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Abstract. In our previous work we gave a treatment of certain aspects of multi-
plication modules, projective modules, flat modules and like-cancellation mod-
ules via idealization. The purpose of this work is to continue our study and
develop the tool of idealization in the context of comultiplication modules.

1. Introduction

Let R be a commutative ring and M an R-module. M is a multiplication module
if every submodule N of M has the form IM for some ideal I of R. Or equivalently
N =[N : M|M by [12] and [16]. If M is a multiplication module then M is locally
cyclic and the converse is true if M is finitely generated by [16] Proposition 1.
The author and Smith introduced and investigated the concept of idempotent sub-
modules in [11]. A submodule N of M is idempotent if N = [N : M|N. If M is
multiplication then N = [N : M]?M. Several properties of such submodules are
given in [9] and [11]. A submodule N of M is called pure in M if IN = NNIM
for some ideal I of R ([18]).

Ansari and Farshadifar introduced and investigated the dual notions of such
modules. Let N be a proper submodule of N. Then N is a comultiplication in M
if N =[0:y annN], N is coidempotent in M if N = [0 :j; (annN)?] and N is
copure in M if [N :ps I] = N + [0 :ps I] for some ideal of I of R, see [14], [15] and
[1]. Several properties of these modules are also considered in [10]. It is shown
for example that for any two submodules K and L of an R-module M, if K is
comultiplication (resp. coidempotent) in M such that K C L and ann K C ann L,
then L is comultiplication (resp. coidempotent) in M ([10] Proposition 2.2). It is
also proved that if K and L are comultiplication (resp. coidempotent, copure) in M
such that [K : L]+ [L : K] = R, then each of K + L and K N L is comultiplication
(resp. coidempotent, copure) in M ([10] Proposition 3.2). We call a module M a
comultiplication module if every submodule N of M is comultiplication in M, M is
coidempotent if every submodule N of M is coidempotent in M and M is copure
if every submodule N of M is copure M. Consequently, R is a comultplication if
every ideal I of R is comultiplication, that is I = ann(annI), R is coidempotent
if every ideal I of R is coidempotent, that is I = ann (ann [ )2 and R is copure if
every ideal I is copure, that is [I : J] = I 4+ ann J for every ideal J of R.
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Let R be a commutatitve ring with identity and M and R-module. The R-module
R(M) = R(+)M becomes a commutative ring with identity under the product
(rym)(r',m') = (rr/,rm’ + r'm) , called the idealization of M. The idealization
of a module is a well-established method to facilitate interaction between a ring
on the one hand and a module over a ring on the other. The basic construction
is to embed the module M as an ideal in the ring R(M) which contains R as a
subring. This technique was used with great success by Nagata in [19]. For a
comprehensive survey on idealization, [13] and [17] can be consulted. 0(4)M is an
ideal of R(M) satisfying (0(+)M)? = 0 and the structure of 0(+)M as an ideal of
R(M) is essentially the same as the R-module structure of M. Every ideal which
is contained in 0(+)M has the form 0(+)N for some submodule N of M and every
ideal that contains 0(+)M has the form I(+)M for some ideal I of R. Prime
(maximal) ideals of R(M) have the form P(4)M where P is prime (maximal) ideal
of R. Homogeneous ideals of R(M) have the form I (+) N, where I is an ideal of
R and N a submodule of M such that M C N, that is [N :p; I] = M. Ideals of
R (M) need not be homogeneous. R (M) is called a homogeneous ring if every ideal
of R(M) is homogeneous. Let I (4+) N and J (+) K be ideals of R (M), then the
ideal

(TN sy J (HV K] = 11 T)A N K] (+) [N g J]
is homogeneous by [4] Lemma 1 and [3] Lemma 1. Consequently,
ann (I (+)N) = (annI Nann N) (+) [0 :a7 I].

If M is faithful, ann (I (+) N) = annN (+) [0 :ps I]. Let M be faithful multipli-
cation or projective then [0:p I] = (annl) M by [3] Lemma 5 and therefore
ann (I (+) N) =ann N (+) (annI) M. In particular,

ann (I (+)IM)=annl (+) (annl) M.

For any submodule N of M ann (0 (+) N) = (ann N) (+) M. If M is a faithful R-
module then ann (0 (+) M) = 0(+) M and hence 0(4+) M = ann (ann (0 (+) M))
is a comultiplication ideal of R (M) . This shows that 0 (+) Z is a comultiplication
ideal of the ring Z (+) Z but the Z—module Z is not comultiplication because 27
is not a comultiplication submodule in Z ([14]). Also 0(4+)Z is a multiplication
ideal of Z (+)Z. For the Prufer p-group Zp>, 0(+)Zp™ is not a mulplication
ideal of Z (+) Zp® but it is comultiplication. So neither multiplication modules are
comultiplication nor comultiplication modules are multiplication.

In a series of works, the author developed more fully the tool of idealization of
a module, particularly in the context of multiplication modules, projective mod-
ules, flat modules, cancellation like modules, generalizing Anderson’s theorems and
discussing the behavior under idealization of some ideals and some submodules ass-
dociated with a module, see [2]-[9]. It is proved, for example, that if I (+) N is a
multiplication ideal of R (M), then I is multiplication. Assuming further that M
is multiplication then N is multiplication. Conversely, if I is multiplication and N
multiplication such annl + [IM : N] = R, then I (+) N is multiplication. See, for
example, [4] Propositions 5 and 7, [3] Theorem 9 and [2] Theorem 9. If I (+) N
is idempotent in M, then I is idempotent in R and N is idempotent in M by [9]
Theorem 17. It is also shown that if I (+) N is a pure ideal of R (M), then I is
pure in R and N pure in M by [5] Theorem 3 or [6] Proposition 8.
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In this work, we develop the tool of idealization in the context of comultiplica-
tion (resp. coidempotent, copure) submodules. We show in Theorem 2.4 that if
I(+)N is a comultiplication ideal of R (M), then N is a comultiplication in M.
Assuming further M is faithful multiplication then I is a comultiplication. The
same statement holds for coidempotent submodules. If I (+) N is copure in R (M)
then I is copure in R and N copure in M. Proposition 2.5 shows that if I is a
comultiplication (resp. coidempotent) such that ann N C ann [ then I (+) N is a
comultiplication (resp. coidempotent) ideal of R (M) . Finally, Theorem 2.9 gives
necessary and sufficient conditions for the ring R (M) to be a comultiplication ring.

All rings are commutative with 1 and all modules are unital. For the basic
concepts used, we refer the reader to [17] and [18].

2. Idealization of a Module

We start our work by a result showing how properties of a submodule N of M
are related to those of the ideal 0 (+) N of R (M).

Proposition 2.1. Let R be a ring, M an R-module and N a proper submodule of

M. Then the following holds.

(1) 0(4+) N is a comultiplication in R (M) if and only if N is comultiplication in
M and ann (ann N) Nann M = 0.

(2) Let M be faithful. Then 0(+) N is coidempotent in R (M) if and only if N is
coidempotent in M and annN is faithful.

(3) If 0(+) N is copure in R (M) then N is copure in M.

Proof. (1) Suppose 0(+) N is a comultiplication. Then
0(+)N =ann(ann (0 (+) N)) = ann (ann N (+) M)
= ann (ann V) Nann M + [0 :p; ann N].

It follows that N = [0 :p; ann N] and hence N is comultiplication in M. More-
over, ann (ann V) Nann M = 0. The statement is reversible.
(2) Assume M is faithful and 0 (+) N is coidempotent. Then

0(+) N = ann (ann (0 (+) N))? = ann (ann N (+) M)?
= ann ((ann N)? (+) (ann N) M)
= ann (amn N)? ann ((ann N) M) (+) [0 s (amn N)°]
Since M is faithful, ann ((ann N) M) = ann (annN). Also ann (annN) C
ann ((amn N)?) . Tt follows that 0 (+) N' = ann (amn N) (+) [0 147 (ann N)°]

This shows that N = {O :m (ann N)Q} and N is coidempotent in M, and

ann (ann N) = 0. The statement is reversible.
(3) Let 0(4+) N be copure in R(M). Let J be an ideal of R. Then

[0(+)N gy J (+) JM] =ann J N[N : JM] (+) [N :ar J].
But annJ C [N : JM]. Thus
[0(+)N gy J (+) JM] =ann J (+) [N g J].
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On the other hand

[0(+)N gy J (+) JM] =0(+) N 4 ann (J (+) JM)
=0(+)N+annJ Nann (JM) (+) [0 :pr J]
=annJ (+) N +[0:5 J].

This gives that [N :ps J] = N +[0:p J] and N is copure in M.
(]

We have two remarks on the first part of Proposition 2.1. First, it is obvious
now that for any proper submodule N of M, if 0 (+) N is a comultiplication then
N is a comultiplication in M and the converse is true if M is faithful. Second, let
N be a proper submodule of a finitely generated projective R-module M. Then

ann (ann N) Nann M C ann (ann M) Nann M = Tr (M) Nann (Tr (M)) = 0,

see [12] Corollary 3.2. This shows that if N is a comultiplication submodule of
a finitely generated projective R-module M, then 0(4) N is a comultiplication.
Recall that if M is projective then M = Tr(M)M, ann M = annTr (M) and
Tr (M) is a pure ideal of R. Note that

Te(M)= Y f(M),

feHom(M,R)

see for example, [12].
The next result shows how properties of I (+) IM are related to those of I.

Proposition 2.2. Let R be a ring, M an R-module and I ideal of R.

(1) Let M be faithful multiplication. Then I (+)IM is a comultiplication in R (M)
if and only if I is a comultiplication in R.

(2) Let M be faithful multiplication. Then I (+)IM is coidempotent in R (M) if
and only if I is coidempotent in R.

(3) If I (+)IM is copure in R (M) then I is copure in R.

Proof. (1) Let M be faithful multiplication and I (+) IM is a comultiplication.
Then

I(+)IM = ann (ann (I (+)IM))

=ann (ann] Nann (IM) (+) [0 :ar I])

=ann (ann ] (+) (annI) M))

=ann (ann]) Nann ((annl) M) (+) [0 :pr ann I]
(

=ann (ann]) (+)ann (ann ) M.

This shows that I = ann (ann ) and I is a comultiplication in R. The state-
ment is reversible.
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(2) Assume M is faithful multiplication and I (+) IM is coidempotent in R (M) .
Then

I(+)IM = (ann (I (+) IM))2
= ann (ann[( )[0 M I])2

(
(

— ann (ann 1)* N ann ((annl)2 M) (+) [O :y (ann 1)?
(

= ann

(ann 1) annI)(annI)M)

= ann

(ann 1) (+) (ann 1)* M)

— ann (ann J)? (+) ann (ann I)* M.

Hence I = ann (ann 1) and I is coidempotent in R. The statement is re-
versible.
(3) Suppose I (+)IM is copure in R (M). Let J be an ideal of R. Then

[I(+)IM gy J (+) JM] =1 (4+)IM + ann (J (+) JM)
=I(+)IM (+)annJ (+) [0 :pr J]
=T +annJ)(+)IM +[0:p J].
On the other hand,
[I(+)IM gy J (+) M) =1 JJN[IM : JM] (+ [IM :pr J])
=[:J(+) M :p J]
It follows that [I : J] = I +annJ and I copure in R. Note that [IM :p J] =

IM (4) [0 :pr J] means that IM is also copure in M.
O

An immediate consequence is the following corollary. It follows by [10] Proposi-
tion 2.1 and Proposition 2.2.

Corollary 2.3. Let R be a ring, M a finitely generated faithful multiplication R-

module and N a submodule of M.

(1) N is a comultiplication in M if and only if [N : M| (4+) N is a comultiplication
in R(M).

(2) N is coidempotent in M if and only if [N : M| (+) N is coidempotent in R (M) .

(3) If [N : M](+) N is copure in R (M) then N is copure in M.

The following three results show how properties of the ideal I (+) N can be
tranferred to its components and conversely.

Theorem 2.4. Let R be a ring, M an R-module and I (+) N a homogeneous ideal

of R(M).

(1) If M is faithful and I (+) N is a comultiplication in R (M) then N is a co-
multiplication in M. Assuming further that M is multiplication then I is a
comultiplication in R.

(2) If M is faithful and I (+) N is coidempotent in R (M) then N is coidempotent
in M. Assuming further that M is multiplication then I is coidempotent in R.

(3) If I (+) N is copure in R (M) then N is copure in M and I copure in R.
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Proof. (1) Suppose I (+) N is a comultiplication. Then

I(+)N =ann(ann (I (+) N)) = ann ((annI Nann N) (+) [0 :ar I])
But IM C N, and hence ann N C ann (/M) = ann I, So,

I(+)N =ann(ann N (4) [0 :p 1))
=ann (ann N Nann [0 :ps I]) (+) [0 :p7 ann N].

It follows that N = [0:j; ann N] and N is a comultiplication. Suppose now
M is faithful and multiplication. Then [0 :p; I] = (annI) M and hence

ann [0 :ps I] = ann ((annl) M) = ann (ann 1)

because M is faithful. Moreover, note that ann N C ann/ and therefore
ann (ann ) C ann (ann N) . This gives

I'=ann(ann N)Nann|0:p; I] = ann (ann 1),

and [ is a comultiplication.
Assume M is faithful and I (+) N is coidempotent. Then

(ann (7 (+) N))”
ann ((ann I Nann N) (+) [0 :p7 1))
ann (ann N (+) [0 :p/ ID2

I(+)N =ann

ann ( (ann N)? (4) (ann N) [0 <y I])

ann (ann N)* N (ann (ann N [0 137 1)) (4) [O M (annN)z} .
It follows that N = [0 v (ann N)z} and N is coidempotent in M. Suppose
now that M is faithful multiplication. Then
I = ann (ann N)® Nann ((ann N) (ann I) M)
= ann (ann N)? Nann ((ann N) ann 1) .
But ann N C ann /. Thus (ann N)® C (ann N) (ann I) , and hence

ann ((ann N) (ann 7)) C ann ((ann N)Q) .

Therefore, I = ann ((ann N) (annl)) . Again, since
ann N C ann I, (ann N) (ann ) C (ann1)?,

and hence

ann ((ann I)2> C ann (ann Nann 7).
It follows that
I D ann (ann[)2 Dann(ann/) DT

)

so that I = ann (ann )® and I is coidempotent.
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Let I (+) N be a copure ideal of R (M) . Let J be an ideal of R. Then
[I(+)N gy J (+) JM] =1 (+)N (+)ann (J (+) JM)
=I(+)N(+)(ann J (+) [0 :pr J])
=I+annJ(+)N+[0:p J].
On the other hand,
[I(+)N gy J (+) IM] = [I: J)N[N : IM] (+) [N :ar J].

Since I () N is a homogeneous ideal of R (M), IM C N, hence I C [N : M],
and this gives that [[ : J] C[[N: M]: J] C [N : JM].
It follows that

LGN tmgany J (4 IM]) = [T5J] (4) [N g J].
This shows that
[I:J)=I4annJ, and [N :p J] =N +1[0:p J].

This gives that I is copure in R and N copure in M, and this completes the
proof of the theorem.
O

Proposition 2.5. Let R be a ring, M a faithful multiplication R-module, and
I(+)N a homogeneous ideal of R (M) . Then the following holds.

(1)
(2)
(3)

(4)

If I is a comultiplication and annN C annl then I (+) N is a comultiplication.
If I is coidempotent and annN C annl then I (+) N is coidempotent.

Let I be a comultiplication in R and N a comultiplication in M such that
annl + [IM : N] = R then I (+) N is a comultiplication.

Let I be coidempotent in R and N coidempotent in M such that annl +
[IM : N] =R then I (+) N is coidempotent.

Proof. We only prove parts (1) and (3). Parts (2) and (4) are similar.

(1)

Since M is a faithful multiplication and I is a comultiplication, it follows by
Proposition 2.2 that I (+) IM is a comultiplication in R (M) . Now,

ann (I (+)N) = (annI Nann N) (+) [0 :p7 I].

But ann N C ann/. Thus ann (I (+)N) = ann/ (+)[0:a I]. On the oth-
er hand ann (I (+)IM) = annl (+)[0:pr I]. Since I (+)IM C I(4)N, the
result follows from [10] Proposition 3.2.

Since [ is a comultiplication, I (+) IM is a comultiplication. Also N is comul-
tiplication in M, therefore 0 (+) N is a comultiplication in R (M). As

annl + [IM : N] = R,
we obtain that
[0(+) N :gany I (+) IM] + [I (+) IM :gar) 0(+) N| = R(M),

and the result now follows by [10] Proposition 3.2.
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Unfortunately, the converse of statement (3) of each of Proposition 2.1, Propo-
sition 2.2 and Theorem 2.4 are not true in general.

The next theorem gives sufficient conditions for I (+)IM, 0(4+)N and I (+) N
to be copure ideals in R (M) .

Theorem 2.6. Let R be a ring and M be a finitely generated faithful multiplication

R-module. Let R(M) be a homogeneous ring.

(1) If I is copure in R then I (+)IM is copure in R(M).

(2) Let every ideal J(+) K of R(M) has the property annJ C ann K. If N is
copure in M then 0 (+) N is copure in R(M).

(3) Let every ideal J(+)K of R(M) has the property annJ C ann K. If I is
copure in R and N copure in M then I (+) N is copure in R(M).

Proof. (1) Let J(+4) K be an ideal of R (M) . Then JM C K, and hence ann K C
ann (JM) = ann J. Suppose that I is copure in R. Then by [10] Proposition 2.1
IM copure in M. Now

[L(+) IM gy J () K] = [L: JINIM : K] (+) [IM 201 J]
CU TN K M) (4) IM + 0200 J]
= +annJ)N ([ +ann [K : M]) (+) IM + [0 :pr J]
= +amnJ)N (I +ann K) (+) IM + [0 :pr J]
I+anm K (+)IM (+)[0:pr J]
I(+)IM +ann K (+) [0 :pr J]
I(+
I(+

(+)IM + (annJ Nann K) + [0 :ps J]
(+) IM +ann (J (+) K) C [I(+) IM gy J (+) K],

so that
[I(+)IM gy J (+) K] =1 (+)IM +ann (J (+) K),

and I (+)IM is copure in R (M).
(2) Suppose N is copure in M. By [10] Proposition 2.1, [N : M] is copure in R.
Let J (+) K be an ideal of R (M) such that annJ = ann K. Then

[0(+)N gy J (+) K] =ann J N[N : K] (+) [N :ar J))

annJ N[[N:M]:[K:M])(+)N +[0:p J]
=annJ N[N : M]+anmn[K : M]) (+)N +[0:ps J]
ann K N ([N : M]4+ann K) (+) N + [0 :ps J]

ann K + N+ [0:p J]=0(+) N +ann K (+) [0 :ps J]
=0(+)N+ (annJ Nann K) (+) [0 :ar J]
=0(+)N +amn (J (+) K).

Hence 0(+) N is copure in R (M).
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(3) Let I be copure in R and N copure in M. By [10] Proposition 2.1, [N : M] is
copure in R. Let J (4) K be an ideal of R (M) with annJ = ann K. Then

[L(H)N rony J () K] = [[: JIO N K] (+) [N 2ar ]
=[NV M= [K: M) (+) [N v J]
={+annJ)N([N: M]+ann[K : M]) (+) N + 1[0 J]
={I+amnJ)N([N: M]+ammK) (+)N + [0 :ar J]
But annJ = ann K and I C [N : M]. Thus
[I(+)N gy J (+) K] = (I +amn K) (+) N + [0 :p7 J]
=I(+)N+ (annJ Nann K) (+) [0 :as J]
=I(+)N+am(J(+)K).
This gives that I (+) N is copure ideal of R (M).
(]

The following result shows how the comultiplication and copure properties of an
ideal I of R transfer to the ideal I (+) M of R(M).

Proposition 2.7. Let R be a ring, M an R-module and I a non-zero ideal of R.

(1) If M is faithful and I (+) M is a comultiplication then I is a comultiplication.
The converse is true if we assume further that M is multiplication.

(2) If I (+)M is copure then I is copure. The converse is true if annl C ann M.

Proof. (1) The first part of the statement is true by Theorem 2.4. Now let M
be faithful multiplication and I a comultiplication. Then

ann (ann (I (+) M)) = ann ((ann I Nann M) (4) [0 :ar I])
ann (0 (4) (ann 1) M)

=ann ((annl) M) (+) M

= ann (ann ) (+) M

=1(+)M.

(2) If I (+) M is copure then I is copure follows by Theorem 4. Suppose now that
I is copure. Let H be ideal of R(M). Then

[I(+)M ‘R(M) H] = [I(+)M ‘R(M) H+I(+)M] .

Since 0(+) M CH+I(+)M, H+I1(+)M = J(+) M for some ideal I C J.
It follows that

[ (+) M :pary H] = M gy J (F) M| =12 J)(+) M
annJ)( YM=I(+)M+annJ(+)M

[7(+
=
I(+)M + (annJ Nann M) (+) [0 :ps J]
I
I

(+) M + ann (J (+) M) = I (+) M + ann (H + I (+) M)
(+)M +ann H C [I(+) M gy H] -

N

This gives that

—

I(+)M gy H] =1 (+)M +ann H, and I (+) M is copure.
O
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The next result shows how properties of the ideal I (+) M of R (M) are related
to those of I when M is a projective R-module.

Proposition 2.8. Let R be a ring and M a projective R-module. Let I be an ideal
of R.
(1) I(4+)M is a comultiplication ideal of R (M) if and only if I is a comultiplica-
tion ideal of R and M = IM.
(2) I(+)M is a coidempotent ideal of R(M) if and only if I is a coidempotent
ideal of R and M = IM.
Proof. (1) Let I (+)M be a comultiplication. Then
ann (ann (I (+) M))
=ann ((ann I Nann M) (+) [0 :a7 I])
=ann ((annI Nann M) (+) (annl) M)
=ann(annJ Nann M) Nann ((ann ) M) () ann (ann I Nann M) M
Cann(annf) Nann ((annl) M) (+) ann (ann I) M
=ann(annl) (+)ann(annl) M = I (+)IM
I(+)
so that I (+)M = I(+)IM = ann (ann (I (+)M)). Hence I (+) M is a co-
multiplication and M = IM. The converse follows by Proposition 2.2.
(2) Assume that I (+) M is coidempotent. Then

M C ann (ann (I (+) M)),

ann (ann (I (+) M))* = ann ((ann I N ann M) (4) (ann I) M)?
ann( ann[ﬂamnM)2 (+)ann I (ann I Nann M) M)

= ann (ann I Nann M)® Nann (ann I (ann I N ann M) M)
(+)ann (ann I (ann I Nann M) M) M
nn (
)

\ ﬂ

ann I)? (+) ann (ann 1)> M

=I(+)IM CI(+)M C ann(ann (I (+)M))>.

Thereore I (+) M is coidempotent and M = IM. The converse follows by
Proposition 2.2.
O

We close our work by a result which determines when the ring R (M) is a co-
multiplication ring.

Theorem 2.9. Let R be ring and M an R-module.

(1) Let M be a faithful multiplication or finitely generated projective. If R (M) is
a comultiplication then R is a comultiplication and M a comultiplication. The
converse is true if [0 gy H] + [0 gy 0(+) M] = [0 gy HNO(+) M]
for every ideal of H of R(M).

(2) Let M be faithful multiplication. If R(M) is coidempotent, then R is coidem-
potent and M is coidempotent.

(3) If R(M) is copure then R is copure and M copure.
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Proof. We first prove (1). Assume that M is faithful multiplication or finitely
generated projective. Suppose R (M) is a comultiplication. Let I be an ideal of R
and N a submodule of M. Then I (+) M and 0(+) N are comultiplication ideals
of R(M). It follows by Propositions 2.1 and 2.8, I is a comultiplication ideal of R,
and hence R is a comultiplication. Then N is also a comultiplication which implies
that M is a comultiplication. For the converse assume M is faithful multiplication
or finitely generated projective and the equality

is satisfied. Let H be an ideal of R(M). Let H+0(+)M = I(+)M and H N
0(+)M = 0(+)N for some ideal I of R and some submodule N of M. Since

I is a comultiplication, it follows by Propositions 2.7 and 2.8 that I (+)M is a
comultiplication. Then

H+4+0(+)M=1(+)M =ann (ann (I (+) M))
= ann(ann(H—!—O( ) M)
= ann (ann H Nann (0 (+) M))
D ann (ann H) + ann (ann (0 (+) M))
Dann(ann H)+0(+)M 2 H+0(+) M,
so that H 4+ 0(+)M = I(+)M = ann(annH) + 0(+) M. Now, in case M is
faithful multiplication or finitely generated projective and N is a comultiplication,
then 0 (+) N is a comultiplication by Proposition 2.1 and the remark after it. Next

HNO(+)M =0(+)N = ann (ann (0 (+) N))
= ann (ann (H N0 (+) M))
= ann (ann H + ann (0 (+) M))
= ann (ann H) Nann (ann (0 (+) M))
Dann(ann H)NO(+)M D HNO(+) M

so that H N0(+) M = ann (ann H) N0 (+) M. Apply the modular law, one gets
that

H=H+0(+)M)NH= (ann(ann H) + 0 (+) M) N H
=ann(ann H) + (HNO(+) M)
= ann (ann H) + (ann (ann H) N0 (+) M)
= ann (ann H) ,
and hence R (M) is a comultiplication.

The proofs of (2) and (3) are similar to the first part of (1) using Propositions
2.1 and 2.2. This finishes the proof of the theorem. (I
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