a with R? and for an element Hy = (t1,...,t;) € a, we
put ar = exp(Hr). Our goal in this paper is to prove the following.

Theorem 1.1. Let A € af, where af. is the complezification of a*. The x;-spherical
function ox; on G = SU(p,q) is given by
exilar)

det {(Z)F1 (B4 +1+X), 2K+l +1-XN) . k+1; —sinhQ(tj)) ) }
=C ©J

23a(g—1) [Lic; (A7 = A3) I1;; (cosh(2t;) — cosh(2t;))

q
. Hcosh”l(ti),
i=1

where for T = (t1,...,ty) € RY, and

q—1
C = 224(e-1) H [(k +j)q7jj!}
i=1

As a consequence of Theorem 1.1 we deduce the following.

Theorem 1.2. Let )\ € Af such that

A= 2my+ (I, 2me +[I],... . 2mg + |I]),m; € Z,my Zmg 2 -+- 2 mg = 0.
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Then the x;-spherical function iy on U = SU(p + q) is given by
Y (exp (V-1Hr))
C det |:(2F1 (p+ | —i4+1+m,i—m; —qk+ 1;sin2(tj)) ) _ ]
ij

Hi<j (c(my) — c(my)) HKJ»(COS(QQ) — cos(2t;))

q
. Hcosl”(ti)
i=1

where

q—1
C = 939(a—1) H [(k+ )75,
i=1
and
emy)=(mi+q—0)(m;+q—i+|l|+k+1).

The paper is organized as follows. In Section 2 we introduce some notations and
structural results on y-spherical functions on Hermitian symmetric spaces and we
review basic facts about complex Grassmannians. In Section 3, we give an explicit
formula for the radial part of the Laplace-Beltrami operator on SU(p, ¢)/S(U(p) x
U(q)). In Section 4 we give a proof of the Theorem 1.1. In Section 5 we review
some facts about x-spherical representations on Hermitian symmetric spaces and
we state Theorem 1.2.

2. Preliminary results

Let G be a locally compact Hausdorff group and K C G a compact subgroup.
Let x : K — C be a character of K. A continuous function ¢ : G — C is called
x-spherical function or elementary x-spherical function if ¢ is not identically zero
and for any h,g € H,

/K p(gkh)x(k)dpL (k) = ¢(g)e(h),
where pg is the normalized haar measure on K. For G a non-compact, connected,
simply connected, and semisimple Lie group, let g be its Lie algebra and
g=top,
be a Cartan decomposition of g. Then
u=Etq/—1p,

is a compact real form of gc, the complexification of g. Let U, K be Lie groups
with Lie algebras u, €, respectively. Denote by 3(¢) and Z(K) the centers of £ and
K respectevely. Let [K, K| be the commutator subgroup of K, i.e., the subgroup
generated by the set

{aba"'b™" | a,b € K}.
Then [K, K] is the Lie subgroup K with Lie algebra [¢,€]. Moreover, we have
ttp3)=¢t and [K,K|Z(K)=K.



32 M. AL-HASHAMI

Let H € 3(¢) be a non-zero element such that exp (tH) € Z (K) and exp(tH) €
[K, K] if and only if t € 2nZ. For an integer [, let x; : K — C be a character of
K such that

1 if 7 € [K, KJ;
xi (r) =
exp (itl) if x = exp (tH).

It is known that every character of K is of the form x; for some integer I (see
[12], Proposition 3.4). In all what follows, we will assume that x; is not trivial i.e.,
3(8) # {0}. For g € G, let k(g) € K and H(g) € a be elements uniquely determined
by the Iwasawa decomposition G = K AN, i.e., g € k(g) exp H(g)N. For | € Z and
A€ ag let

— 71 — —
eailg) = /K e~ WIUH Ry (k™ k(g7 k) dp (k).

The function @y is a x;-spherical function and any x;-spherical function on G/K
is of this form for some X € af. (see [14], Proposition 6.1).
In what follows, we consider the non-compact Lie group

G=S8U(p,q) ={9€SL(p+4q,C)| 9" Ipqg = Ip,q}ﬂ

where [, is the k x k-identity matrix and

— Ip 0
Ip,q - (O Iq) :
Let g = su(p, q) be the Lie algebra of SU(p, ¢), then for n = p + ¢,
su(p,q) = {A € Myp(C) | ALy g + IpgA =0,Tr (A) = 0}

Fix a Cartan decomposition g = ¢ + p, where

e:{(g Jg>|AEu(p), Beu(g) and Tr(A)+Tr(B)=O},

P:{<ZOT §>|Z€Mp,q(c)}-

Let u = £++/—1p be a compact real form of sl(n, C), the complexification of su(p, q).
Thus U = SU(n) is the lie group with lie algebra u. Let T = (t1,t2,...,t;) € RY,
and let

and

L tq
Lo
0 10
Lo
,,,,,,, Lo Lta_ .
Hr=| 0 10 0
ty | 1
200
Lo

3]
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It can be shown that a = {Hyp | T = (t1,%2,...,t;,) € R?} is a maximal abelian
subspace of p. Let a* denote the dual space of a and let a; € a* be such that

ai (Hi,..1,) = ti-
Let ¥ = X(g,a), be the set of restricted roots which consist of
toy, £20;, (1 <i<gq), and £ (s £ ;) ,(1<i<j<gq),
with multiplicities
Mq, = 2k, Maq, =1, and Ma,+a; = 2,

where k = p — q. Let a™ be a Weyl chamber in a defined by

at ={Hy,, 1) €alty >ty > .. >t;>0}.
The corresponding system of positive restricted roots 1 consists of

a;, 205, (1 <1 <gq), and (o £a;),(1<i<j<gq).
With respect to a™ the simple roots A* consist of the following
ap — o, 0 — Q3,...,04-1 — Qq, B,

where

20y if p=gq,
ﬁq = .
ay if p>q.

For T' = (t1,...,t;), ar = exp Hy and [ € Z, put

OF ={as},, O = {20}, Oy, ={ai £ ajhicici<g

s’

mai(l) = Ma; — 2|l|, mQ!li(l) = Maq, + 2‘”’ Ma;to; (l) = Ma;tay,

and
Iy =23 malt)
p= 5 MaQ, p(l) = 5 mq(l)a.
acTt acxt
Then
q
p=) (k+1+2(q—i))a,
=1
and

pM)=p+ 11 D> a=> (k+[l|+1+2(qg—1i))o.

acot 1=1
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3. The radial part of the Laplace-Beltrami operator

For X = G/K a non-compact symmetric space, let A;j(Lx) be the x;-radial part
of the Laplace-Beltrami Operator on X. Then

Al(Lx)=La+ Y ma(l)coth(e)Aq,
aext

where L 4 is the Laplacian of A.o, where 0 = eK, where e is the identity of GG, and
A, € ais determined by

(Aq, H) = a(H), for all H € a.
The goal of this section is to prove the following

Proposition 3.1. For X = SU(p,q)/S(u(p) x U(q)), we have

A(Lx) = [ (Zzu)ow—cl],

where
w(ar) = 9—za(a-1) H (cosh(2t;) — cosh(2t;)),
i<j
2 d
Liy = 5 + (2k coth(t;) 4 2 coth(2t;) 4 2 |l tanh(t;)) =,
T 0t ot;
and

4
o =ata=1) (Gla+ 1+ 206+ 1)),
To prove Proposition 3.1 we need the following

Lemma 3.2. Let ai,...aq € R be such that a; # a; for all i # j. Thus for d > 3,
we have

d -1 d 1 1
> |lai+a? Zal_ j > o || T gd-DE@-2) (3.1)
=1 j=1 s=j+1
i s
Proof. From the identity
a; + a? aj-i-a? as + a? 1
(ai —aj)(ai —as)  (a; —ai)(a; —as) (a5 —a;)(as — a;)
where a; # a; for all ¢ # j, we deduce that for d = 3 we have
3 2 3 1
I RN o o=
=1 j=1 s=j+1
¢ Ss#£1
al—i-a% ag—i-a% ag—i—a%

" (a1 —a2)(ar —a3) | (a2 —a1)(az —az)  (az —a1)(as — az)
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Assume that formula (3.1) is true for some d > 3, then

d+1 d d+1 1
; as + of Zaz Z a; — as
i=1 Jj= s=j+1
j;é S7$’L'
d -1 d )
= a; —|—a
g Z ;ai_aj s:;&-lai_as
i s
d d ) )
et ()
> a3t (s
J#i
d 1 d 1
+ (ags1 +ag,) Yy ———— S
i ; agy1 — aj s_]z;l agy1 — as
:fd(d—l )(d — 2+Z ai +af
= (ai —aj)(a; — ag41)
a; + a2 ag + a2
B NRD DAL Rt
(a5 —ai)(aj —aar1) = (a1 — ai)(aar1 — a))

:fd(d—l )(d — 2+Z< ai + o]

i<j - aJ (az - ad+1)

) 2
n a; + aj Qd+1 + Qg yq )

(aj —ai)(aj —agr1)  (aap1 — ai)(aar — aj)
d(d—1)
2

= éd(d— 1)(d—2)+

1
= gdld+1)(d—1).

Lemma 3.3.

w ! <Z &,z) w=gq(g—1) (g(q +1) 4 2(k+ l|)> .

Proof. Note that

10w 2‘1: 2sinh(2t;)
ot; = cosh(2t;) — cosh(2t;)’

i
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02w I 4 cosh(2t;)
1 %
v Z cosh(

ot? = 2t;) — cosh(2t;)
J#i
= 1 d 1
8sinh?(2¢;
+ 8sinh( )z:: cosh(2t;) — cosh(2t;) S;ﬂ cosh(2t;) — cosh(2t,)
i s#i
Then
i zq: 4cosh(2t:) + (2k coth(t;) 4+ 2 coth(2¢;) + 2|!| tanh(t;)) w_la—w
prll fo cosh(2t;) — cosh(2t;) ! ! ! ot;
J#i
B 42": z": (2 + 21]) cosh(2t;) + 2(k — |I]) cosh®(t;)
B Pt cosh(2t;) — cosh(2t;)
j#i
=2q(q— 1)k + | +2). (3.2)
By Lemma 3.2, we get
q g—1 1 q 1
inh?(2t;
i:Zl sinh’( ); cosh(2t;) — cosh(2t;) S:;_I cosh(2t;) — cosh(2ty)
J#i s
q q—1 1 q 1
= (sinh?(#;) + sinh®(#;)) : : , .
; ; sinh®(t;) — sinh?(t;) sg_:H sinh?(t;) — sinh(t,)
i s#i
1
= gala—1)(a-2). (3.3)
The lemma follows from (3.2) and (3.3). O

Proof of Proposition 3.1. Let {H;}! | be a basis of a, H; = H, . 0.1.0,..0)>
where 1 is on the j-th position. Note that

1 1

1
Aa- = ?HZ A2ai = %Hl, and A(Oq:l:aj) = E(HZ ZlZHJ)
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Zq: *iwi—zq: 2sinh(2t;) ! 9
Y ot; ot; i ’ <= cosh(2t;) — cosh(2t;) | Ot;

i=1 i=1 1<5<q
J#i
B Z 5 sinh(2t;) 0 5 sinh(2t;) 9
B = cosh(2t;) — cosh(2t;) Ot; cosh(2t;) — cosh(2t;) 0
sinh(2¢;) 0 sinh(2t;) 0.
)0

2]

oy (smh(t —t;) sinh(t; +t;) Ot; sinh(t; —t ;) sinh(t; +¢;

0 0 0
coth(t; )(815 875) Zcotht +t;) (8t+8t>

J 1<j

A

Thus by definition of A; we have

dnA(Lx) =4nLy +4n Z mea (1) coth(a)Ag
a62+
q

:Z - Z k — |I]) coth(t )+2(1+21|)coth(2tj))£j

= J

j— =
o 0 o 0
+Z260th(ti_tj)(at o, >+Z2cotht +t)(8ti+atj)

1<j 1<J

‘ <5}

5 +2 ((k: — |1]) coth(t;) + (1 + 2|I]) coth(2¢;) + w_lgf) aﬂ

h
Il
_

|
\'M@

ow\ 0
' ' ' —1ow) 9
2 (k coth(t;) + coth(2t;) + [l tanh(t;)) +w 8ti> 8tz}

©
Il
=

Il
"

0w D
ot; Ot;

I
'M*‘

ﬁ@l + 2w

«
I
A

For f € C?(R), we have

2

Lijowf= (;2 +2((k — |1]) coth(t;) + (1 4+ 2 l|)COth(2ti>)8ati) (wf)

Oow 0O
= (2815 815 + wl; l+£zlw)f

Hence

Ow 0
OJ_l (£i7l @) w) — w_lﬁmw = ,C N + 2w _187&}87 (34)
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Therefore by using (3.4)) we have

a
ow 0

AnA(Lx) = Lig+2w ' ——

nauex) =3 [eu 2 o
q q

= Zw_lﬁiyl ow — Zw_lﬁi,lw
i=1 i=1
The Proposition follows from Lemma 3.3. [

4. Proof of Theorem 1.1

The aim of this section is to give a proof of Theorem 1.1 and to prove it the
following is needed.

Lemma 4.1. Let o, 5,A € C, A#1,2,...,t>0. Then

B71) = (¢ — o)

<ol <;(a+ﬂ+ 1-X), %(a+6+ 1—-X),1- )\;sinh_Q(t)) .

is a solution of

_ d du(t
05 {002 = 02 - @4 5+ 17ute) (@)
where oFy (., .,.;.) is the Gauss hypergeometric function and

Bap(t) = (e = 7> (ef 4 o7t
= 92(@+B+D) inh 29 (1) cosh T (¢).
Proof. The differential equation (4.1) can be written as follows

d?u(t)
dt?

+ [(2ac+ 1) cosh(¢) sinh ™' () + (28 + 1) cosh™ " (¢) sinh(t)] Ch;it)

= (N2 = (a+ B+ 1D?)u(t).

Leta=1(a+B+1-)),b=L1(a+B+1+N),c=a+]1, and z = —sinh?(t).
Then

(ab)u = —i (()\2 —(a+ 0+ 1)2)u)
= —i (C(litg + [(Qa + 1) cosh(t) sinh ™' (¢) + (28 + 1) cosh™*(¢) sinh(t)] Cj;;)
= 2(1— z)% + %(1 - 22’)% + % [(2a +1) cosh®(t) + (28 + 1) sinh2(t)} %
=z(1- z)% +(c—(a+b+ 1)2’)%

By [6] Equation 2.9(9) the result follows. O
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Since
k11|
Q= Dy

— (et _ eft))\f(k+|l|+1)

1 1
. 2F1(§(—k + I +1-=M), 5(16 + | +1—=X),1—X; —sinh™2(¢)),

is a solution of

_ 0 Ou(t)
St )35 { Skt 2} = 02 = (e i+ 1))
and since
0 ou 0%u ou
1 _

6k’|”(t)a {§k’l|(t)81€} =92 + ((2|1] + 1) tanh(¢) + (2k + 1) coth(t)) N

0%u ou

=z T 2(k coth(t) + coth(2t) + I tanh(t))g

= ‘Ci,lua

we deduce that ®,,; is an eigenvector of the operator £;; and the corresponding
eigenvalue is (A? — (k + |I| + 1)?), i.e.,
Lig®xp= A = (k+ [l +1)*)Px, -

For Hr € at, A= (A1,..., ) €af,l € Zand X\; #1,2,3,..., put

a

1 Pxi(t)
P a — i=1 is

()
and

A= {anaj | n; € Z+,Oéj S Z}
j=1

Theorem 4.2. The function @y, defined in (4.2) has the following properties
(1) @, satisfies

Ai(Lx)Prp = (A A) = (p(D), p(1))) P -
(2) @y, has the series expansion
‘D,\,z(aT) = oA=p(O)(T) Z FH’Z()\)Q—M(T)’
peEA

where Hy € a™, and (F#’l)ueA is defined by the recurrence relation

Loy =1,
(a1~ 2Tyt = 2 e (D) S Tzt W+ pl0) — 2k — A, ).

Let
0, if s is odd

Ql)w S = (4'3)

s/2 (—25+FNi—(k+[U]+1) .
2550 i ( s/2—j ) if s is even
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where
22 (S(k+ 1 +1- 1)), ) (3=l +1-7)), )
(I_Ai)jj! .

To prove Theorem 4.2 we need the following.

Thig =

Lemma 4.3. Fort >0, ®,,; has a convergent series expansion
oo
(1) = MDY TOL e
s=0
where Ql)\s is as in (4.3).

Proof. Using the identity

2F1(a/a b7 [ Z) = (1 - Z)_bQFl <b7 c—a,c Zi1> B
we deduce that
(I))ml(t)
= (¢ — ety TEHID g (% (k41 +1-A), % (k410 41— M), 1= Ai— sinh_Q(t))
3 i —(k+[1+1))
= [(et - e_t)2 (1+ sinh_z(t))} :

1 1 sinh™2(¢)
o [ Sk +1 =), = (BE=|l| +1=X),1 = N\j; ————
oy (3 e+ 1= 0 3 (e 10 1= 2 S0 )

S s Y o (% el +1=N),= (b=l +1—\),1— )\i;cosh_z(t)>

N =

_ e(Aif(kJr\l\Jrl))t (1 + 672t)>\i7(k+|l\+1)
i (Ge+1+1-2),) (G =l+1-x)),)
(1 - )‘i)]’ J!

Since for t # 0, 0 < cosh™®¢ < 1, and since \; # 1,2, ..., the series (4.4) is
absolutely convergent. Therefore, we have

(cosh™?(t))? (4.4)

j=0

Dy, (1) = o= (k+|l[+1))t (1 + 672t)>\1:—(k+|”+1) Z’an‘(et +eft)72j
j=0

o0
o 94 _ =254+ —(k+|l|+1
— = (kI +1))t Z%Me 2jt (1 +e Qt) J+Xi— (k+|U|+1)

Jj=0
,, > gt (=25 N — (B o,
— i (k+\l|+1))tz,y>\iﬂje 2Jtz< ) o 25t
7=0 s=0
(oo} S .
—2j4+ X — (k+|l|+1 o
=3 | Lo (N ) e

s=0 \ j=0
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Proof of Theorem 4.2. (1) Denote by (.,.), the inner product induced by the
Killing form of su(p, ¢) on af. Then for A = (A1,..., Ag), p = (p1, .., 4g) € ag

q

i=1

So we have

e o
)]
i

q
=w [ D L@t H(I))\l
=1

lsﬁj

i (ar)

(A2 = (F + 1]+ 1)2) @y, 1 (1) H@A !
175]

(i — (k+ 1| +1) ) lﬂqm

= (4n(\,A) = q(k +[1] + 1)%) @x(ar).

<
I
—

\
S
L

Since

nlp(l), p(D)) = Y _(k + [l +1+2(q — 1))

M=

@
Il
-

|
M=

(+1+1)>+4(qg—i)* +4(k+ ||+ 1)(g — 1))
1

.
Il

q—1
=q(k+ 1] + 1) +Z4i(i+k+ 1| +1)

+4z[q — 2qi) + ((k + [1])g — 2(k + [11)3) + (¢ — 2i)

=q(k+ 1| +1)* +a,

we get
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(2) Since ap € At and t; —t; > 0 for all i < j with

1_ 2(t — Z et
e

SO
IT5_1 x,(ti)
Dy (ar) = ==
a1(ar) w(ar)
T ioa Q= (b))t T4 [Z fst]
= e2(n—1)t1+2(n—2)ta++2t, 1H (l—e 2(t;—t; ) efz(ti+2tj))
q
— o1 M= (k+]l+1)=2(g—1))ts H [ o~ 2siti ]
e 1
=1 Ls;=0
’Hsz t)z 25t+t]
e
i<j |J'—O
q o] [e%s}
= O ] [ZQ] I [z Y s ]
i=1 Ls;=0 i<j Lr=0

The recurrence relation follows from part (1) and the expansion in part (2).
(]

Let A= (A1,...,A¢) € at and suppose that A\; € Z, A\, # A, for i # j, and put

Cl()\l) e Cl()\q)

C(\ID) = , (4.5)
(—1)%(1(!1*1) det [ (x\?(jil)) . }
where
N QFHUHI=MT (1 4+ E)T(\g)
a(i) = PG E++1+X))0G k= +1+ X)) (4.6)

Lemma 4.4. Let C(\,1) be as in (4.5), then

. o /{ae, )
cob=a ]I 5 <A o))

ozEOiZ

27N ()
.Hrl T RS VAT F (X B W)

=1 2
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Proof. Since

L((\ a)/{a, (o, a)
11 T (Lm, + (A, a}/ H r 1+ A a>/<a,a>)

acot 2™

(2)2(a=1)(—1)z4(a=1)

et {(AZ?(jl))i j] ’

)

we have
9a(g—1) 2‘1(‘1 1 9 27MT( N
b= - (G-1) Hr 1 k+|l|+1+)\»))F<(1)(k—|l|+1+>\'))
det|:</\ I ):| i=1 2 ¢ 2 !
ij
where

co = 2q(k+\l|—q+2)r(1 + k)4
O
Proof of Theorem 1.1. Assume that \; ¢ Z and A\; # £, for i # j. The idea of

the proof is to make use of Harish-Chandra expansion (Theorem 3.6, [15] ), where
we show that ¢, ; can be written as

OAL =M Z (WA, 1) Py 1,
weW

where W is the Weyl group of G, and ¢(), 1) is given by

. a)/{a, @)
A1) = co 1} 2ma+()\ a)/{a, a))

H 27N (\)

LT (3 Gma, +1+X+0))T (3 (Gma, +1+ X =1))

<.

Using the fact that ¢z i(a(,...0)) = 1 we deduce the value of the constant C.
Let

(k+|+1=X),k+1; —sinh2(tj)) .

N |

1
Erua(ty) =F (5 (6 411+ 14 ),

Since
2F1(a,b,¢;2) =B1(—2) "% F (a,1—c+a,1 —b+a;z"")
+ By(—2)" bRy (b7 l—c+0b1—a-+b; 271) ,



44 M. AL-HASHAMI

where

Pxii(ts)
1 1
- B Sinhf(k+|l\+1)f)\i (tj)
1 1
o F (2 K+ +14+N), B (=k+l+1+X),1+N; —sinh2(tj)>
+ B, sinh~ I+ (t;)
1 1
o F ( K+ +1-=X), B (=k+l+1=X),1—=X; —sinhQ(tj)>
= (=X) P, 1(tj) + c(Ni) P, 1 (t),

where ¢;();) as in (4.6). So we have
C~'w(ar)pa(ar)
UL
det | @ruattp)
Hi<j()‘12 - )‘3)
desq (Sgn(a) ngl (ﬁ)\a(s) (ti))
I_Iz'<j(>‘z2 - )‘?)
desq (sgn(a) HZ=1(Cl()‘o(s))q)%a(d),l(ti) + cl(*)‘a(s))q)—)\g(s)yl(ti)))
Hi<j ()‘3 - A?)

des’q <sgn(a) Z_ai:il Cl(sl/\o(l))@é‘l/\a(l),l(tl) cee Cl(eq)‘a(q))q)Equ(q)J(tq))

_ i=1,...,q
Hi<j(/\2 - )‘2‘)
sgn(o)ci(e1 Ao (Eqre
_ (@)ci(e1hon)) - - - cileq <q> H‘I’s ot

0es, Ha(i)<a(j)((€i>\0(i)) Ao()?
g;,=*x1

Thus we have

oxilar) =m Y C(sA ), (ar)

seW
where C(A,1) as in (4.5) and
W = {S : S(tl, ce ,tq) = (51t0(1), ce. ,6qt0(q)), g, =21, 0 € Sq}
To complete the proof we need to show that

g—1
C =22 DT [(k+5)774!] .

i=1
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Note that

2F1(
z2=0

(= INT [RH D2 = A2 (R 1 4 2m— 1) = A7
(4) (k+1)(k+2)...(k+m) '

dm

1
e (k+|l|+1+)\i),2(k+|l+1)\i),k+1;z>

DO | =

Put
Lij=((k+ U+ =X2) ((k+ 1 +3)% =) ((k+l| +2i —1))> = A7),
by [10] Lemma 4.1, we have

C' = pa(ao)

=0 Jim paor)

det [(zFl (R4 +1+X), 2R+l +1=-X), k+1; —sinh2(tj)) ) J}

= lim
T—0 259D T, (A2 — M) [],_;(cosh(2t;) — cosh(2t;))
det {(ZFl (3 (o 0l +14 0) & (e [l 1= )k + 13 = sink®(1) ) }
= p (1) 22 3 — J
T-0 24(q HK],()\Z. - A9) Hi<j(smh (t;) — sinh”(t;))
1 1
(—21)1'1,1 (_21)11,(1
2—4(a—1)(—1)39(a-D) 2 (’f.+1) 2 (k.+1)
[T T, OF = X9)
(-1 T, 4 4 (=17 1T, 1.,
PEDEFDFFD) - (ktg=1) " P OFFDEF2)(kha-1)
1 1
(71)Q(Q*1)272q(q71) Il.’ 1 tee Il., q
[T0 ik + D)1= Ty (=A%)
Tyt o Ty,
1
_ 2-2a(a—D) ((+1+12=23) o ((k+]1+1)2—22)
T102) itk + )a=i [T, (A2 — A2) : : :
(s + 1 +1)2=23)" ((k+ 1 +1)2 = 22)"~

2—24(¢g—1)
I ik i)

The result for arbitrary A; follows from analytic continuation (see [10], Lemma
4.1). O

1




46 M. AL-HASHAMI

5. x-spherical functions on complex Grassmannians

By the notation of Section 2, let 7 : U — GL(E,) be a representation of U, y;
be a character of K and let

El={XcE |n(k)(X)=xi (k)X forall k € K}.

An irreducible unitary representation (m, E;) of U is said to be x;-spherical if
EL # 0. Lets denote by U, the set of x;-spherical representations of U and A;" the
set highest restricted weights of x;-spherical representations of U.

Theorem 5.1. Let {aq,...a.} be an orthonormal basis of a*, the dual space of a.
Then the positive restricted roots Xt is one of the following two sets:

Case I: Y7 ={2q;,(j+ag)|1<i<r, 1<k<j<r}
Case II: X1 ={a;, 20, (aj £ ap) |1 <i<r, 1<k<j<r}

<2\.’O;f.>> J=1...,m
mj — g
AiX)  j=o0.

Put

then by [12], Proposition 7.1 and Theorem 7.2, we have the following

A= {)\Ea* |mj —m; € 227 (1 <i < j<n), (5.1)
0 (CaseI)
el +2zZ7, = )
m € I+ o {l (Case II) }

For A\ € A?’, lets denote by (my, E)) a x;-spherical representation of U with
highest weight A and put E} = EL . Let e) € E{ be such that |[ex]| = 1. Let
Uai(u) = (ex,ma(u)ex)g,, forallueU.
The function ) ; is a x-spherical function on U and any x;-spherical function on
U is of this form (see [9], Lemma 4.3).
Let U= SU(p+4q), K=5SU(p) -U(g), A= (A1,...,Ag) € A;. Then by (5.1)
we have

<)\, CY1>

(o, a1)

=\ € |l| +2Z7",
SO
A1 = |I| + 2m;, for some m; € Z7.
Also for 2 < i < ¢, we have
i — A € 2Z+7
that is
i = || + 2m;, for some m; € Z™.
Hence Az+ consist of all \ € Al+ such that
A= (2m1+|l|72m2+|l|372mq+|l|)7m1 €Zaml ZmZ Z >mq ZO

By Theorem 1.1 and [9] Lemma 4.6 we get Theorem 1.2.
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To adopt Berezin-Karpelevich notation, let

1 1-—
P (@) = Do L R (cnn ot B+ Lat 1, —)

be the Jacobi polynomial of degree n and let

. PRI (cos(22))

P, (cos(2z)) = P(k’l”)(l) =oFi(n4+k+|l| +1,—n,k + 1;sin*(x)).

Therefore we have

Theorem 5.2. Let )\ € A?‘,
A= (2my +|I|,2me +|l],...,2mq +|I]),m; € Z,mq > mg > --- > my > 0.
Then the x;-spherical function ¥y on U = SU(p + q) is given by
C det [ (Pm,l(cos(%j)) B ] T2, coslI(t;)
..... D)= -
ta) HKj(c(m) —¢(n;)) Hi<j(cos(2tl-) — cos(2t;))
where n; = m; + q — j, c(n;) = n;(n; + || + k+ 1), and

qg—1

C = 23a(a-1) H [(k+5)77941] .

i=1

Ui (V=1H,
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